Rochester Community and Technical College

Comprehensive Facilities Plan

Volume 2: Appendix 100% Submittal

January 25, 2024

701 Washington Avenue North, Suite 200 Minneapolis Minnesota 55401 P: 612.338.2029

Meeting Minutes

- Committee Meeting 1, November 5, 2021
- Committee Meeting 2, December 3, 2021
- Committee Meeting 3, December 10, 2021
- Stakeholder Meeting: Athletics, December 16, 2021
- Stakeholder Meeting: Facilities, December 16, 2021
- Stakeholder Meeting: Student Services,
 December 16, 2021
- Stakeholder Meeting: Technology, December 17, 2021
- Stakeholder Meeting: Accounting, Business, and Office Administration, January 14, 2021
- Stakeholder Meeting: Communication, Fine Arts, and Audio-Visual Technology, January 18, 2022
- Stakeholder Meeting: Construction and Transportation, January 18, 2022
- Stakeholder Meeting: Public/Community, January 18, 2022
- Stakeholder Meeting: Liberal Arts / Transfer Pathways
 / STEM, January 19, 2022
- Stakeholder Meeting: Agriculture Science and Natural Resources, January 20, 2022
- Stakeholder Meeting: Behavior, Education and Personal Services, January 20, 2022
- Stakeholder Meeting: Law Enforcement and Public Safety, January 20, 2022
- Stakeholder Meeting: Health and Healthcare Support Services, January 21, 2022
- Stakeholder Meeting: Students, Student Senate, and Student Life, January 27, 2022
- Committee Meeting 4, January 28, 2022
- Committee Meeting 5, February 18, 2022
- Committee Meeting 6, March 15, 2022
- Comprehensive Facilities Plan Meeting 7, August 26, 2022
- Comprehensive Facilities Plan Meeting 8,
 September 16, 2022
- Comprehensive Facilities Plan Meeting 9, October 7, 2022

Space Utilization Reports

- RCTC Room Utilization Fall 2021
- RCTC Partner Space Utilization Fall 2021

Room Scheduling Policy

The college does not have a scheduling policy specific to academic program space use. The campus room scheduler utilizes EMS reports to identify class size and room capacities to ensure efficient scheduling. An online portal is used to schedule non-academic meetings and events.

Facilities Reports

- Facilities and Infrastructure Detail Report
- 5 Yr Renewal Report
- Current Backlog Report
- Higher Education Asset Preservation and Renewal (HEAPR) Manual Updated March 2021

B3 Reports

- B3 Benchmarking Report

Technology Master Plan

- Master Technology Plan 2021-2025

Academic Master Plan

- RCTC Master Academic Plan 2017 2020
 Executive Summary
- RCTC Master Academic Plan 2017 2020
- Strategic Plan 2024

AQIP Systems Portfolio & Higher Learning Commission Self Study

Refer to Section 1 for information.

Other Partnerships

Refer to Section 1 for Partnership information.

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: NOVEMBER 5, 2021 LOCATION: VIRTUAL MEETING

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Committee Meeting 1
DATE SENT: November 8, 2021

PRESENT: Name Title / Organization Email

Steve Schmall VP of Finance and Facilities Shayn Jensson Facilities Project Manager Mary Dennison Librarian Alicia Zeone Director of Admissions Gina Korf Biology Faculty Lab Technician Art & Design Crist Dahl Beth Diekmann Financial Aid Director Michele Pyfferoen VP Academic Affairs Brenda Frame Dean of Liberal Arts/Gen Ed Michael Sheggeby Director of Sports Facilities

Steve Higgins Director of Sports Facilities

Steve Higgins Director of ITS and Departments IT and TSC

Sara Phillips Planner, Architect, Project Manager, LHB

Laura Heck Project Coordinator, LHB

Steve.Schmall@rctc.edu
Shayn.Jensson@rctc.edu
Mary.Dennison@rctc.edu
alicia.zeone@rctc.edu
Gina.Korf@rctc.edu
Crist.Dahl@rctc.edu
Beth.Diekmann@rctc.edu
Michelle.Pyfferoen@rctc.edu
Brenda.Frame@rctc.edu
Michael.Sheggeby@rctc.edu
Steve.Higgins@rctc.edu
sara.phillips@lhbcorp.com
laura.heck@lhbcorp.com

MEETING SUMMARY CFP Definition

- Macro-level study
 - b. Flexible & sustainable: Economically and environmentally sustainable while allowing for campus growth.
 - c. Academic and other planning is used as the key filter for reviewing the plan.
 - d. Roadmap for the next step for funding (state, campus, or other).

Comprehensive Planning

- a. Focuses on the campus mission; how will the campus transform to respond to the needs of today and tomorrow.
- b. Committee Expectations: Consistent attendance helps with addressing all ideas and concerns. Be an ambassador; collect information and present to your colleagues. Don't be afraid to challenge ideas.

Schedule

- a. Next Committee Meeting: December 10.
- b. 35% Submittal may shift covers existing conditions.
- c. Goal is to complete the CFP process prior to the end of 2022.
- d. Plans are updated typically every 5 to 7 years.

Meeting Minutes: Rochester Community and Technical College Comprehensive Facilities Plan

Date of Meeting: November 5, 2021

Stakeholder Groups

- a. Refer to list in the presentation. Committee to review and may propose other stakeholder meetings.
 - i. Add the Technology Group, CTech / PTech
 - ii. Could also include WSUR, Rochester Public Schools, City of Rochester, etc. Refer to the Academic Master Plan for other possible groups.
- b. Possibility to send a campus wide survey or conduct campus wide forums to receive feedback.

Planning Trends to Track

- a. Learning Communities that support collaboration between amongst students and faculty. Lounge support spaces and other 'soft' spaces.
- b. Full spectrum learning environment
- c. Third "Places" are a public home.
- d. Multicultural Communities: Recognize individual backgrounds and make a community welcoming for all.
- e. Efficient use of resources: More renovations before consideration of new buildings
- f. Virtual Services & Learning: What programs can move fully online? What programs require a physical space?

Review of Previous 2018 Plan

- a. Site Phasing Plan:
 - i. High level site plan.
- b. Top Projects were noted.
 - i. Memorial & Plaza Halls Demo / Addition / Renovations: complete.
 - ii. Heintz Center B-wing Renovation Predesign 2022 Funding Request
 - 1) Presentation to the legislature to be uploaded to Teams.
 - 2) Project name has changed, but the impacted area is roughly the same.
 - iii. Student Services some progress; college funded.
 - iv. Student Union: Predesign started, but not completed; did not move forward as student support wasn't sufficient. Difficult to fund student unions/centers in a two-year institution.
 - v. Others not yet started: Theater and Art Hall Renovation; Center for Student Success and Teaching Excellence

Reactions to the previous Plan:

- a. Current priorities: Centralize student services. Explore shifting library space to make room for a learning center. Reassess remote tutoring vs. in person with the pandemic impacts.
- b. Online classes that are using simulations require upgraded technology and different space requirements. (Health and Vet Tech).
- c. GRAUC Greater Rochester Advocates for Universities & Colleges: Pursuing federal funding for a simulation center (located off-campus). Partnered with U of M Rochester, Mayo Clinic and others.
- d. Tier 2 classrooms added as part of the Memorial Hall project are available for both in person and remote instruction. Seemingly high utilization.
- e. Comprehensive one-stop Welcome Center has been a great improvement. Would like to see this expand to advising, physical / mental health services, and other student services.
- f. The Bookstore is planning on moving to the Atrium near the Welcome Center.
- g. Cafeteria and Corner Café does not satisfy the need for a "snack bar." Some libraries have added cafes and carts. Staffing challenges for the current food service vendor were noted. If food service were centralized, where should it be?
- h. Fine Arts: Music hall currently not inviting. Issues with the piano rooms. Theater seats are uncomfortable. Issues with art classes not being able to space out students in room 201. Fine Arts renovations are still needed, but it was noted that these projects can be difficult to fund given the Legislature's tendency to fund Career and Technical Education programs.
- i. Directional Access: Buildings are currently being renumbered and renamed.
- j. Third Floor Science & Technology: Still needs renovation for instructional spaces.
- k. Continued focus on Wi-Fi, cell coverage, etc. This is a constraint in the One-Stop Center.

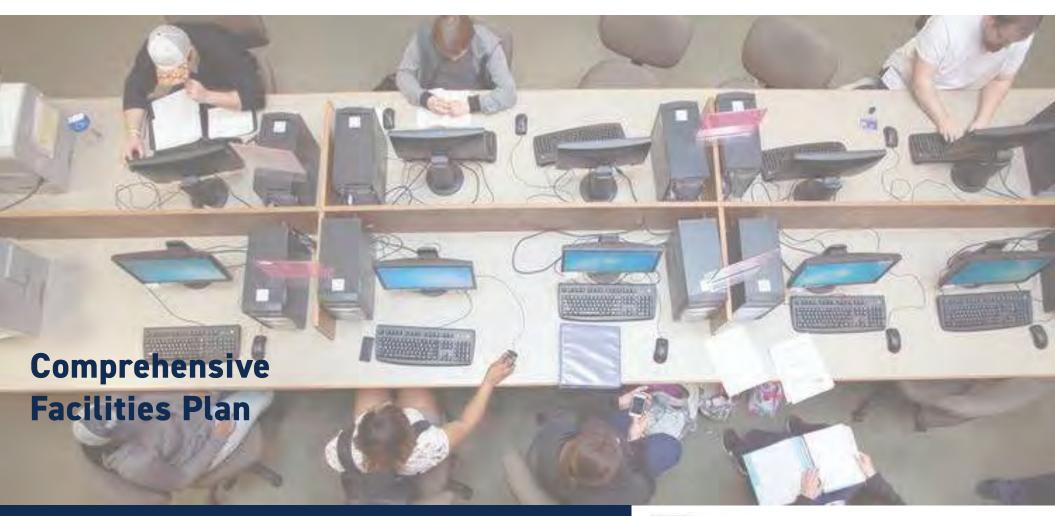
Meeting Minutes: Rochester Community and Technical College Comprehensive Facilities Plan Date of Meeting: November 5, 2021

Page: 3

Next Steps

- a. Review information from the Teams channel. Focus on existing conditions and space use/utilization.
- b. Fine tune stakeholder meetings
- c. Submit 35% Draft reassess submittal date at the December 10th meeting.

Communication


- a. Committee may send questions to Shayn to compile and send to LHB.
- b. Minutes: LHB to post to the Teams Channel.
- c. Send a request to Katrina Maass if you don't have access to the Teams Channel.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: Committee Meeting 1 Presentation

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\20211105 Committee Mtg 1\210539 20211105 MM CFP Committee Meeting 1.docx

Committee Meeting 1
November 5, 2021

Agenda

- Introductions & Roles	10 Minutes
- CFP Definition & Process	5 Minutes
- Schedule	5 Minutes
– Planning Trends to Track	10 Minutes
– Review of Previous Plan	15 minutes
- Next Steps	5 Minutes
	55 Minutes

Introductions & Roles

LHB Partners

- Sara Phillips, AIA | Planner | Architect | Project Manager
- Laura Heck, CDT | Project Assistant
- Nikki Schlepp, PLA | Senior Landscape Architect
- Nathan Wriedt, PE, RCDD | Electrical / Technology
- Ryan Thorson, PE | Mechanical Engineer

RCTC

- Steve Schmall, VP of Finance and Facilities
- Shayn Jensson, Facilities Project Manager
- Jon Krusmark, Information Tech Specialist
- Alicia Zeone, Director of Admissions
- Michael Sheggeby, Director of Sports Facilities
- Michelle Pyfferoen, VP Academic Affairs
- Jean Musgjerd, Health/Phy Ed/Athletics Faculty
- Gina Korf, Biology Faculty
- Steve Higgins, Director of ITS and Departments IT and TSC

- Brenda Frame, Dean of Liberal Arts/Gen Ed
- Beth Diekmann, Financial Aid Director
- Mary Dennison, Librarian
- Crist Dahl, Lab Technician Art & Design
- Students (to be determined)

Comprehensive Planning at RCTC

Support the Mission of the College

Mission: Rochester Community and Technical College provides accessible, affordable, quality learning opportunities to serve a diverse and growing community.

Expectations

- Consistent attendance
- Plan Ambassadors
- Champions of the College
- Challenge Ideas

Schedule

September 2021

30 Information Request Distributed

October 2021

- 8 Kick-off Meeting with Minnesota State
- 22 Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee Stakeholder Meetings

December 2021

Meeting with CFP Committee35% Completion for Review*

January 2022

Meeting with CFP Committee Receive Comments

February 2022

Meeting with CFP Committee Meeting with President Campus Engagement

March 2022

15 65% Completion for Review*

April 2022

Receive 65% Comments

May 2022

Meeting with CFP Committee Meeting with President

June 2022

Meeting with CFP Committee

July 2022

95% Completion for Review*

September 2022

Meeting with CFP Committee
Presentation to the System Office (tentative)

October 2022

Submit 100% Document*

Stakeholder Groups

Meet with students, academic pathways, facilities, community members and others.

Potential Groups

- Accounting, Business, and Office Administration
- Agriculture Science and Natural Resources
- Behavior, Education and Personal Services
- Communication, Fine Arts, and Audio-Visual Technology
- Construction, Technology, and Transportation
- Health and Healthcare Support Services
- Law Enforcement and Public Safety
- Liberal Arts
- STEM
- Transfer Pathways

- College Administration
- Athletics
- Students, Student Senate, and Student Life
- Student Services
- Facilities Staff, including groundskeeping and maintenance
- Community Leaders / Members

Planning Trends to Track

Learning Communities

Concept championed by George Kuh, PhD creating supportive environments within the college that foster seamless transfer of learning between likeminded students and faculty.

Full-Spectrum Learning Environments

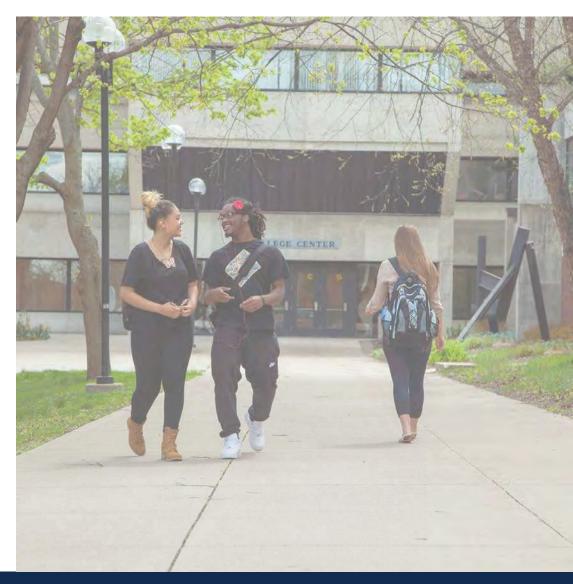
Accommodate Lecture, Collaborative, Seminar, Active, and Focused Learning Styles often in same classroom.

Third 'Places'

Concept developed by Ray Oldenberg (Urban Sociologist) designating 'non-threatening places' in the public sphere that provide opportunities to observe and participate in the public ritual in an environment with the rules clearly understood. Third Place is intended to mime the private safe haven of home or 'First Place'.

Planning Trends to Track

Multi-Cultural Communities


Awareness that one culture's signs and symbols are not necessarily perceived by other cultures in the same manner.

Efficient Use of Resources

Less building of new space, more renovations and full building demolition.

Virtual Services and Learning

How will the current pandemic impact longterm needs for office space and general purpose classrooms and the delivery of student services?

