Lab on Standard Deviation

by Paul Kinion

Introduction: We have defined three different concepts for standard deviation. The population standard deviation σ , the biased estimator s_n , and the sample standard deviation s_{n-1} or just s, also known as the unbiased estimator. Clearly, when the sample size n is the same as the population size N, the biased estimator s_n is the same as the parameter σ . So, where is the bias, why use s_{n-1} ? This lab will give a statistical justification for the practice.

Purpose: To show that often, s_{n-1} is a better predictor of σ , than s_n .

Method: Our population consists of a class of 32 students. On a scale of 1 to 5 they responded (7, 12, 4, 0, 9) to a survey question. This means 7 answered "1", 12 answered "2" and so on. Ten times we will randomly sample 16 or half of the population and record the sample standard deviation s_{n-1} . A simple calculation gives s_n . Of the ten trials, we will record the proportion of times s_n was at least as good of a predictor as s_{n-1} . The sample proportion will be used to estimate the population's proportion. Measurements will be taken with *Sampling Distributions for Small Samples* by Kinion and Haxton.

Hypothesis: Let π be the proportion of trials where s_n is at least as good as a predictor of σ as s_{n-1} . The null hypothesis is $\pi \ge 0.5$, leaving $\pi < 0.5$ as the alternative. Use a 0.10 level of significance.

Question: Out of ten trials, how few successes would you tolerate before rejecting the null hypothesis and adopting s_{n-1} as the predictor that is most often the best predictor of the population standard deviation? Explain

Step 1: Open *Sampling Distributions for Small Samples*. Enter the population as described and 16 for the sample size. Generate data.

Step 2: The top graph is the population. Hover the mouse over it and right click. Record population parameters μ and σ to the nearest ten-thousandth on page two of the data sheet.

Step 3: The middle graph is a random sample. Hover the mouse over it and right click. Record the first sample standard deviation s_{n-1} . Close the sample window and push the "Generate Data" button. Record the second standard deviation. Repeat until you have ten sample standard deviations recorded.

Step 4: Calculate the conversion factor $F = \sqrt{\frac{n-1}{n}}$ Use the formula s_n = F s_{n-1} to complete the second column in the data sheet.

Step 5: Both predictors perform the same when $\sigma - s_n = s_{n-1} - \sigma$. Make the substitution $s_n = F s_{n-1}$ and solve the resulting equation for s_{n-1} . Did you obtain $2\sigma/(1 + F)$? Calculate and record on the data sheet. This value serves as a boundary. If s_{n-1} is greater than or on the boundary, then s_n is the better predictor, or at least as good. Check each <u>qualifying</u> trial on page one of the data sheet. Divide the number of qualifiers by 10 to obtain the sample proportion \hat{p} .

Step 6:Find the critical value for a hypothesis test done with a 0.10 levelof significance.

Step 7: Find the test statistic $z = \frac{\hat{p} - 0.5}{\sqrt{\frac{0.25}{n}}}$.

Step 8: Use a complete sentence to state the conclusion of your hypothesis test.

Step 9:Repeat Steps 1 through 8 with a Population of your ownchoosing

Data Sheet		Name		
Trial Number	· <i>S_{n-1}</i>	S _n	Check if $s_{n-1} \ge B$	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Population,,,,,,,,,
Population Size (N)
Sample Size (n)
Population Mean (μ)
Population Standard Deviation (σ)
Conversion Factor (F)
Boundary Value (B)
Sample proportion (\hat{p})
Test Statistic (z)
Conclusion

Data Sheet		Name		
Trial Number	<u> </u>	Sn	Check if $s_{n-1} \ge B$	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Population,,,,,,,,,,
Population Size (N)
Sample Size (n)
Population Mean (μ)
Population Standard Deviation (σ)
Conversion Factor (F)
Boundary Value (B)
Sample proportion (\hat{p})
Fest Statistic (z)
Conclusion