Top Projects

Memorial & Plaza Halls Demo / Addition / Renovations

- Complete

Heintz Center B-Wing Renovation

- Predesign Complete
- 2022 Funding Request

Center for Student Success and Teaching Excellence

- Not Started

Student Services Renovations

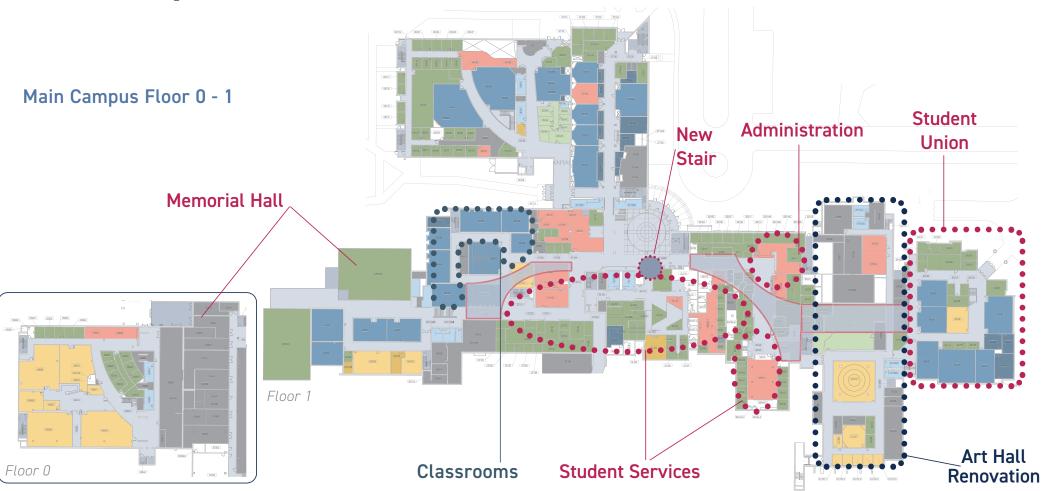
- Making Progress (self-funded)

Theater and Art Hall Renovation

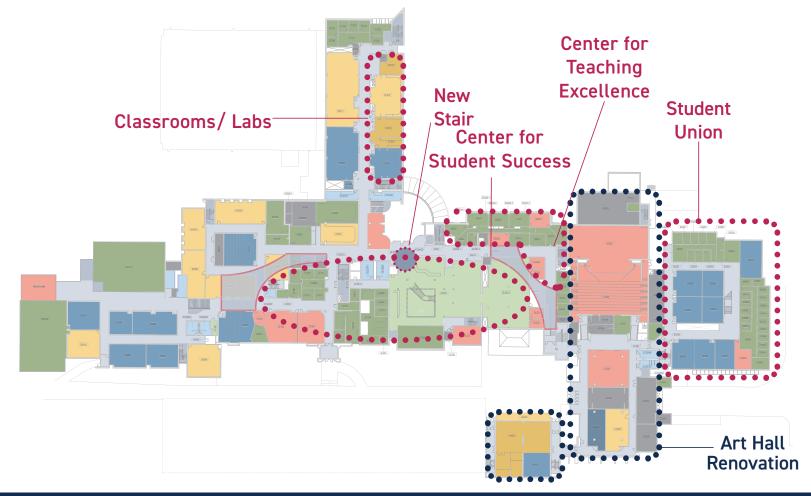
- Not Started

Student Union

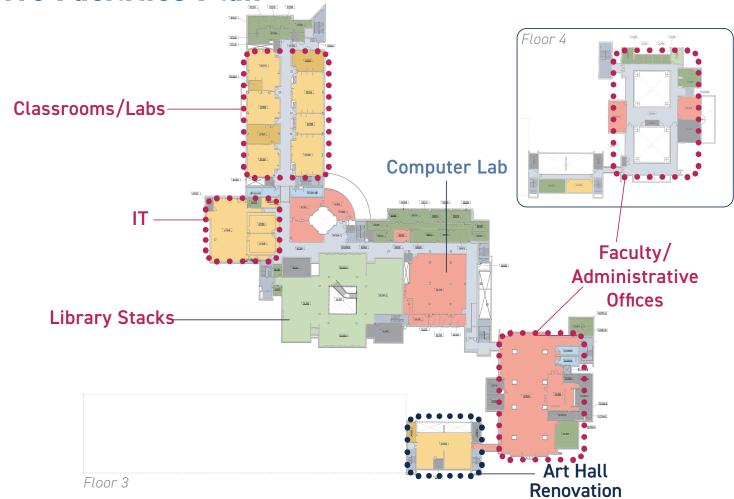
- Predesign Started; Not Completed

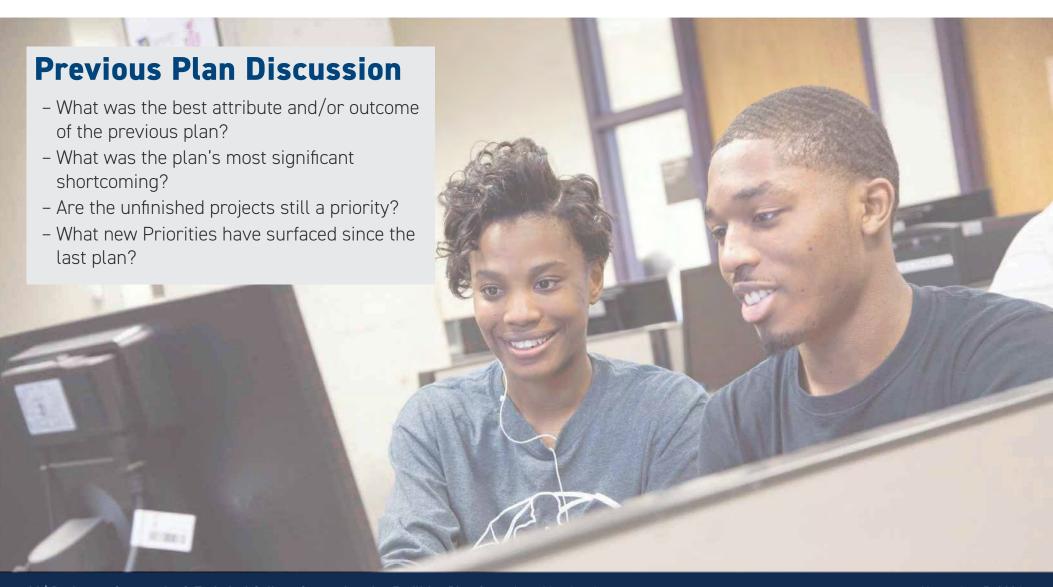

Heintz Center B-Wing Renovation

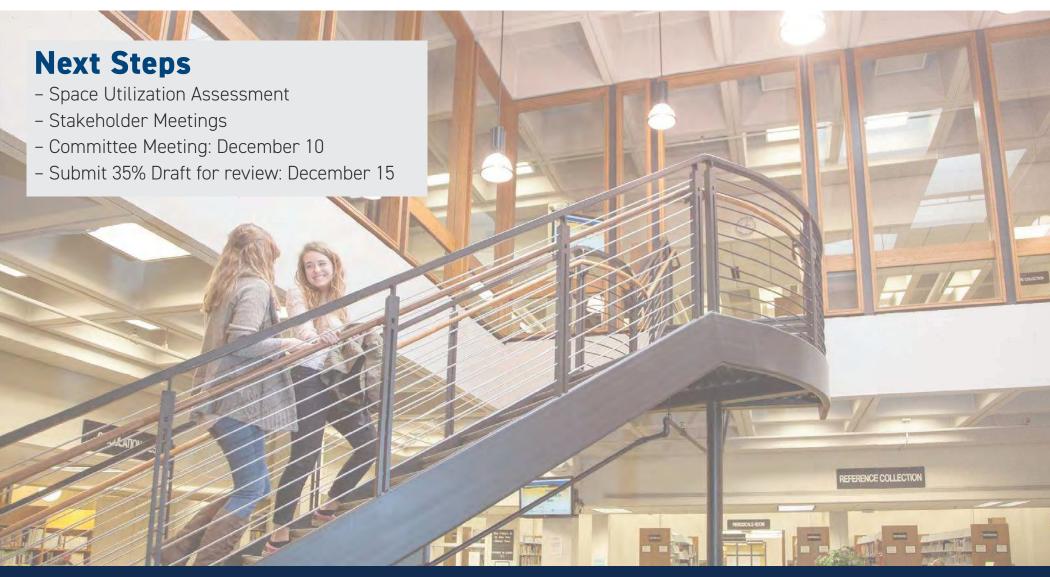
- Maker space
- Simulation center
- Business/industry partnerships

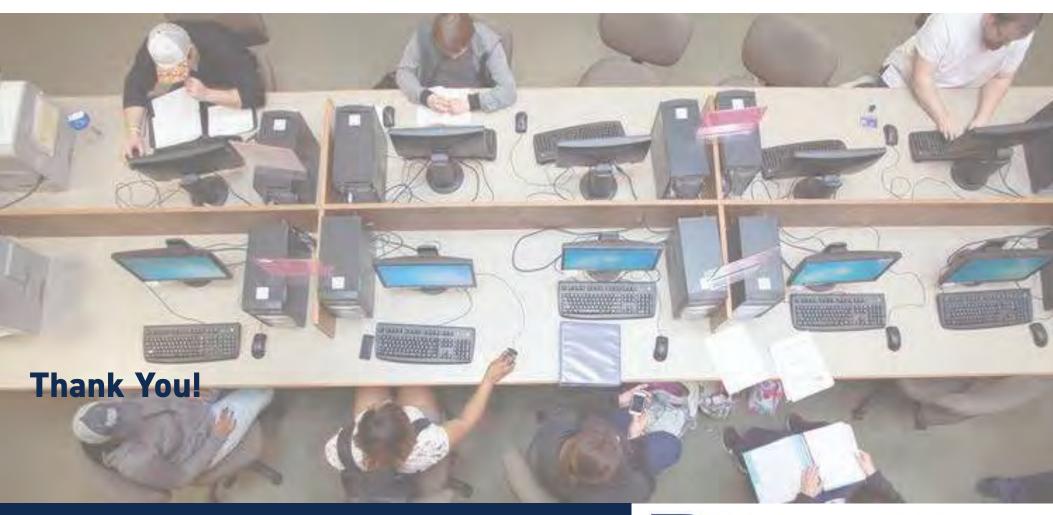

Heintz Center Student Services / Support Renovations

- Reconfigured Commons






Main Campus Floor 2



Main Campus Floors 3-4

Committee Meeting 1
November 5, 2021

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: DECEMBER 3, 2021 LOCATION: VIRTUAL MEETING

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Committee Meeting 2
DATE SENT: December 7, 2021

PRESENT: Name Title / Organization Email

Steve Schmall VP of Finance and Facilities Shayn Jensson Facilities Project Manager Mary Dennison Librarian Alicia Zeone Director of Admissions Gina Korf Biology Faculty Lab Technician Art & Design Crist Dahl Beth Diekmann Financial Aid Director Michele Pyfferoen VP Academic Affairs Michael Sheggeby **Director of Sports Facilities**

Steve Higgins Director of ITS and Departments IT and TSC Jean Musgjerd Health / Phys Ed / Athletics Faculty

Jenny Rosas Student Government Member

Brenda Frame Dean of Liberal Arts/Gen Ed, Academic Affairs

Jon Krusmark Projects/Events Department Director
Alicia O'Neill Architectural Designer
Sara Phillips Planner, Architect, LHB
Laura Heck Project Coordinator, LHB

Brenda.Frame@rctc.edu
Jon.Krusmark@rctc.edu
alicia.oneill@lhbcorp.com
sara.phillips@lhbcorp.com
laura.heck@lhbcorp.com

Steve.Schmall@rctc.edu Shayn.Jensson@rctc.edu

Mary.Dennison@rctc.edu

Beth.Diekmann@rctc.edu

Steve.Higgins@rctc.edu

Jean.Musgjerd@rctc.edu

Michelle.Pyfferoen@rctc.edu

Michael.Sheggeby@rctc.edu

jennifer.rosasiglesias@my.rctc.edu

alicia.zeone@rctc.edu

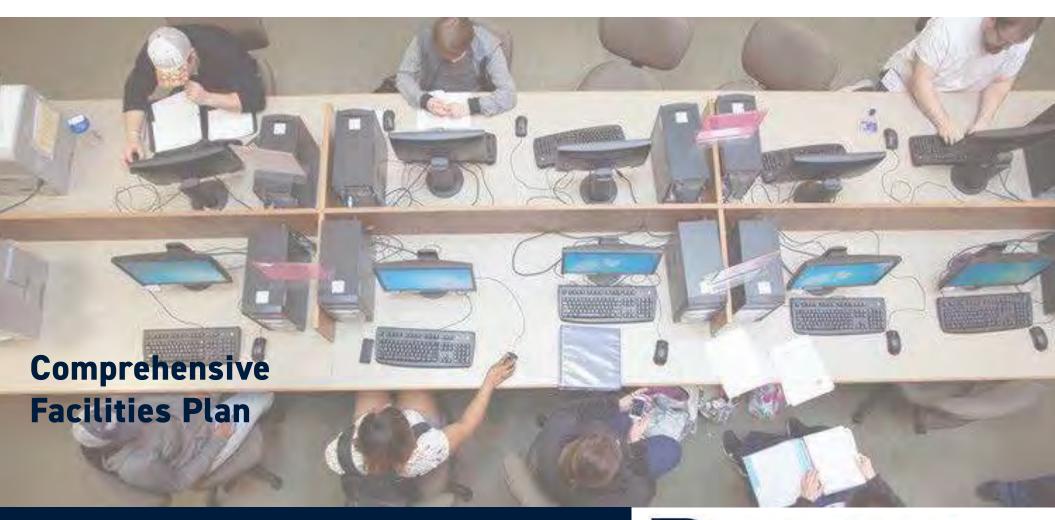
Gina.Korf@rctc.edu

Crist.Dahl@rctc.edu

MEETING SUMMARY

After introductions, attendees discussed the following in relation to the Comprehensive Facilities Plan next steps. There we no follow-up items noted from the last meeting.

- 1. Stakeholder Groups: Meet with students, faculty, staff, community members, etc.
 - The stakeholder list was revised from the last meeting.
 - b. Community Leaders & Members: Likely to include Rochester Parks & Rec.
 - c. Schedule: Some meetings may be scheduled in December (i.e. Facilities, Maintenance & Technology), others in January (Students, Student Senate & Student Life). LHB to coordinate with RCTC to begin scheduling.
- 2. Campus Survey:
 - a. The options for sending a survey were reviewed. Surveys with a likert scale are the quickest for respondents.
 - b. Could be launched or introduced on staff development day.
 - c. It was decided to start generating questions. A final direction will be discussed at next week's meeting.
- 3. Heintz Center Renovation:
 - a. Renovates a large portion of the Heintz Center; primarily the 1100 and 1300 suites.
 - b. On Minnesota State's list for Bonding in 2022. Will be listed as a Priority One project in the Comprehensive Facilities Plan, at least for submissions prior to the end of the legislative session.


- c. Moves student support to the forefront. Renovates CTE spaces. Includes more collaboration space. Places the trade programs on display. Updates technology in instructional spaces.
- d. Lab Changes: Generally, labs will be updated with current technology. (ie. Automotive may remove welding space to include electrical component space).
- e. Additional instructional space previously included in the plan, but was later removed from the scope.
- 4. Other areas needing renovation: 2300 Suite Dental & Surge Tech; some spaces in 1100 not included in the predesign; old lecture style classrooms;
 - a. Prioritize hands on tech program spaces.
 - b. Natural light is desired in the building. Skylights and/or light monitors are included in the predesign. Some are replacements.
- 5. Areas that do not require renovation:
 - a. 1300 Suite: Community Health lease
 - b. 1000 Suite: Recently renovated.
- 6. Schedule
 - a. 35% submission to move to December 22nd
 - i. Stakeholder meeting information to be listed as forthcoming for those that are scheduled after this date.
 - ii. Post the 35% draft to Teams. Any committee comments will be incorporated into the 65% draft.
- 7. Next Steps
 - a. Space Utilization Assessment
 - b. December 10: Site Discussion
 - c. Stakeholder Meetings
 - d. 35% Draft. This can be submitted concurrently to both RCTC and Minnesota State.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: Committee Meeting 2 Presentation

c: LHB File No. 210539

 $\label{lem:main_model} $$M:\21Proj\210539\200\ Communication\\ Meetings\20211203\ Committee\ Mtg\ 2\210539\ 20211203\ MM\ CFP\ Committee\ Meeting\ 2.docx$

Committee Meeting 2
December 3, 2021

Agenda

- Welcome and Introductions	5 Minutes
– Follow-up from Last Meeting	10 Minutes
– Stakeholder Meetings Update	5 Minutes
- Campus Survey Discussion	10 Minutes
- Review of Heintz Predesign	15 minutes
– Schedule Review	5 Minutes
- Next Steps	5 Minutes
	55 Minutes

Introductions

New Participants?

Follow-up from Last Meeting

Feedback or Thoughts?

Corrections from the Minutes

- Next meeting date was incorrect
- Other corrections?

Stakeholder Groups

Meet with students, academic pathways, facilities, community members and others.

Revised Groups

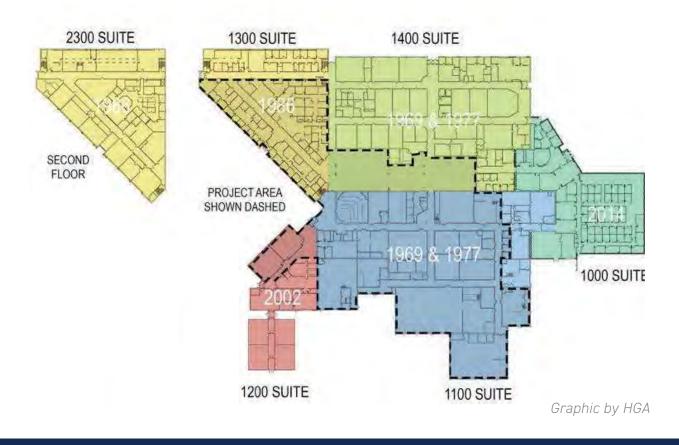
- Accounting, Business, and Office Administration
- Agriculture Science and Natural Resources
- Behavior, Education and Personal Services
- Communication, Fine Arts, and Audio-Visual Technology
- Construction, Technology, and Transportation
- Health and Healthcare Support Services
- Law Enforcement and Public Safety

Timing of Meetings

- December or January Preferred?

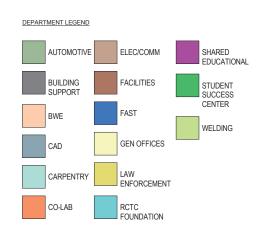
- Liberal Arts / Transfer Pathways / STEM
- Athletics
- Students, Student Senate, and Student Life
- Student Services / College Administration
- Facilities Staff / Maintenance / Technology
- Community Leaders / Members
- C-Tech / P-Tech / Rochester Public Schools

Campus Survey


Audience: Students, Faculty, and/or Staff

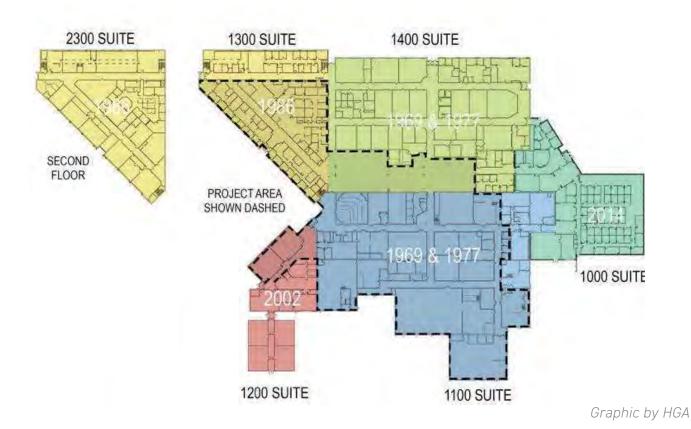
Options:

- Open Questions, "What are your three favorite places on RCTC's campus"
- Likert Scale Ratings, "Do the general purpose classrooms at RCTC support student success" (Strongly Disagree, Disagree, Undecided, Agree, Strongly Agree, No Opinion)
- Hybrid of both options
- Survey conducted by RCTC or LHB (Survey Monkey)?
- December or January?


Heintz Center Renovation

Re-Imagining Education for a Diverse Workforce

Heintz Center Renovation


Re-Imagining Education for a Diverse Workforce

Heintz Center Renovation

Re-Imagining Education for a Diverse Workforce

Schedule

September 2021

30 Information Request Distributed

October 2021

- 8 Kick-off Meeting with Minnesota State
- 22 Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee

December 2021

- 3 Meeting with CFP Committee
- 10 Meeting with CFP Committee
- 15 35% Completion for Review*

January 2022

Stakeholder Meetings?

Meeting with CFP Committee

Receive Comments

February 2022

Meeting with CFP Committee Meeting with President Campus Engagement

March 2022

15 65% Completion for Review*

April 2022

Receive 65% Comments

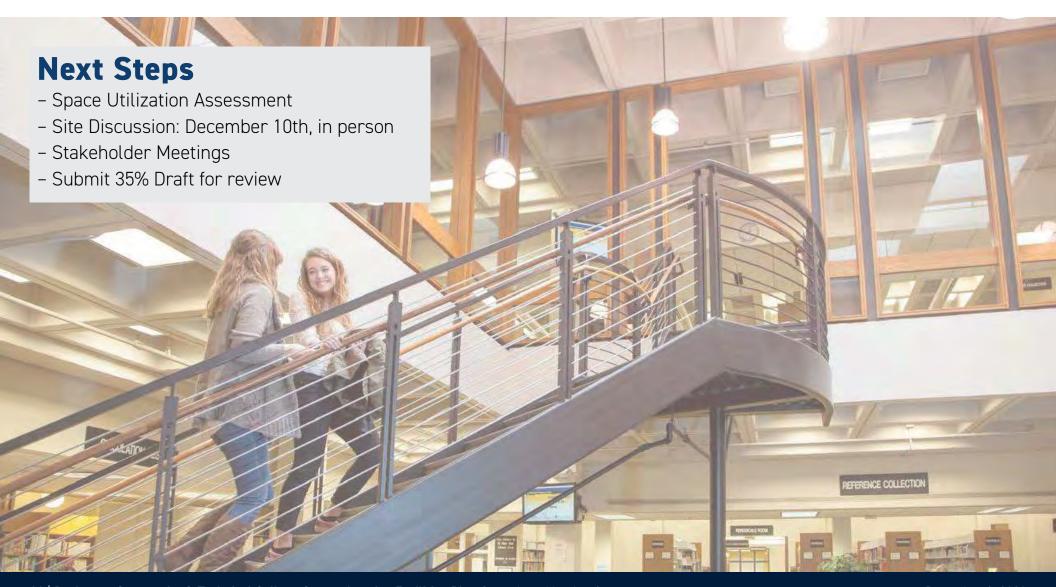
May 2022

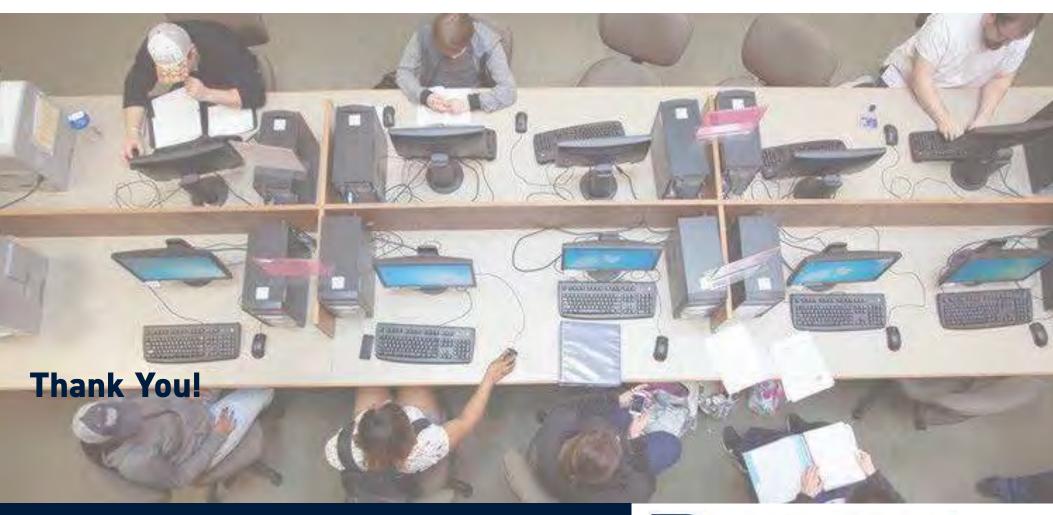
Meeting with CFP Committee Meeting with President

June 2022

Meeting with CFP Committee

July 2022


95% Completion for Review*


September 2022

Meeting with CFP Committee
Presentation to the System Office (tentative)

October 2022

Submit 100% Document*

Committee Meeting 2

December 3, 2021

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: DECEMBER 10, 2021

LOCATION: VIRTUAL MEETING

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Committee Meeting 3
DATE SENT: December 14, 2021

PRESENT: Name Title / Organization Email

Shayn Jensson Facilities Project Manager
Mary Dennison Librarian
Alicia Zeone Director of Admissions
Gina Korf Biology Faculty
Crist Dahl Lab Technician Art & Design

Beth Diekmann
Michele Pyfferoen
Michael Sheggeby

Lab Technician Art & Desig
Financial Aid Director
VP Academic Affairs
Director of Sports Facilities

Steve Higgins Director of ITS and Departments IT and TSC Jean Musgierd Health / Phys Ed / Athletics Faculty

Brenda Frame Dean of Liberal Arts/Gen Ed, Academic Affairs
Jon Krusmark Projects/Events Department Director

Nikki Schlepp Landscape Architect, LHB
Sara Phillips Planner, Architect, LHB
Laura Heck Project Coordinator, LHB

Shayn.Jensson@rctc.edu
Mary.Dennison@rctc.edu
alicia.zeone@rctc.edu
Gina.Korf@rctc.edu
Crist.Dahl@rctc.edu
Beth.Diekmann@rctc.edu
Michelle.Pyfferoen@rctc.edu
Michael.Sheggeby@rctc.edu
Steve.Higgins@rctc.edu
Jean.Musgjerd@rctc.edu
Brenda.Frame@rctc.edu
Jon.Krusmark@rctc.edu
Nikki.schlepp@lhbcorp.com
sara.phillips@lhbcorp.com

laura.heck@lhbcorp.com

MEETING SUMMARY

Attendees discussed the following in relation to the Comprehensive Facilities Plan. There were no items noted for follow-up from the last meeting.

- Stakeholder Meetings Update
 - Stakeholder groups have been identified. Three meetings are scheduled for December. The remaining will be scheduled in January.
- 2. Campus Survey Discussion
 - a. The following are open for feedback and discussion prior to launching a survey. These were not reviewed at the meeting to allow for additional time on the site discussion:
 - b. Open Questions:
 - i. What are the three aspects of the campus (inside or outside spaces) that are most successful in meeting
 - ii. your needs?
 - iii. What are the three aspects of the campus (inside or outside spaces) that need the most improvement?
 - iv. What is your favorite interior space at RCTC, and why?
 - v. What is your favorite outside space at RCTC, and why?
 - vi. Is there anything else you'd like to share about the buildings and grounds of RCTC?

c. Likert Scale

- i. I feel the general purpose classrooms of RCTC support today's needs
- ii. I feel the instructional labs of RCTC support today's needs
- iii. If I have a break between classes, there are comfortable places to spend time
- iv. Imagine you are new to campus and respond to this question: It is easy to find the room or department that I'm looking for
- v. I look forward to spending time on campus
- vi. Is there anything else you'd like to share about the buildings and grounds of RCTC? (Open Question)

3. Site Discussion:

- a. In evaluating existing conditions for the site, accessibility, wayfinding, access to natural resources, etc, are considered during the CFP process.
- b. What is working well?
 - i. The redesign of the atrium front entrance has created a more welcoming place and additional parking spaces.
 - ii. Roundabouts on campus have helped traffic flow.
 - iii. North of the theater near the oaks is a nice place to hang out.
 - iv. Smart Garden at the Heintz Campus is a nice gathering space.
 - v. Caves in the wooded area south of campus are an interesting place to explore, but doing so is discouraged for safety reasons.
 - vi. Students gather on the patio near the bridge on nice days.
 - vii. Amphitheater is used for classes from time to time on nice days. Increased use during the pandemic.
 - viii. Students gather east of the quad in the spring.
 - ix. Open space near athletics is well liked
 - x. Walking and jogging classes use city paths for instructional use

c. What has held us back?

- i. Students are walking on the road between off campus housing and the Sports Center. The bike path does not extend far enough.
- ii. West parking is used as a park & ride which has increased traffic.
- iii. East parking lot off of 30th Ave: visibility while exiting the staff lot is limited due to student parking configuration and circulation.
- iv. Pedestrians are frequently crossing the access road.
- v. Unpaved city lot is a maintenance issue. Snow piles are full of gravel. The surface is uneven.
- vi. Areas near the ponds are marshy in certain times of year.
- vii. Vehicular circulation near amphitheater leads to a dead end. Loading dock at this location. Folks frequently enter this area with their cars by accident.

d. What could we do differently?

- i. Make the campus more aesthetically pleasing with plantings.
- ii. The woods and caves south of campus present a safety issue. A walking path to the cave could help. A local group is interested in helping with developing mountain biking trails here.
- iii. Add lighting and Wi-Fi accessibility in pedestrian areas that are further out from the parking lot.
- iv. Add shade trees to the west of the quad for late afternoon activities.
- v. Add outdoor space adjacent to the cafeteria (on floor 3, but somewhat accessible on grade). A deck has been discussed in the past.
- vi. Add more informal accessible seating in locations where students gather:
 - 1) near rain garden and wooded area south of the student lot
 - 2) east of the quad
 - 3) near Heintz Center
 - 4) Make sure some seating is still ADA accessible
- vii. Better ADA improvements and connections in and near parking areas.
- viii. Add more sidewalks along roads.
- ix. Change design of entry circulation to deter people from entering the loading dock area by mistake.
- x. Discuss maintenance of site improvements that occurred based on student projects. How will these be handled in the future? Funding of maintenance for Heintz gardens or student projects unknown.

Meeting Minutes: Rochester Community and Technical College Comprehensive Facilities Plan Date of Meeting: December 10, 2021

- 4. Beyond Campus Borders
 - a. Consider connections to parks and trails and other natural resources in future planning.
 - b. Parks & Rec completed a bike path project near the corner of 13th and 30th to 15th. Used for walking and jogging classes at RCTC.
- 5. Schedule Review & Next Steps:
 - a. 35% submittal for review is targeted for December 22nd. Issues with space utilization data may delay this submittal depending on when the data is received.
 - b. Schedule remaining stakeholder meetings
 - c. Establish meetings for the Spring semester

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: Committee Meeting 3 Presentation

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\20211210 Committee Mtg 3\210539 20211210 MM CFP Committee Meeting 3.docx

Committee Meeting 3
December 10, 2021

Agenda

– Follow-up from Last Meeting	2 Minutes
– Stakeholder Meetings Update	2 Minutes
- Campus Survey Discussion	5 Minutes
- Site Discussion	45 minutes
- Next Steps	5 Minutes
	60 Minutes

Follow-up from Last Meeting

Feedback or Thoughts?

Corrections from the Minutes?

Stakeholder Groups

Meet with students, academic pathways, facilities, community members and others.

Revised Groups from Last Meeting

- Accounting, Business, and Office Administration
- Agriculture Science and Natural Resources
- Behavior, Education and Personal Services
- Communication, Fine Arts, and Audio-Visual Technology
- Construction, Technology, and Transportation
- Health and Healthcare Support Services
- Law Enforcement and Public Safety

- Liberal Arts / Transfer Pathways / STEM
- Athletics
- Students, Student Senate, and Student Life
- Student Services / College Administration
- Facilities Staff / Maintenance / Technology
- Community Leaders / Members
- C-Tech / P-Tech / Rochester Public Schools

Campus Survey

Audience: Students, Faculty, and/or Staff

Open Questions:

- What are the three aspects of the campus (inside or outside spaces) that are most successful in meeting your needs?
- What are the three aspects of the campus (inside or outside spaces) that need the most improvement?
- What is your favorite interior space at RCTC, and why?
- What is your favorite outside space at RCTC, and why?
- Is there anything else you'd like to share about the buildings and grounds of RCTC?

Likert Scale:

- I feel the general purpose classrooms of RCTC support today's needs
- I feel the instructional labs of RCTC support today's needs
- If I have a break between classes, there are comfortable places to spend time
- Imagine you are new to campus and respond to this question: It is easy to find the room or department that I'm looking for
- I look forward to spending time on campus
- Is there anything else you'd like to share about the buildings and grounds of RCTC? (Open Question)

Site Discussion

The Comprehensive Facilities Plan not only looks at the uses of campus buildings, but also the surrounding property

Related to exterior spaces on RCTC's campus:

- What is working well?
- What has held us back?
- What could we do differently?
- What should we do next?

Schedule

September 2021

30 Information Request Distributed

October 2021

8 Kick-off Meeting with Minnesota State

22 Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee

December 2021

3 Meeting with CFP Committee

10 Meeting with CFP Committee

16-17 Stakeholder Meetings

22 35% Completion for Review*

January 2022

Stakeholder Meetings Meeting with CFP Committee Receive Comments

February 2022

Meeting with CFP Committee Meeting with President

Campus Engagement

March 2022

15 65% Completion for Review*

April 2022

Receive 65% Comments

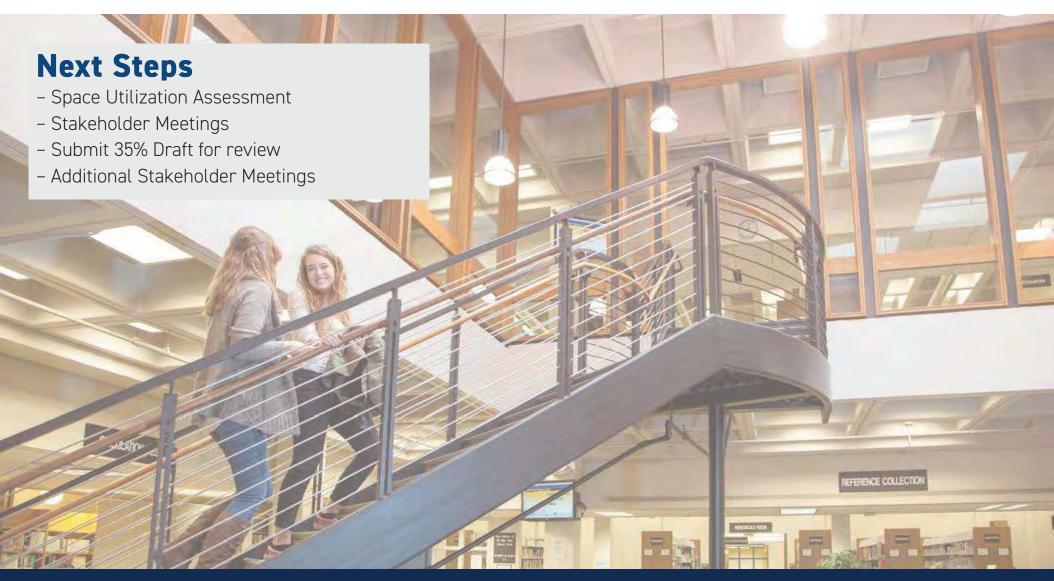
May 2022

Meeting with CFP Committee Meeting with President

June 2022

Meeting with CFP Committee

July 2022


95% Completion for Review*

September 2022

Meeting with CFP Committee
Presentation to the System Office (tentative)

October 2022

Submit 100% Document*

Committee Meeting 3
December 10, 2021

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: December 16, 2021

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Athletics

DATE SENT: January 27, 2022

PRESENT: **Email** Name Title / Organization

> Steve Schmall VP of Finance and Facilities Steve.Schmall@rctc.edu Mike Lester Athletic Director Mike.Lester@rctc.edu Health/Phy Ed/Athletics Faculty Jean Musgjerd Jean.Musgjerd@rctc.edu Director of ITS and Departments IT and TSC Steve.Higgins@rctc.edu Steve Higgins Sara Phillips Planner, Architect, LHB sara.phillips@lhbcorp.com

Laura Heck Project Coordinator, LHB laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

- 1. Overall one of the best higher ed athletic facilities in the state.
- Student Life: Not as centrally located as desired, but still a great space.
- 3. Partnerships support the facilities that RCTC has, including athletics.

Stadium & Dome

- 1. Joint Venture: Shared space with RCTC. Priority given to those that use the space the most. RCTC and all other parties pay for their time.
- 2. There are changing rooms here, but no showers. Must use the Sports Center for traveling teams.

Sports Center:

- 1. Fieldhouse is a joint facility: 6am-5pm RCTC Space for classes and practice. After 5pm the City and other organizations have priority. It is also a rentable space.
- 2. Concessions: Upstairs and downstairs. The upstairs space has not been used in some time. Not user friendly and facilities limit what can be served. Currently used as storage by concessions. Proposed to be used as an adjunct faculty area. Other interests: Bookstore and Student Life has shown interest in using the upstairs concession space.
- 3. Changing Rooms: RCTC does not use these on a regular basis. Mostly public use.
- 4. Recent Changes: Reconfigured fitness center and moved the cardio area upstairs. Not ideal for classes, but has improved flow and use of equipment. Loss of previous aerobic area takes away a quiet space for students to gather.
- 5. All American Room: Upper-Level conference room that overlooks the fieldhouse. Used by some students for attending classes via Zoom.
- Sports Center Student Support and Gathering Spaces: Conference Room sometimes used for study. 3 computer labs available. Athletes familiar with the space tend to stay in the building. Others return to the Main building.
- 7. Public Events: Not enough seating available.

Date of Meeting: December 16, 2021

- 8. Academic Amenities: Most coaches facilitate a study group 2 3 times per week. There isn't enough space for multiple groups at once. Tend to use the Learning Center instead. Only two spaces available in the Sports Center: Classroom and All-American Room.
- 9. Faculty offices are "tight". Some need to share. Per contract, there are required office hours, however moving to a virtual environment, the current campus office space may change. Dependent on student needs. Some discussions require privacy.
- 10. Open Gym Program: 10am 2pm in the Sports Center: On hold due to the pandemic. Previously well attended. Casual pickup games for students.
- 11. Lockers: Users must provide their own lock for daily use only. Tried a key system, but they were often lost.
- 12. Original plan had a drop-off location on the east side. Desired by the community. During elections and other community events, the campus provides golf carts.

Outdoor Spaces

- 1. Fields used by RCTC need updates to bring equity between each field.
- 2. Softball field has concessions, restrooms and a large dugout. Baseball does not have these amenities.
- 3. Some fields have lights while others do not.
- 4. Partnerships with the City support the sports facilities along with their improvements.

Available Spaces and Future Planning

- 1. Old bookstore space.
- 2. Former Student Service space
- 3. E-Sports: Priority from the student government. Will start as a club through student life. Working with technology to review startup costs.
- 4. CPR Classes: In the old part of Endicott (now Memorial) on main campus. Down to 4 classes (decreasing enrollment). This space could be used by other classes to improve utilization.
- 5. Intramural Sports: Currently not offered. Noted that scheduling was difficult and student interest in the types of activities has changed. Not having access to the old gym has affected scheduling. Found that other institutions are retiring their intramural programs as well.
- 6. A group has formed for a city-wide athletics facility plan.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20211216 MM Stakeholder Athletics.docx

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: December 16, 2021

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Stakeholder Meeting: Facilities

DATE SENT: January 27, 2022

Ditte outil.	ouridary 21, 2022		
PRESENT:	Name	Title / Organization	Email
	Josh Whalen	General Repair Worker	Joshua.Whalen@rctc.edu
	Steve Schmall	VP of Finance and Facilities	Steve.Schmall@rctc.edu
	Michael Sheggeby	Director of Sports Facilities	Michael.Sheggeby@rctc.edu
	Scott McCullough	Director of Campus Safety & Security	Scott.Mccullough@rctc.edu
	Shayn Jensson	Project Manager	Shayn.Jensson@rctc.edu
	Wylie Johannessen	Electrician	Wylie.Johannessen@rctc.edu
	Todd Weidler	General Maintenance Worker	Todd.Weidler@rctc.edu
	Larry Gottschalk	Security Officer	Larry.Gottschalk@rctc.edu
	Cris Kellas	Building Services Supervisor	Cris.Kellas@rctc.edu
	Jean Musgjerd	Health/Phys Ed/Athletics Faculty	Jean.Musgjerd@rctc.edu
	John Merchlewitz	General Maintenance Worker	John.Merchlewitz@rctc.edu
	Sara Phillips	Planner, Architect, LHB	sara.phillips@lhbcorp.com
	Alicia O'Neill	Architectural Designer, LHB	Alicia.oneill@lhbcorp.com

MEETING SUMMARY

After introductions and a summary of the CFP process, the following was discussed.

- 1. What are areas that need improvement?
 - a. Storage
 - Carpet, paint, etc. i.
 - ii. Nooks and crannies are becoming storage spaces, hazardous material concerns

- iii. IT department and facilities both have big needs and this causes conflicts at storage spaces
- b. Air handling systems/HVAC
 - i. Currently: VAV control upgrades, fans and controls upgrades (more main campus than Heintz), cleaning air handlers to provide better office control
 - ii. Smaller issues that can be addressed with campus dollars or seek other funding sources? Both.
 - iii. Heintz center has negative pressure from rooftop air handling units that were taken off
 - 1) Steam from county heats the building
 - 2) Backup is 1983 boiler that is no longer safe to run flame and pilot won't stay lit on the boiler without bringing in fresh air – need to find out how to heat the air or replace the boiler to bring it into the building – upgrades needed

- 3) Main campus and sports facilities are off of district steam, Heintz is on district steam If Heintz center is to go off steam the boiler situation will need to be corrected
- c. Door replacement
 - Covid dollars being used to adjust exterior and interior door hardware, hardware needs to be standardized for security and safety reasons

Meeting Minutes: RCTC Comprehensive Facilities Plan Stakeholder Meeting

Date of Meeting: December 17, 2021

ii. Sports center and Heintz need work too, but overall are in good condition

d. Security

- i. Burglar alarms (Heintz is good, main campus is outdated)
 - 1) older systems are not reliable should be able to access alarm info on mobile device instead of having to travel to building and more specifically the particular part of the building

Page: 2

- ii. Motion sensors aging hardware, some have been replaced
- iii. Modern features desired to enhance response time and quality of service
- iv. Cameras extensive camera programs on campus, many newer cameras
 - 1) infrastructure behind cameras can be lacking, reliability concerns
 - 2) very large numbers of archaic cameras replaced over the summer improved coverage and quality

e. Skylights

- i. Need to be replaced leak and are brittle, do not provide adequate lighting
- ii. Roof around skylight close to replacement list? Lower was replaced in 2008/2008. Upper roof needs to be replaced but is not high priority
- Dental Lab exhaust issue
 - i. Mixing acrylic for dentures smell transfers throughout building, many complaints have been received
 - ii. Classroom needs proper exhaust for this process undersized exhaust system currently
- g. Air compressors
 - i. Current compressors are from 1989/1990, 3 total 2 are antique and 1 is down
 - ii. Some of the need is academic related, some facilities related

h. Pipina

- i. Outdated, some patching is being done for many leaks and breaks
- ii. Mostly in the main campus
- i. Electrical load around campus
 - i. Heintz center electrical server is outdated
 - ii. Some panel upgrades in 2012 was not an all-inclusive upgrade, more about immediate problem areas
- Backup resources
 - i. Ongoing concern technology is always taking a bigger load
 - ii. Not as high of a priority but needs to be on the radar

k. Lighting

- i. Old technology, inefficient needs repeated fixing and should be replaced
- ii. LED lighting desired some areas have been updated, but should be a campus standard
- iii. Lighting controls
 - 1) outdoor controls are dated and not user friendly, difficult to repair
 - 2) Indoor many switches and occupancy sensors, not in too bad of shape
- iv. Exterior lighting
 - 1) Dark spots, safety concerns dock at Heintz center for example
 - 2) Upgrades needed
 - 3) Light pollution issue
 - 4) People are not living 24/7 on campus, focus can be people getting out to their cars rather than lighting throughout
- v. Lighting standard desired many incorrect bulbs being used, standard color temperature
- I. Classroom Furniture
 - i. Many sections of the building have outdated furniture and need refreshing
 - ii. Faculty desires flexible furniture

m. Floor finishes

- i. Omission of materials is the most sustainable option, but can have acoustic issues
- ii. Maintenance needs to be considered
- iii. Surplus of carpet is being stored on campus, but there is limited storage and it may get forgotten about more storage
- iv. Changing from carpet to hard floor doubles custodian's work needs to be considered/discussed
- n. Chillers at Sports Center
 - i. One will be replaced soon before next cooling season

Meeting Minutes: RCTC Comprehensive Facilities Plan Stakeholder Meeting

Page: 3 Date of Meeting: December 17, 2021

- o. Exterior Issues
 - Tuckpointing work needs to be done, etc.- Large list to be considered
- 2. Final Thoughts
 - a. 35% draft to be submitted next week
 - b. One of series of meetings some will be held next semester in January
 - c. Then committee will start talking about proposed projects we will regather for this next semester
 - d. If you have any other thoughts or ideas, please send to Katrina

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20211216 MM Stakeholder Facilities.docx

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: December 16, 2021

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Stakeholder Meeting: Student Services

DATE SENT: January 27, 2022

2, 2 02			
PRESENT:	Name	Title / Organization	Email
	Shayn Jensson Deb Vang Amanda Proper Brenda Kincannon Kelly Pyrfferoen Melanie Callister Jason Bonde Travis Kromminga Megan Ross Sara Kling-Punt Nate Stoltman Katie Swegarden Mary Dennison Melissa Pentz Sara Phillips Alicia O'Neill	Project Manager Counselor Lead Registration Specialist Brenda Kincannon Business Office Supervisor College Registrar SSS Director/Womens BB Coach Director of Disability Services Student Life Coordinator College Transition Coordinator – Advisor Exec Dir of Communications/Marketing/Ext Relations Registered Nurse Librarian Secretary/Receptionist Planner, Architect, LHB Architectural Designer, LHB	Shayn.Jensson@rctc.edu Deb.Vang@rctc.edu Amanda.Proper@rctc.edu Brenda.Kincannon@rctc.edu Kelly.Pyfferoen@rctc.edu Melanie.Callister@rctc.edu Jason.Bonde@rctc.edu Travis.Kromminga@rctc.edu Megan.Ross@rctc.edu Sara.Kling-Punt@rctc.edu Nate.Stoltman@rctc.edu Katie.Swegarden@rctc.edu Mary.Dennison@rctc.edu Melissa.Pentz@rctc.edu sara.phillips@lhbcorp.com Alicia.oneill@lhbcorp.com

MEETING SUMMARY

After introductions and a summary of the CFP process, the following was discussed.

- 1. Areas that need improvement throughout campus
 - a. Not enough private testing space
 - i. Students that need accommodations for their classes use the spaces, along with some placement testing
 - ii. Testing rooms have been added over the years, but there is not enough space to add any more
 - iii. Students need to be sent from main campus to Heintz to utilize those rooms
 - iv. 9 testing rooms currently at main campus at least 5-6 more rooms needed to adequately serve the students
 - v. 4 testing rooms at Heintz demand will go up for more rooms, some are being used for storage
 - vi. Where would testing centers be ideally located? One testing center with larger testing areas needed, but not sure where this would be best placed
 - vii. Adjacencies are important here i.e. Welcome center
 - b. Business Office
 - i. Main Campus location
 - ii. Cashier is across the hall adjacencies need to be looked at
 - c. Library
 - i. Students use group study rooms heavily throughout entire semester

Duluth, MN | Minneapolis, MN | Cambridge, MN | Superior, WI

Meeting Minutes: RCTC Comprehensive Facilities Plan Stakeholder Meeting

Page: 2

Date of Meeting: December 17, 2021

ii. These rooms are busy and often reserved - more needed to serve students

d. Student Life

- i. Lack of storage
- ii. Events held at both campuses ideally there would be storage at both, with food storage being separate from other items
- iii. More and larger gathering places for student events and natural student gathering
- iv. Students have expressed desire for lockers to store things during the day
- v. Where is student life best located? Students don't naturally walk through this space to get to classes often, would ideally be more central and visible
- vi. Very large space

e. Registrar

i. Separate offices are working well for now

f. Health Services

- i. More emphasis now on mental health services, some spaces dedicated to this would be great
- ii. Self care mental health classes, quiet spaces
- iii. Facilities are adequate in general (pre-covid), but they are not built to have quarantine rooms for isolation

g. Student Services

- i. Feels as though the area is not a high priority even though there are things to be done
- ii. Ventilation is not great, but is improving with ongoing adjustments
- iii. Carpet needs updating (from around 2003)
- iv. Little improvements can go a long way needs an overall refresh
- v. Walls need painting
- vi. Furniture needs refreshing currently is not a welcoming environment
- vii. Finishes are not cohesive and do not flow well like other campuses

h. Lighting

- i. Daylight or LEDs would be appreciated
- ii. Feels dark and unsafe in many areas unwelcoming
- iii. Standardizing lighting is on the radar for facilities

i. Conference Spaces

- i. Classes are often using the meeting rooms, more are needed to bring in larger outside groups
- ii. Could we repurpose larger areas into meeting rooms of 8+ people?
- iii. Heintz needs more as well
- iv. These spaces are often rented out (pre-covid) and it would be nice to have a space dedicated to this rather than competing with classes
- v. Some of the larger meeting spaces are being used to meet social distance requirements for classes
- i. Prospective student / first time campus visitors
 - i. New students on campus desire to accelerate wayfinding project currently underway, making signage updates
 - ii. Location of the Heintz center food pantry is hard to find
 - 1. Many students don't know it exists
 - 2. Feels like a closet
 - 3. Space at least twice as big and more central is needed

k. Outside Spaces

- i. Needs general cleaning up grass isn't inviting, it isn't aesthetically pleasing
- ii. Not enough maintenance staff for upkeep
- iii. Staff members have taken it upon themselves to weed areas
- iv. Better overall landscaping
- v. New plaza area
 - 1. Very nice, but isn't visible from the building for students
 - 2. Takes effort and navigation to get to

Date of Meeting: December 17, 2021

- Transitional spaces could be used to encourage students to move students towards this space
- I. Door at student services is open to prevent pipes from freezing
 - i. Heating and cooling issues need to be addressed
- m. Atrium
 - i. Not inviting or pleasing
 - ii. Furnishing improvements have helped get students to spend more time here
 - iii. Openness of the atrium is great but there is often too much clutter, hard to slow down in this space, students may be missing posted signs and opportunities because they are just passing through
 - iv. Very cold
 - v. Is it possible to open some other spaces up for a student area?
 - vi. What is our goal for the function of the atrium?
 - 1. Students are usually here waiting for rides
 - 2. Students often study at the second floor of the atrium seating, tables
 - 3. Space has evolved over time students have congregated in the atrium in the past, but became crowded and noisy tried to direct students to other gathering places instead
 - 4. Want it to be welcoming, but not too cluttered with gathering
- n. Potential coffee shop next to the bookstore
 - i. Place for conversation
 - ii. More reasons to stop and stay rather than just pass through
 - iii. Many students don't know about the out of the way café could be moved to a more central location
- 2. What's next? Final thoughts
 - a. Submission of 35% draft next week to capture existing conditions
 - Stakeholder meetings are difficult to schedule at this time, so many will happen in January at the new semester
 - c. Stakeholder feedback will be presented to CFP committee meeting to decide what projects to prioritize

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20211217 MM Stakeholder Student Services.docx

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: December 17, 2021

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Technology

DATE SENT: January 27, 2022

	· · · · · · · · · · · · · · · · · · ·		
PRESENT:	Name	Title / Organization	Email
	Steve Schmall Shayn Jensson	VP of Finance and Facilities Project Manager, Facilities	Steve.Schmall@rctc.edu Shayn.Jensson@rctc.edu
	Dennis Olson	Network Administrator	Dennis.Olson@rctc.edu
	Alan Charon	Lead Systems Administrator	Alan.Charon@rctc.edu
	Steve Higgins	Director of ITS and Departments IT and TSC	Steve.Higgins@rctc.edu
	Mir Qader	Chief Information Officer	Mirwais.Qader@rctc.edu
	Feras Al-Kaisi	Automations Systems Engineer	Feras.Al-Kaisi@rctc.edu
	Jon Krusmark	Projects/Events Department Director	Jon.Krusmark@rctc.edu
	Sara Phillips	Planner, Architect, LHB	sara.phillips@lhbcorp.com
	Laura Heck	Project Coordinator, LHB	laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

1. Open Computer Labs:

- a. Less utilization than in the past. Not seeing a need to reduce footprint. Depends on academic delivery model.
- b. Considering a laptop program in the future, which might affect the footprint of computer labs.
- c. Technology Master Plan has identified the need for more charging stations.
- d. Mankato is currently using a phone booth style pod for attending classes virtually and studying. RCTC tried a similar style with plexiglass partitions.
- e. Need student feedback on the "lab of the future." Could include modular flexible furniture to model newer K-12 environments.

2. Laptop / Tablet Carts

- a. Requests for laptop carts may be a response to hybrid learning.
- b. Many of the carts contain iPads.
- c. Need storage and a plan for updates.
- d. Carts plug into the wall for charging all devices.

3. Furniture and Study Spaces:

- a. Individualized Study Space: MH building 2nd floor furniture includes seating area with screening for privacy. Individualized Study Space is currently limited.
- b. Collaboration Study Space: MH 1st floor includes booth style seating with screening.
- c. Open Study Space: ST 2nd floor: High-top chairs and tables are exposed to hallway traffic.

Date of Meeting: December 17, 2021

4. Main Campus vs. Heintz needs:

- a. Considering a fiber path between the two buildings. Existing does not support current needs.
- b. Individualized Study Space furniture may be needed at Heintz.
- c. Power conditioning study for both buildings would be a benefit. Power spikes and brownouts have been a persistent issue during inclement weather.

5. Communications Closets:

- a. Most closets are dedicated, however some are not up to standards.
- b. Some closets are accessed through other spaces (i.e. art storage). There are a few that are located within general storage.
- c. Communications Closet standard has been defined along with a phased upgrade approach.

6. Simulation Technologies:

- a. Demand for more sim labs on the premises.
- b. Expanded sim labs may require additional conduits and switches. Dedicated spaces would need to be identified.

7. Classroom Technology:

- a. Classroom design reference model developed in response to the pandemic. Definitions are by tier.
- b. Focus is on ease of use by faculty.
- c. Working on standardizing classroom technology.

8. WiFi and Bluetooth

- a. Bluetooth beaconing on WiFi access points would be helpful in the future for security (active shooter scenarios) and health (social distancing). https://www.mist.com/bluetooth-le-and-beacons/
- b. Expand outdoor WiFi to have the same level of service as indoors. "Green" areas currently do not have strong WiFi.

9. Security:

- a. Improved access control needed.
- b. Need for security cameras in some areas.
- c. Active Shooter: Evaluate circulation for exiting. Evaluate visibility into the spaces.
- d. LED lights in the hallways that lead people in the right direction during a fire or tornado would be beneficial.

10. Data Centers

- a. Improved HVAC and HVAC control is needed.
- b. Updated UPS systems.
- c. Primary data center is on the second floor of Main Campus. Secondary is in the Heintz Building.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 14, 2021

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Accounting, Business, and Office Administration

DATE SENT: January 27, 2022

PRESENT: Name Title / Organization Email

Steve Schmall VP of Finance and Facilities Steve.Schmall@rctc.edu Paula Theisen Accounting/Business/Supervisory Leadership Paula.Theisen@rctc.edu **Economics Faculty** Jessie.Martinez@rctc.edu Jessie Martinez **Economics Adjunct Faculty** Dennis Lawler Dennis.Lawler@rctc.edu Sara Phillips Planner, Architect, LHB sara.phillips@lhbcorp.com Laura Heck Project Coordinator, LHB laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

Classrooms

- 1. Setup:
 - a. Mainly lecture style at RCTC which isn't as ideal for small group work.
 - b. Other campuses successfully utilize a horseshoe layout for better collaboration and small group work.
 - c. Need more flexibility with classroom layouts.
 - d. Explore a "stand up" classroom to support networking.
 - e. "High Tech" classrooms: Technology is not dependable. There are too many screens which can cause sensory overload. Whiteboards are still necessary for these rooms.
- 2. Ideal Teaching Environments
 - a. U-shaped seating.
 - b. Spaces that support visual learning and student interaction.
 - c. Classrooms that support lecture and collaboration in one session.

Ideas and Needs

- 1. Outside Facility for teambuilding activities:
 - a. Ropes courses and other outdoor activities to promote team building and problem solving.
 - b. Promote student engagement, staff engagement, and use by outside partners.
- 2. Multipurpose Room:
 - a. Spaces that support mindfulness and meditation.
 - b. Relaxation Rooms
 - c. Some examples of a virtual implementation (i.e. use of displays); Pine Island high school is a good example.
 - d. Open Flexible Spaces
 - e. Location on main campus similar to the one in the Rec Center would be useful.

Date of Meeting: January 14, 2022

- 3. Alternative Energy Sources:
 - a. PV: Two concepts being explored are a solar field across County 22 in the previous crop field or solar arrays above a parking lot.
 - b. Windmill: Not enough wind at RCTC to make this viable.
- 4. Student Support Spaces
 - a. Need a place to store items for the day.
 - b. Incorporate more ways to make the students feel at home.
- 5. Previous bookstore area is open for discussion. Some have proposed e-sports. Could also work as a multi-purpose room.
- 6. Third Floor Monitor for exciting and fun content.

Challenges

- 1. Outdoors
 - a. Amphitheater Underutilized. More classes could be taught in this location.
 - b. Garden area is a good start.
- 2. Recently Updated and Constructed Spaces
 - a. There is a perception that these spaces are not being used. Memorial and Endicott.
 - b. Library Spaces: How to use this space as more content is migrated to virtual.
- 3. Cafeteria
 - a. Missed opportunity for a social space. This could be on the first floor to be more welcoming.
 - b. Need more spaces where students, faculty and staff could interact. Located in a central space.
- 4. Site:
 - a. Two campuses are not well linked. It is a short walk, however it isn't convenient. Some don't recognize the fields as belonging to RCTC.
 - b. Bike racks are needed to promote riding to campus.
 - c. Chargers for EV vehicles needed.
 - d. East entrance loading dock is an eyesore.
- 5. Atrium: too "sterile". First space that people navigate to. At times it is too much of a focal point, creating disruption. Possibly need to address acoustics.
- 6. Art Gallery: Outdated space.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20220114 MM Stakeholder Acct Bus & Off Admin.docx

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 18, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Stakeholder Meeting: Communication, Fine Arts, and Audio-Visual Technology

DATE SENT: January 27, 2022

, ,		
Name	Title / Organization	Email
Anthony Rostvold	Art + Design Faculty	Anthony.rostvold@rctc.edu
Suzanne Szucs	Art + Design Faculty	Suzanne.Szucs@rctc.edu
Gerald Casper	Speech/Theater Faculty/Director	Gerald.casper@rctc.edu
Guy Hamernik	Multi Media Producer	Guy.Hamernik@rctc.edu
Jake Griggs	Associate Dean of Liberal Arts	Jacob.griggs@rctc.edu
Karin Wright	Communication Studies Faculty	Karin.wright@rctc.edu
Matt Hafar	Music Faculty	Matt.hafar@rctc.edu
Simon Huelsbeck	Art + Design Faculty	Simon.Huelsbeck@rctc.edu
Steve Higgins	Director of ITS and Departments IT and TSC	Steve.Higgins@rctc.edu
Sara Phillips	Planner, Architect, LHB	sara.phillips@lhbcorp.com
Alicia O'Neill	Project Coordinator, LHB	laura.heck@lhbcorp.com
	Anthony Rostvold Suzanne Szucs Gerald Casper Guy Hamernik Jake Griggs Karin Wright Matt Hafar Simon Huelsbeck Steve Higgins Sara Phillips	Anthony Rostvold Suzanne Szucs Gerald Casper Guy Hamernik Jake Griggs Karin Wright Matt Hafar Simon Huelsbeck Steve Higgins Suzanne Szucs Art + Design Faculty Suzanne Szucs Art + Design Faculty Simon Faculty Art + Design Faculty Simon Huelsbeck Steve Higgins Suzanne Szucs Art + Design Faculty Director of ITS and Departments IT and TSC Sara Phillips Art + Design Faculty Director of ITS and Departments IT and TSC Sara Phillips

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

- 1. 3D design
 - a. Limited in 3D design capabilities no sculpture studio like other schools
 - b. There is a 3D requirement for the Fine Arts degree and the only option is ceramics
- 2. 2D classroom AH201
 - a. Designed for 15 students 26 students crammed into the room
 - b. No ventilation
 - c. Need to go through ceramics classroom to get into the classroom can't schedule 2D and ceramics at the same time to avoid disrupting class
 - d. using as a multifunctional room currently no other type of space that can be used for these activities
 - e. also using as a storage space
- 3. Where is a logical place for new space for the 3D classrooms/space?
 - a. Fairly large space required
 - b. May need to merge classrooms to make a studio with proper space
 - c. Ventilation and safety requirements
 - d. Plaster, wax, wood, casting
- 4. Theater
 - a. Aesthetically outdated feels elementary
 - b. Configuration of the spaces is a positive
 - c. Outdated electronic equipment it will be a large expense to bring it up to standard
 - i. No sound problems noticeable

- ii. Dimmers are nearing the end of their life expectancy
- d. Need a black box space smaller space for different theatrical events
 - i. can be rented out, can better share between departments and outside groups wanting to use the space
 - ii. When theater space is being used, theater is hindered as there is no large space to temporarily hold class
- e. Ability to seat 80-100 people
- f. Accessibility needs upgrading and a proper analyzing
- g. Gallery is directly opposite of theater with no doors
 - i. needs to be secure, quiet, and more professional
 - ii. Large sliding glass doors would be great.
- 5. Music
 - a. There is a new flexible classroom that has been a great upgrade
 - b. CC113 Floor in choir and band room has built in risers with large ramps to make them accessible, but the ramps take up a huge amount of usable space
 - i. Could we fill in entire floor to be level to create a more flexible and accessible space?
 - c. Five self-standing practice rooms
 - i. Not soundproof
 - ii. Poor lighting and ventilation
 - iii. Possibly asbestos
 - iv. Not very inviting
 - v. Newer models for standalone practice rooms would be better
 - d. Music room upgrade has been great and is adequate
- 6. Possibility for a new makerspace larger space with opportunity for collaboration
 - a. 2D class could move here
 - b. Other departments can use this space
 - c. Floors that can get dirty
 - d. Storage space for supplies
 - e. Could solve other departmental issue of needing an active space
 - f. Sculpture and robotics could collaborate
 - g. More collaborative situations would come up involving multiple disciplines and departments
- 7. Cell phone reception is inadequate throughout building
 - a. DAS system was approved and will improve signal throughout campus
- 8. Space between theater and gallery entrance needs a proper greeting spot
 - a. Outdated, not professional, overdue for an upgrade
 - b. East hall entry way you naturally go to theater and gallery space and it becomes a good secondary entrance, so first impressions are important
- 9. Exterior doors into Health Science building
 - a. Door is often wide open
 - b. Closure mechanism often breaks
- 10. Permanent collection storage has been moved
 - a. Some pieces have been damaged
 - b. Ongoing storage space issue
 - c. Large stretches of the college with institutional white walls why is there not art here?
 - d. Poor to no lighting in many places
- 11. Student experience and student success
 - a. Desire for study spaces in all the department areas dedicated for students
 - b. Students need to be able to plug in laptop and take classes virtually
 - c. Students should want to stay on campus and learn, but they need the tools to do so
 - d. Hangout, collaborate, take an online class, etc.
- 12. Flexible classroom furniture and more flexible spaces
 - a. Inanimate lecture-type setup hinders the ability to conduct group actives
 - b. Equipment and items are immovable technology podiums

Date of Meeting: January 18, 2022

- 13. Signage and wayfinding
 - a. Students are often lost and do not know which building they are in
 - b. First day / visitor experience can be difficult
- 14. East Hall entry exterior
 - a. Overall experience could be improved drastically
- 15. New Courtyard
 - a. Underutilized, but wonderful space
 - b. Student services schedule events here
 - c. Accessibility is again an issue no convenient ramp near the stairs
 - d. Paint is coming off roof on art building exterior needs a refresh
- 16. Connecting east and west parking lots
- 17. Accessibility in general
 - a. Accessibility overhaul
 - b. More than just Band-Aids in certain areas, but a true overhaul and a 21st century look
- 18. Heat and lack thereof in the theater area
 - a. Students keep coats on
- 19. Final Thoughts
 - a. We have submitted 35% document
 - b. This conversation and other stakeholder meetings will be included in the 65% document in March
 - c. Feedback from RCTC and system office will go towards final document
 - d. Send any further comments to Katrina Maass and she will compile and send to LHB

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20220118 MM Stakeholder Communication, Fine Arts, and Audio-Visual Technology.docx

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 18, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Stakeholder Meeting: Construction and Transportation

DATE SENT: January 27, 2022

PRESENT: Name Title / Organization Email

Matt Bissonette Interim Dean of Career and Technical Education

Paul TitusWelding FacultyPaul.Titus@rctc.eduSteve SchmallVP of Finance and FacilitiesSteve.Schmall@rctc.eduSara PhillipsPlanner, Architect, LHBsara.phillips@lhbcorp.comAlicia O'NeillProject Coordinator, LHBlaura.heck@lhbcorp.com

Matt.Bissonette@rctc.edu

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

- 1. Heintz Center Bonding Project
 - a. Covers Heintz common areas, law enforcement, other programs
- 2. Automotive Program
 - a. Moving into realm of alternative energy flex fuel, hybrid, and electric vehicles
 - b. Need the technology, equipment, and space to accommodate these new technologies
 - c. There is a welding area in the automotive lab, but it is not necessarily needed and could be repurposed
 - d. State of the art facility would attract people to the program
- 3. Welding
 - a. Welding recently gained some space lab space is adequate for now
 - b. Remodeling some of the space
 - c. Storage is not adequate no dedicated welding storage space
 - d. Much of the material is donated and materials are often bought for the whole semester, therefore take up a large amount of space
- 4. CAD program
 - a. RCTC is in the process of redesigning entire program
 - b. Shop equipment may be taken out to create additional space, but then this creates departments with spread out spaces that are disconnected from one another
- 5. What do students say about the Heintz center?
 - a. These students don't have a lot of free time at Heintz center many are in lab all day
 - b. Prioritizing lab space would be more beneficial than lounge space
 - c. Some work/lounge areas would be helpful, but are not crucial
 - d. North side of the building was updated in the last 20 years 1100 wing feels like a high school with the lockers. There are better ways of accommodating students' storage needs without creating this high school look and feel
 - e. Access to student services
 - i. Students need access to financial aid and advisors a small, one-stop center at Heintz instead of having to travel to the main campus

Date of Meeting: January 18, 2022

- ii. Students are not often excited about having to travel from Heintz to main campus
 - 1. Just far enough away that you'll have to drive over, so it does feel like you're going to a completely different campus
 - 2. Feels unfamiliar
- iii. These students tend to be hands-on learners
- 6. Wayfinding
 - a. Main entrance with a welcome center would be nice
 - b. Five different entrances and five different parking lots no way to predict how students will enter
 - c. First-day students and visitors have issues wayfinding
 - d. No designated entry point as there are so many different places to park

7. Aesthetics

- a. More interest and appeal needed
- b. Feels institutional, needs refreshing
- c. Does not look inviting
- d. It is important for recruiting purposes both student and parents
- e. Making programs more visible to the public
- 8. Exterior grounds
 - a. South lot has several garages and auto cars kept out here these programs need storage space to coordinate this equipment storage
- 9. Southwest corner of building
 - a. Used to house horticulture, large greenhouse here this program has been suspended, so what do we do with that space?
 - b. Smart Garden
 - c. What will the future of this look like without the horticulture program?
 - d. Law enforcement could move here to have a more unified hub for their program short term vs. long term?

10. Food service

- a. Larger offering would be nice but would students support a larger offering?
- b. May students pack their own lunches
- c. Freshen up the aesthetics
- d. Cooking is done on site for breakfast and lunch
- 11. Final thoughts
 - a. Proposed projects will be included in the 65% document after stakeholder feedback
 - b. Send any other thoughts to Katrina Maass and they will be forwarded to LHB

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20220118 MM Stakeholder Construction and Transportation.docx

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 18, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Stakeholder Meeting: Public/Community

DATE SENT: January 27, 2022

Britie Geitti.	dandary Er, Edel		
PRESENT:	Name	Title / Organization	Email
	Julie Nigon	Executive Director, Greater Rochester Advocates for Universities & Colleges	executivedirector@grauc.org
	Jakki Trihey	Area Manager, Workforce Development, Inc.	jtrihey@wdimn.org
	Captain Aaron Penning	Interim Captain and Patrol, Rochester Police Department	
	James Goblirsch	Assistant Vice President for Facilities Management, Winona State University	James.Goblirsch@winona.edu
	Jane Foote	Program Director for Nursing Midwest Academic Affairs, Mayo Clinic Rochester	foote.jane@mayo.edu
	Jess Anderson	Workforce Development Program Manager, Mayo Clinic Rochester	Anderson.Jessica5@mayo.edu
	Kari Kolling Anderson	P-TECH School Leader/Assistant Principal, Rochester Public Schools	kakolling-an@rochester.k12.mn.us
	Kristi Ziegler	Student and Campus Services Administrator, Winona State University Rochester	kziegler@winona.edu
	Mike Nigbur	Parks and Forestry Division Head, Rochester Parks & Recreation	mnigbur@rochestermn.gov
	Molly Kroulik-Bigelow	Director of Rochester Partnerships, St. Mary's University of Minnesota	mbigelow@smumn.edu
	Sara Phillips	Planner, Architect, LHB	sara.phillips@lhbcorp.com
	Alicia O'Neill	Project Coordinator, LHB	laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

- 1. Parks and Recreation agreement to use site features
 - a. Benefits to using campus grounds for community
 - b. Different partners from Parks side chiming in on their wants for RCTC Parks and rec acts as a middleman in between RCTC and community Who should be managing this?
 - c. Longevity would be nice to have current lease agreement on baseball, softball, and football fields is a 1year term, makes planning challenging if RCTC decides to change up the agreement
- 2. Heintz Center
 - a. Small setting and easier to navigate
 - b. Great for parking and access for members who are not a member of RCTC community
 - c. RCTC staff is helpful in getting what is needed for meetings i.e., technology staff making sure everything is working and in place

Date of Meeting: January 18, 2022

- d. Challenge with HVAC regulation throughout building
- 3. Minnesota state system and legal contracts Winona State
 - a. Partnership is difficult due to these factors
 - b. Continuing negotiation happens between three parties which can be difficult
 - c. Winona State Rochester campus is highly dependent on the RCTC campus
 - d. Rhythm and nature of students and faculty is different 4-year program vs. 2-year program
 - e. Improving functionality of facilities in RCTC no formal agreement for Winona State to invest capital dollars into RCTC
 - f. Longevity with lease agreements desired
- 4. Partnership relationship
 - a. Making changes is difficult administrative organizational issues
 - b. Faculty works well together at the ground level
 - c. More continuous footprint for Winona state- staff and students benefit from being near each other
 - d. Winona state has been moved around since last CFP plan
- 5. East Hall health problems
 - a. Mold Winona State moved out of this space due to health issues
- 6. RCTC nursing programs and Mayo partnership
 - a. Pipeline between RCTC and Mayo for jobs or continuing education
 - b. Better simulation environments needed
 - i. Very essential for nursing programs
 - ii. Simulation center space is very highly utilized
 - iii. There is a coalition including many schools and businesses working to expand simulation space overall possibly downtown Rochester
 - c. Programs are growing quickly requires rapid thinking on how to get these students a good experience on the campus
 - d. Space and facilities need a look C-TECH and P-TECH are growing rapidly and will need accommodations

7. P-TECH

- a. international program to get students college experience by the time they graduate high school or with an additional two years aimed at students who may not have access to traditional college opportunities
- b. Exposure to college courses in general and skills they would be utilizing in careers
- c. Quickly realizing hands-on lab space is needed for students to access as high schoolers they do not get priority for using these spaces
- 8. Winona state is taking a hard look at their Rochester footprint in their own master plan
- 9. CFP and Sustainability
 - a. MN state guidelines are being followed, with the systems being reviewed for opportunities.
 - b. A utility master plan is not being completed as part of RCTC's CFP
- 10. Final Thoughts
 - a. 35% initial draft has been submitted
 - b. 65% is the next step and will look at proposed projects
 - c. 95% will be later this summer
 - d. Send additional comments to Katrina Maass and she will forward to LHB

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 19, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Stakeholder Meeting: Liberal Arts / Transfer Pathways / STEM

DATE SENT: January 27, 2022

PRESENT: Name Title / Organization Email

Dan Froelich Math Faculty Daniel.froelich@rctc.edu Ruth Casper Psychology Faculty Ruth.casper@rctc.edu Dean of Liberal Arts/Gen Ed Academic Affairs Brenda Frame Brenda.frame@rctc.edu Chad Israelson History/Social Science Faculty Chad.israelson@rctc.edu Jake Griggs Associate Dean of Liberal Arts Jacob.griggs@rctc.edu sara.phillips@lhbcorp.com

Sara Phillips Planner, Architect, LHB sara.phillips@lhbcorp.com
Alicia O'Neill Project Coordinator, LHB laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

Classrooms

- a. Classes of up to 42 people crammed into new classrooms pandemic has made this less noticeable, but going forward this will be important
- b. These classrooms have flexible chairs, but tables do not have wheels
- c. Room size is adequate, but the furniture doesn't provide enough for students i.e. table sizes
- d. Some classrooms have flexible tables and chairs SH107 was recently updated
 - i. Flexible furniture allows for more active activities
- e. Faculty have some opportunity to move classrooms if desired, but cannot always be accommodated
- 2. Thoughts on virtual courses vs. in-person courses
 - a. Many students still want to be face to face they enjoy it and get more out of it
 - b. Many programs will likely offer more online courses after the pandemic than before the pandemic
 - c. Generally, faculty prefer to be in class with the students
- 3. Transfer Pathways
 - a. Social science transfer pathways are relatively new little to no feedback yet from students
 - b. Largely content-based concerns, not facilities-based
 - c. May need more computer and server space as computer science and similar degrees grow
 - i. Computer lab is not conducive to teaching not all students are able to see the projector screens
- 4. Academic support spaces
 - a. College is migrating to having a central service hub like the library, bookstore, etc.
 - b. Student services feels disconnected right now
 - c. Each area has need for study space with outlets where students can plug in and take online classes
- 5. New spaces
 - a. Faculty feel thankful actual spaces are adequate
 - b. Improvements relate more to technology and furniture

- c. New memorial hall how are these spaces working?
 - i. Students use conference room and lounge spaces often
 - ii. Students can find faculty more easily if they need to
 - iii. Some students feel intimidated and that they are not supposed to be in this area how can this look more accessible and welcoming?
 - iv. Some student lounge furniture is placed where it conflicts with staff privacy needs some computer screens are visible, conversations can be overheard
 - v. Small conference rooms are useful
 - vi. Face to face interaction between staff is down due to the organization of office pods and pandemic
- 6. Exterior spaces
 - a. Where old memorial hall was torn down has potential
 - i. Bleachers used to be stored out here and could be used for class outdoors
 - b. Geese are a large problem
 - c. Unoccupied areas next to campus field, forest
 - i. Could make identifiable walking paths for students and staff through these areas
 - ii. This would be great for mental health
 - iii. No well-known walking route on campus for this type of activity
 - d. Amphitheater has been used to teach classes when available
- 7. Brick exteriors
 - a. Desire to better see in and out of the buildings more natural light and engagement
 - b. Newer buildings with more natural light are great
- 8. Greenspace near the fieldhouse and in front of the atrium
 - a. Could have more seating
 - b. Seems like a wasted space and could be better utilized for congregation liked a campus quad
 - c. Committee to coordinate outdoor events would be nice because spaces are often underutilized
- 9. Sustainable energy
 - a. Many students look for a socially responsible environment when choosing a college
 - b. Could there be room for wind/solar on the grounds? This could add potential degree programs as well
 - c. Benefit campus financially
- 10. Dining options on campus
 - a. Needs an upgrade, more opportunities throughout the campus
 - b. If you wanted to leave campus to get food, there are not a lot of opportunities
- 11. Unoccupied space
 - a. Offices on third floor
 - b. There is adequate space on campus to grow but space use is not efficient
- 12. Final Thoughts
 - a. Send additional thoughts to Katrina Maass will be forwarded to LHB
 - b. CFP Committee will soon begin talking about proposed projects based on feedback

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 20, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Agriculture Science and Natural Resources

DATE SENT: January 27, 2022

PRESENT: Name Title / Organization Email

Cory Rubin Biology Faculty Cory.Rubin@rctc.edu Kim Rowley Veterinary Faculty Kimberly.Rowley@rctc.edu Robin Fruth-Dugstad Biology Faculty Robin.Fruth-Dugstad@rctc.edu Matt Bissonette Interim Dean of Career and Technical Education Matt.Bissonette@rctc.edu Jennifer Rubin Biology & Environmental Science Faculty Jennifer.Rubin@rctc.edu Sara Phillips Planner, Architect, LHB sara.phillips@lhbcorp.com Laura Heck Project Coordinator, LHB laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

Needs and Improvements

- 1. Develop year-round outdoor learning spaces:
 - a. Wetlands: Floating boardwalk; nature trails for access for instructional purposes (ponding, water, quality, research, etc.)
 - b. Pond improvements needed: dredging and draining. Safety improvements near the water. Silt buildup is an issue at the edge.
 - c. Woodlands: Slowly restoring this area. Could be professionally restored with funding (i.e. buckthorn removal, pathways).
- 2. Outdoor seating areas:
 - a. One seating area closer to the water; smaller than the amphitheater to accommodate smaller classes.
 - b. Benches along the existing trails.
- Dedicated Conservation Areas:
 - a. Mow less. Keep some of the areas natural.
 - b. Wildlife: Need a safe corridor for painted turtle circulation. Reducing curbs could be part of the solution.
 - c. Signage or kiosks with information about natural areas, gardens, etc.
- 4. Smart Garden: Maintain this as a green space for Heintz Center regardless of Horticulture being on hold.
 - a. Prairie garden is a great example of natural prairie.
 - b. Host to salamanders, turtles, frogs, ducks and geese.
 - c. Gardens are maintained by faculty and one other staff person.

Date of Meeting: January 20, 2022

5. Veterinary Program:

- a. Storage for large equipment. Some equipment is used seasonally. Storing in the classrooms is not the most secure.
- b. Anatomy, Radiology and Clean lab: Existing sinks are not sufficient in number or size for clean up at the end of class or water use during lab time.
- c. Barn for large animals on campus. Currently students travel up to an hour, eight times per semester, to other locations to work with large animals.

6. Biology Labs on Main Campus:

- a. Seating sits too low. Ergonomic concerns expressed by students.
- b. Sinks in the middle of the workspace is a barrier. Not enough space for laptops, equipment, and writing utensils.
- c. ST305: Microbiology
- d. ST309: shared biology lab for ecology, zoology, human biology and general biology.

7. Horticulture Space:

- a. No current plans expressed for this space. Could be utilized by Science Faculty.
- b. Predesign project does not affect this space.

8. Alternative Energy

- a. Support alternative energy initiatives. Possible use for instruction as well.
- b. Wind turbines are not as feasible, however solar is a good option. There is some planning in motion.
- 9. Overall: Aesthetic upgrades of current spaces are needed.

10. Heintz & Main

- a. Need a better connection between campuses. Sidewalks, bike sharing programs.
- b. Interactive elements along paths between campuses.
- c. Difficult to fill courses at the Heintz center. Might be able to fill courses at this building if science were to move.

Other Comments:

- 1. The mountain biking group has plans to develop trails in the woods. Currently awaiting funding.
- 2. Site improvements tend to be college funded unless tied to a bonded project with an academic or student success need.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20220120 MM Stakeholder Ag Science Nat Resources.docx

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 20, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Behavior, Education and Personal Services

DATE SENT: January 27, 2022

PRESENT: Name Title / Organization Email

Steve Schmall VP of Finance and Facilities
Wayne Finseth Faculty/Program Leader, Alcohol and Drug Counseling

Cassie Dennison Early Childhood Education
Sara Phillips Planner, Architect, LHB
Laura Heck Project Coordinator, LHB

Steve.Schmall@rctc.edu Wayne.Finseth@rctc.edu Casandra.Dennison@rctc.edu sara.phillips@lhbcorp.com laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

1. Current Areas Used

- a. Classrooms at Heintz Center
- b. Off campus experiential learning at multiple places. Requires extra documentation.
- c. Early Childhood Education area is well placed. Current mock room is not a full simulation without children present.

2. Needs

- a. Space for a sim lab or virtual reality system. An established sim lab program for behavioral health and early child education does not yet exist.
- b. Ground level space and outdoor space for early childhood education where students, faculty, and the community could bring their children. Would provide hands on experience for students without having to go off site.
 - i. RCTC previously had a space. Challenged with low participation rates. Many students did not use it for their practicum. Would need a different approach if reinstated.
 - ii. Could use the Reggio approach, which is not widely used in Minnesota yet. Teachers learn alongside the children. More naturalistic learning environment where children can explore.
- c. Center for Teaching Experience: More resources aimed at how we teach today.
- d. More unified multipurpose learning space.
 - i. Potential for more collaboration across programs.
- e. Need more spaces where realistic demonstrations can be set up (i.e. clinic setup).
- f. Space for continuing education: possibly accommodate up to 60 students.
- g. More windows at Heintz.
- h. Workout rooms that are not dedicated to classes and programs. Holistic wellness approach.

Meeting Minutes: RCTC Comprehensive Facilities Plan Stakeholder Meeting Page: 2

Date of Meeting: January 20, 2022

3. Challenges

- a. Technology in the classroom is better, but needs an improved interface.
- b. The Covid pandemic has presented unique issues, however childcare is an essential service.
- c. Significant shift to hybrid learning.

4. Other Comments

- a. Heintz does not seem to align with main campus "look".
- b. Walking paths on campus would be nice
- c. Develop outdoor spaces for breaks during longer 8-hour classes.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20220120 MM Stakeholder Beh Ed Personal Serv.docx

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 20, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Law Enforcement and Public Safety

DATE SENT: January 27, 2022

Laura Heck

PRESENT: Name Title / Organization Email Steve Schmall VP of Finance and Facilities Steve.Schmall@rctc.edu Matt Bisonette Interim Dean of Career and Technical Education Matt.Bissonette@rctc.edu Randy.Mohawk@rctc.edu Randy R. Mohawk Law Enforcement Faculty Vincent.Scheckel@rctc.edu Vincent Scheckel Law Enforcement Faculty Law Enforcement Ken.Wickelgren@rctc.edu Ken Wickelgren Sara Phillips Planner, Architect, LHB sara.phillips@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

Project Coordinator, LHB

1. Areas Used

a. Parking lot is used for training activities such as traffic stops. Not ideal during soccer games and other busy times.

laura.heck@lhbcorp.com

- b. Offsite areas are used for building searches and active shooter scenarios. Using abandoned buildings at times. Changes from year to year as buildings are torn down.
- c. Regional training center for firearms training. Can be an expensive option for travel and booking the space.
- d. Heintz Center for lectures and lab programs.
- e. Workout routines are run in hallways in the cold months. Sports Center is not used due to scheduling challenges as well as limited time to travel to the Sports Center and back again for class. Sports Center is also not ideal for class and labs.
- f. Small auditorium in horticulture wing is use for skills lectures.
- g. Some areas are shared with other programs, which is acceptable as long as sufficient storage is provided.

2. Needs

- a. Storage:
 - i. An external garage would be ideal. Armory is currently used for vests, traffic stop signs, cones, impact bags, mats, etc.
 - ii. Vehicle storage to keep vehicles secured and properly maintained.
 - iii. Lab equipment storage adjacent to each lab.
- b. Training House: Previously had funds allocated, however there wasn't land available.
- c. Pole Building for building searches, and other scenarios. Land availability is an issue.
- d. Track and workout area.
- e. All training, classes, and labs in one area to limit off site needs and wasted time.
- f. One lecture classroom for 60 students. Smaller lab rooms for castings, fingerprinting, etc. Could continue to use small auditorium for lectures.

Meeting Minutes: RCTC Comprehensive Facilities Plan Stakeholder Meeting Date of Meeting: January 20, 2022

Page: 2

- g. Up to six lab rooms. This is the number of labs that would be needed at one time.
- h. Access to a "mini one-stop" at the Heintz Center.
- i. Culturally appropriate facilities.

3. Challenges

- a. Low enrollment due to current public view of law enforcement.
- b. Clear expectations on the job make it difficult for training. Once expectations are defined, Law Enforcement programs may see sudden increased enrollment.
- c. Curriculum:
 - i. State System Office: Need comply with standards.
 - ii. Minnesota P.O.S.T. Board: Need to comply with these standards to remain certified. Requirements have not changed recently, thus curriculum and space needs have not changed.
 - iii. Standardization of the skills aspect is difficult to define.
- d. Off Site: All off site training requires loading and transport of equipment for each training session.

4. Current Heintz Center Remodel Predesign

- a. Meets current needs of the program.
- b. Does not provide workout space or space to support tactical training.
- c. Some spaces will be vacated and could be repurposed as part of another project.
- d. If the plan is not approved, or if a consolidated space is needed, the Horticulture wing could be a temporary move.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 21, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Health and Healthcare Support Services

DATE SENT: January 27, 2022

	, _ ,		
PRESENT:	Name	Title / Organization	Email
	Steve Schmall Susan Jansen Tawny Amos Nikkilynn Rud	VP of Finance and Facilities Associate Dean of Nursing Clinical Lab Assistant, Nursing Dental Assistant Faculty	Steve.Schmall@rctc.edu Susan.Jansen@rctc.edu Tawny.Amos@rctc.edu Nikkilynn.Rud@rctc.edu
	Kristin Janssen Jason Jadin Heidi Feldman Cherie Fritz	Office and Administrative Specialist Interim Dean of Sciences and Health Professions Academic Affairs Support Staff-Nursing Dental Hygiene Program Director	Kristin.Janssen@rctc.edu Jason.Jadin@rctc.edu Heidi.Feldman@rctc.edu Cherie.Fritz@rctc.edu
	Alex Catevenis Eileen Zirbel Sara Phillips Laura Heck	Intensive Care Paramedic, Faculty Surgical Technology Planner, Architect, LHB Project Coordinator, LHB	Alexander.Catevenis@rctc.edu Eileen.Zirbel@rctc.edu sara.phillips@lhbcorp.com laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

1. Challenges:

- a. Covid has presented challenges with social distancing. The labs are tight in regular times.
- b. Winona State University shares space at RCTC's campus.
- c. Pressure to address how to double enrollment in nursing to meet demand. If enrollment is doubled, more space or a change in scheduling may be needed.
 - i. Currently the National Guard is staffing understaffed healthcare facilities in Minnesota.
- d. Health Force MN is working with Minnesota State and the Governor to guide how to bridge the gap.
 - i. 488 out of the 1,000 person goal have been trained thus far.
- e. Staffing is an issue in the Dental Hygiene industry similar to nursing. 16 students are accepted each year into the program. 70 qualified last year. Not enough space to meet enrollment demand. This has been an ongoing issue for the past 5 years.
- f. Dental assisting is experiencing the same challenges as Dental Hygiene. 24 students max.

2. Collaborations:

- a. Dental Hygiene is collaborating with Winona State graduate nursing students working with patients on preventative health.
- b. Dental Hygiene is collaborating with the federally funded clinic as well.

Date of Meeting: January 21, 2022

3. Current Space

- a. Nursing simulation equipment is excellent. Could be offered to the community for continuing ed.
- b. Current cohort is large, but some classes have moved online and hybrid.
- c. Dental Hygiene clinic is full. Dental Hygiene and Dental Assisting do not have a sim lab so the clinic is used which is causing wear and tear on equipment. (Heintz Building).
- d. EMS, EMC, EMT and Paramedic Program: Works with Mayo Clinic for simulations in the field. EMT program at CTECH may not have the same opportunities.
- e. 2nd floor space: Space was reviewed for a new sim lab.
- f. Surgical Technology: Next Accreditation visit may be virtual. Some concern about the space being too small for 24 students. Lab is only used for 12 weeks in the fall. Classroom is used on Fridays.
- g. Heintz Center public computers are lacking. The computer lab is scheduled for nearly the full day.
- h. Second Floor does not have a place for students to sit. Many students are sitting on the floor in hallways and attending online classes on their phones due to lack of public computers.
- i. Commons area hosts presentations at times making it awkward for students to use during meal times.
- Students at Heintz tend not to travel to the main campus to use the computer labs. Need an equitable distribution of resources.
- k. Lockers in the hallway have a high school feel.
- I. Technology:
 - i. iPad cart is checked out by faculty and used for testing in person.
 - ii. There are checkout computers on main campus, but not at Heintz.

4. Other Spaces:

- a. Pond near four-way stop has been abandoned.
- b. Areas of the horticulture gardens including near the Main Entrance need to be tended.

5. Needs and Ideas:

- a. Sim Lab for Dental Hygiene and Dental Assisting at Heintz Center adjacent to the clinic. Could be on the 2nd floor space at 2306A and B. Obtaining quotes.
- b. More space for Dental Hygiene and Dental Assisting to accept more students into the program.
- c. Interdisciplinary simulation center could benefit multiple programs (dental hygiene, dental assisting, radiology, nursing, etc.).
- d. Surgical Technology Lab Upgrades to meet new accreditation guidelines. The guidelines exist however they are not detailed for existing spaces.
- e. Space on the second floor for students to sit, eat lunch, or work on an assignment.
- f. Mobile simulation labs shared by the schools under Minnesota State.
- g. Some form of connection between the Main Building and Sports Center (tunnel, skyway, etc).
- h. One Health Sciences Building with sim labs.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

M:\21Proj\210539\200 Communication\Meetings\Stakeholder Meetings\210539 20220121 MM Stakeholder Health and Healthcare Support.docx

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: January 27, 2022

LOCATION: Virtual Meeting

TO: Comprehensive Facilities Plan Committee

FROM: Laura Heck

RE: Stakeholder Meeting: Students, Student Senate, and Student Life

DATE SENT: January 28, 2022

PRESENT: Name Title / Organization Email

Kodi HoscheitStudent Engagement Specialistkodi.hoscheit@rctc.eduMegan RossStudent Life Coordinatormegan.ross@rctc.edu

Jade Robertson-Longfellow Student, Business Program

Casey Trusty Student Senator, Environmental Science

Danika Student, Dental Hygiene
Tim Galvin Student, Liberal Arts
Sara Phillips Planner, Architect, LHB

Sara Phillips Planner, Architect, LHB sara.phillips@lhbcorp.com
Laura Heck Project Coordinator, LHB laura.heck@lhbcorp.com

MEETING SUMMARY

After brief introductions and an overview of the Comprehensive Facilities Plan process, the following was discussed.

Needs and Ideas

- 1. Lockers needed for students at the Main Building.
- 2. Quiet Spaces:
 - a. Areas for students to relax.
 - b. Meditation room in the library is not always ideal. Limited availability. Some are not tolerant of others' beliefs and practices, causing conflict at times.
 - c. Study spaces located throughout; not just the Library. Mixture of lounge chair and table & chair setups.
 - d. Sound dampening furniture / booths.
- 3. Honor Society and other clubs need a gathering space outside of student senate. Compassion club would benefit from a private space.
- 4. Student Senate could use more space.
- 5. Veteran's space: Could evaluate for a smaller space based on use.
- 6. Student Life: "Maze-like" hallways are a barrier to find this office. Better located near the Atrium or the east doors. Previous financial aid office or old bookstore are also possibilities. Bookstore would support Student Life and Hive Supply in one space.
- 7. Hive Supply (food shelf): Current Main Building and Heintz Center locations are hard to find. Need a storage closet and more space for both. Will need more space once an industrial fridge and freezer are installed.
- Heintz Center:
 - a. Outdoor activities are challenging at this location. Not enough outdoor seating.
 - b. Clubs at Heintz often use existing labs or classrooms.
 - c. Need for lounge space on the second floor for students.
 - d. Student Life space for meeting with students.

- ato or mooting. company - - , - - - -

- 9. Better signage needed in general. Digital signage could help with wayfinding.
- 10. Mobile a la carte food service in the Atrium or Memorial Hall for those of who ride the bus to campus. Would be a draw for those that ride the bus to campus or don't usually visit the Cafeteria.
- 11. Pool House: Some interest in a pool or hot tub open to students and an organized sports team.
- 12. Heintz and Main Connection: Improve this trail connection. How can this be made easier, especially for those that carry heavy bags? Trolley, scooters, etc.

Other Comments

- Cafeteria:
 - a. Often used for studying between meals.
 - b. Used for some larger activities especially since it allows for social distancing.
 - c. Location is near East Hall; other side of campus from where most students enter. Many students don't know it exists due to its location.
 - d. Food Service: Wednesdays can be very busy around lunch time. Other times are not busy. Not currently a draw to Student Life. Mainly used by faculty and staff. Many students bring packed lunches or visit the Hive Supply.
- 2. Learning Center: If the Learning Center were moved to the Library, this space could be used for study rooms or for club meetings.
- 3. Intramural Sports: Put on pause at the start of the pandemic. The individual organizing this group is no longer with RCTC. It was noted that there is a lot of focus on the Yellow Jackets, which takes away the opportunity for other students to participate in sports.
- 4. Fitness Programs: Not currently offered. Students aren't allowed to use the weight room when it is not monitored. Reserved for the Yellow Jackets otherwise. Some confusion about which fitness rooms are open to students.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: None.

c: LHB File No. 210539

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: JANUARY 28, 2022 LOCATION: VIRTUAL MEETING

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Committee Meeting 4
DATE SENT: February 8, 2022

PRESENT: Name Title / Organization Email

Shayn Jensson Facilities Project Manager
Mary Dennison Librarian
Alicia Zeone Director of Admissions
Gina Korf Biology Faculty
Crist Dahl Lab Technician Art & Desi

Crist Dahl
Beth Diekmann
Michele Pyfferoen
Michael Sheggeby
Steve Schmall

Lab Technician Art & Design
Financial Aid Director
VP Academic Affairs
Director of Sports Facilities
VP of Finance and Facilities

Brenda Frame Dean of Liberal Arts/Gen Ed, Academic Affairs

Sara Phillips Planner, Architect, LHB Alicia O'Neill Architectural Designer, LHB Shayn.Jensson@rctc.edu
Mary.Dennison@rctc.edu
alicia.zeone@rctc.edu
Gina.Korf@rctc.edu
Crist.Dahl@rctc.edu
Beth.Diekmann@rctc.edu
Michelle.Pyfferoen@rctc.edu
Michael.Sheggeby@rctc.edu
Steve.Schmall@rctc.edu
Brenda.Frame@rctc.edu
sara.phillips@lhbcorp.com
Alicia.oneill@lhbcorp.com

MEETING SUMMARY

Attendees discussed the following in relation to the Comprehensive Facilities Plan.

- 1. Feedback on the 35% submittal
 - a. Comments received from RCTC and MN State
 - b. Campus comments on text edits, photo, and space use corrections
 - c. MN State comments about space use and utilization inconsistencies
- 2. Survey / Campus Engagement
 - a. What is the right approach for this feedback?
 - b. Faculty was thankful their opinion was being considered during stakeholder meetings
 - c. Benefit of a survey is faculty and students get to share their opinions, although amount of response is often limited
 - d. RCTC Leadership will be asked their opinion on a survey since some people are "surveyed-out"
- 3. Space Utilization
 - a. Can inform projects down the line; low utilization may signify a classroom is not the right size, has poor technology, or has other issues (HVAC, acoustics, etc)
 - b. Minnesota State uses a 32-hour marker, so 32 hours a week means 100% utilization. Other systems use 40+ hours as the goal
 - c. Labs tend to be more specialized, and it's acknowledged that they may have lower utilizations. Classrooms can be of more general use for multiple programs.
 - d. Data from Fall 2021 reflects some pandemic impact

- e. White areas of the diagrams may be misleading add white box to key to note that those spaces don't have data available
- f. If there are any rooms that you do not see reflected correctly, please let LHB know.
- 4. Stakeholder Group Meetings
 - a. Meetings held to date
 - i. Athletics
 - 1) Partnership agreements scheduling can be challenging
 - 2) Athletes tend to stay at the Sports Center should there be other amenities provided here?
 - ii. Facilities Staff / Maintenance
 - 1) Storage issues
 - 2) HVAC upgrades needed
 - 3) Interior and exterior lighting upgrades needed
 - iii. Student Services
 - 1) Private testing space desired
 - 2) More centralized location
 - 3) Mental health focus increasing
 - 4) Atrium is not inviting
 - 5) General refresh desired for areas not in the One Stop
 - iv. Technology
 - 1) Computer labs are underutilized currently, may be a pandemic impact
 - 2) Weather can cause power spikes and brownouts
 - 3) Additional simulation labs will require more infrastructure
 - v. Accounting, Business, and Office Administration
 - 1) Flexible classroom furniture desired
 - 2) Relaxation or meditation rooms
 - 3) Alternative energy sources
 - 4) Daily storage needs for students
 - 5) Atrium is loud and sterile
 - vi. Communication, Fine Arts, and Audio
 - 1) 3D studio space, maker space
 - 2) Theater updates
 - 3) New black box theater is desired
 - 4) Art gallery security
 - 5) Better music practice rooms
 - 6) Student study areas (all departments)
 - vii. Community Leaders / Partners
 - 1) Lease agreement challenging
 - 2) Partnership agreement challenging
 - 3) More continuous WSU footprint desired
 - 4) C-Tech and P-Tech growing
 - viii. Construction and Transportation
 - 1) Will be impacted by 2022 bonding project (if funding is received)
 - 2) Automotive industry is changing more technology will be needed for electric vehicle instruction
 - 3) Welding needs storage
 - 4) Student services needed at Heintz
 - 5) Student storage needed for backbacks
 - 6) More food service offerings may be useful, but some questioned the demand
 - ix. Liberal Arts / Transfer Pathways / STEM
 - 1) New MH classrooms need different furniture that is more moveable
 - 2) Student services feels disconnected
 - 3) Additional study areas with power needed
 - 4) Students feel intimidated to enter office space
 - 5) Use of outdoor areas

- x. Law Enforcement and Public Safety
 - 1) Unsure of future direction of educational requirements
 - 2) Rotating use of community spaces for skills training is challenging
 - 3) Workout area needed in Heintz Sports Center is too far
 - 4) External garage
- xi. Behavior, Education, and Personal Services
 - 1) Childcare on site would benefit the program and students
 - 2) Reggio approach to Early Ed area
 - 3) Simulation area
 - 4) Continuing education space needed
 - 5) Workout rooms
- xii. Agriculture Science and Natural Resources
 - 1) Year-round learning space desired
 - 2) Outdoor seating
 - 3) Conservation areas access to wetland for sample gathering
 - 4) Vet program needs more storage
 - 5) Better connection between Heintz and Main Building
- xiii. Health and Healthcare Support Services
 - 1) Programs are full, labs are crowded
 - 2) Pressure to increase nursing enrollment
 - 3) More simulation spaces
 - 4) Student support services and student lounge spaces needed at Heintz
 - 5) Better connection between Heintz and Main Building
- xiv. Student, Student Senate, and Student Life
 - 1) Additional quiet spaces

 - 2) Club meeting rooms3) Challenge to find Student Life and Hive Supply
 - 4) Better wayfinding in general signage is in the process of being updated
 - 5) Cafeteria can be busy, but only on certain days during lunch
 - 6) Workout space for non-athletes
- b. Areas that may be opportunities for projects
 - First floor Main Building
 - 1) First blue circle may be turned into a student lounge space it has been vacated
 - a) Has not been designed. Somewhere to sit in between classes and with place to plug in computers.
 - 2) Former bookstore no use has been identified for this space yet
 - a) Art department 3D studio or makerspace
 - b) Student life location
 - c) Blackbox location
 - 3) Simulation space
 - a) Varies between department, very different needs
 - 4) AT102 and CF103
 - a) Lounge space?
 - ii. Second floor Main Building
 - 1) Improve theater? Black box theater? Additional studio?
 - a) No clear front entrance to the theater
 - 2) Floors 3 and 4 Main Building
 - a) Learning center potentially moving into library space
 - b) Quiet spaces in corridor
 - c) Computer lab utilization
 - i) Students are using mobile devices more often
 - d) Request for individual Zoom areas
 - i) 7 current stations: usage has dropped off, disposable headsets are provided
 - ii) Rooms off Library computer lab used heavily

- e) Food Service how often is it being used?
 - i) Other campuses are using more of a café / coffee shop model
 - ii) How do on campus activity affect food service?
- f) Moving Student Life?
 - i) What do we do with vacated space?
- iii. Heintz Center
 - 1) Horticulture program will no longer be offered frees up space
 - 2) Opportunity to change classroom to study lounge or other student support space
 - 3) Adding more student services at Heintz so students don't need to travel to Main Campus
 - a) Zoom meetings instead of in-person?
- iv. Regional Sports Center
 - 1) Facility is relatively new
 - 2) Concessions acts as a storage room
- c. Next meeting: February 18th
 - i. Please send any afterthoughts to Katrina Maass and she will forward to LHB

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: Committee Meeting 4 Presentation

c: LHB File No. 210539

\LHBMSPW12\MSPProjects\21Proj\210539\200 Communication\Meetings\20220128 Committee Mtg 4\210539 20220128 MM CFP Committee Meeting 4.docx

Committee Meeting 4
January 28, 2022

Agenda

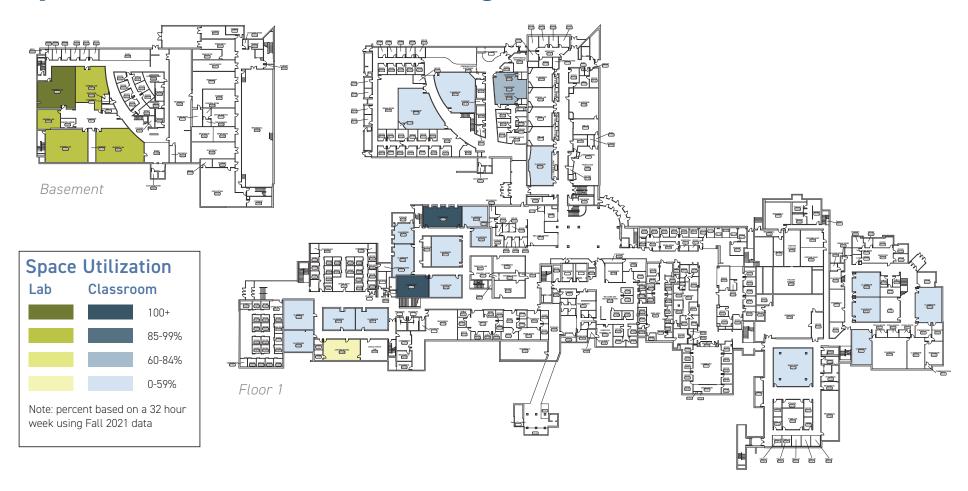
– Feedback on the 35% submittal	5 Minutes
- Survey/Campus Engagement Discussion	10 Minutes
– Space Utilization	15 Minutes
– Summary of Stakeholder Meetings	30 minutes
– Potential Areas to Address	15 Minutes
- Next Steps	5 Minutes
	80 Minutes

Feedback on the 35% Submission

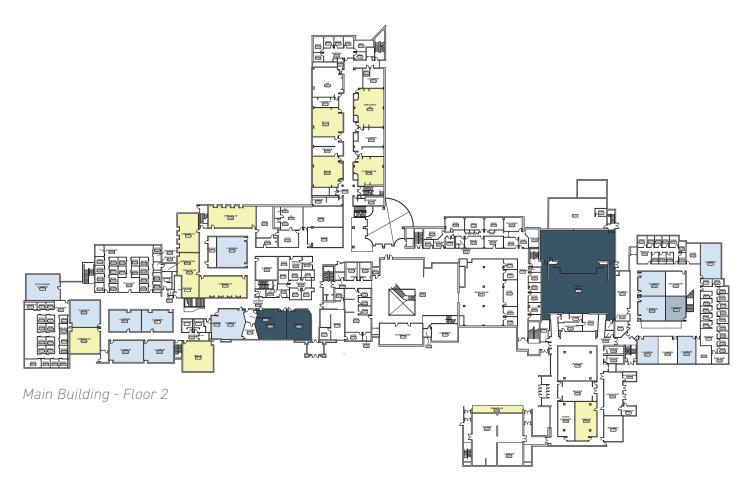
- Comments received from RCTC and MN State
- Campus comments included text edits, photo and space use corrections.
- MN State comments asked about frequency of bus service, some space use / utilization inconsistencies

Survey / Campus Engagement

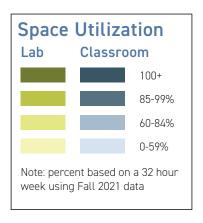
Audience: Students, Faculty, and/or Staff

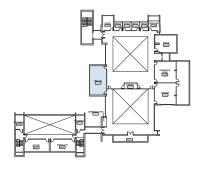

Open Questions:

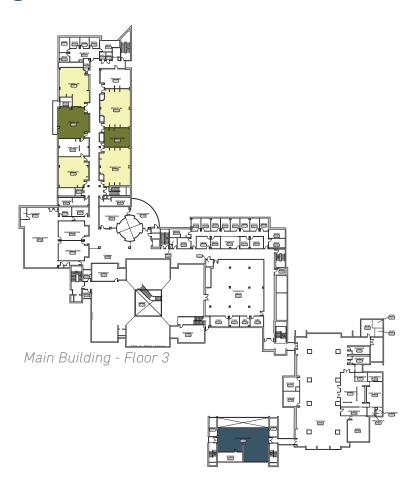
- What are the three aspects of the campus (inside or outside spaces) that are most successful in meeting your needs?
- What are the three aspects of the campus (inside or outside spaces) that need the most improvement?
- What is your favorite interior space at RCTC, and why?
- What is your favorite outside space at RCTC, and why?
- Is there anything else you'd like to share about the buildings and grounds of RCTC?


Likert Scale:

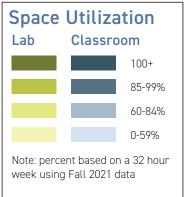
- I feel the general purpose classrooms of RCTC support today's needs
- I feel the instructional labs of RCTC support today's needs
- If I have a break between classes, there are comfortable places to spend time
- Imagine you are new to campus and respond to this question: It is easy to find the room or department that I'm looking for
- I look forward to spending time on campus
- Is there anything else you'd like to share about the buildings and grounds of RCTC? (Open Question)

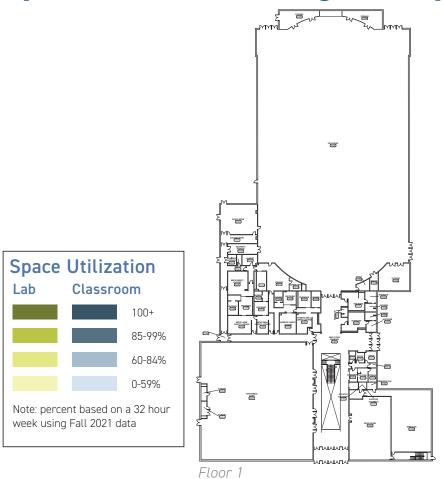

Space Utilization - Main Building

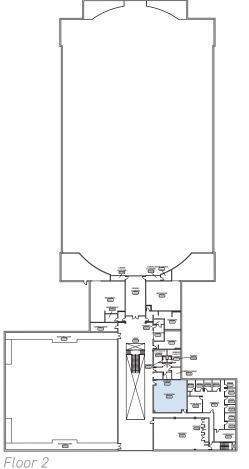

Space Utilization - Main Building



Space Utilization - Main Building


Main Building - Floor 4

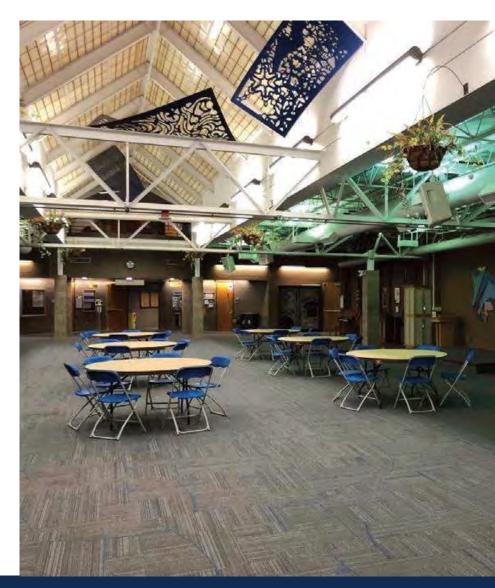

Space Utilization - Heintz Building



Space Utilization - Regional Sports Center

Meetings held to date:

- Athletics
- Facilities Staff / Maintenance
- Student Services
- Technology
- Accounting, Business, and Office Administration
- Communication, Fine Arts, and Audio-Visual Technology
- Community Leaders / Partners
- Construction and Transportation
- Liberal Arts / Transfer Pathways / STEM
- Law Enforcement and Public Safety
- Behavior, Education and Personal Services
- Agriculture Science and Natural Resources
- Health and Healthcare Support Services
- Students, Student Senate, and Student Life


Athletics

- Acknowledged as one of the best athletic facilities in the MN State system
- Use agreements can be challenging for after-hours use by RCTC (Fieldhouse)
- All-American Room Currently used for Zoom classes, study area
- Athletes tend to stay in the Sports Center beyond practices
- Outdoor fields concern for equitable amenities (lighting, concessions, restrooms) between softball and baseball
- Intramural Sports versus E-Sports
- City-wide athletics facility plan

Facilities Staff / Maintenance

- Proper storage is a concern
- Heinz Center is on district steam, with backup heat provided by a 1983 boiler
- HVAC updates/upgrades are needed (VAVs, controls, fans)
- Skylight replacement is needed (2022 Bonding)
- Updates needed to alarm system (Main Building), air compressors, piping (Main Building)
- Interior and exterior lighting updates are needed (LEDs)

Student Services

- Private testing space is needed (accommodation testing mostly, some placement testing)
- Student Life location (Main Building, not centralized)
- Increasing focus on mental health and impacts to Health Services
- General refresh needed for some areas (Student Services)
- Heintz Food Pantry: too small, hard to find
- Exterior spaces need improvement, acknowledgment of staffing issues
- Atrium is cold, not inviting, multi-function space

Technology

- Computer labs are less utilized than in the past, but size reductions would depend on academic delivery model
- A laptop program and an improved fiber path between the two campuses is being considered
- Power spikes and brownouts have occurred during inclement weather; A power conditioning study may be needed
- Additional sim labs would have impacts for technology / systems (conduits, switches, etc)
- Working to standardize classroom technology
- Improved access control, additional cameras in some areas, LED emergency lighting

Accounting, Business, and Office Administration

- More flexible furniture in classrooms (movable) to support student interactions
- Separate spaces to promote team building, networking, problem solving (ropes course, stand-up tables, etc).
- Relaxation or meditation rooms to promote mental health
- Alternative energy sources should be added to campus (wind, solar)
- Daily storage for student's coats, books, etc.
- Cafeteria could be moved to promote more use.
- Atrium is both "sterile" and at times too loud

Communication, Fine Arts, and Audio-Visual Technology

- Fine Art lacks a 3D studio space and existing art labs are overcrowded with poor HVAC
- Theater needs updating, both for aesthetics and electronic equipment (dimmers) and a better defined entry
- A black box theater is desired for different types of theatrical events (80-100 person capacity)
- Security is a concern for the art gallery (no doors)
- Older music practice rooms should be replaced with newer models (better lighting, acoustics, ventilation)
- A shared maker space could promote collaboration (robotics, sculpture)
- More study areas for students in all department areas

Community Leaders / Partners

- Longevity of lease agreements would be beneficial, both for athletics and academic partners
- Heintz Center is liked for Workforce Development because it's easy to navigate and smaller than the Main Building. RCTC technology staff is very helpful
- Partnership Agreements are challenging. No formal agreement for WSU to invest capital dollars into RCTC
- A more continuous footprint for WSU is desired on RCTC's campus. This is being studied as part of Winona State's CFP
- C-Tech and P-Tech are growing rapidly and may need more space
- The laddering approach from C-Tech/P-Tech, RCTC, and WSU is appreciated, with the faculty working well together

Construction and Transportation

- Programs will be impacted by the 2022 Bonding project if funding is received
- Automotive program is moving towards noncombustion engines, but needs new equipment, space to accommodate expanding instruction
- Welding needs storage to handle donated materials large enough for a full semester of instruction
- Students in these programs tend to not use lounge areas as they are in labs all day.
- Student storage needs should be accommodated without looking like a high school (lockers)
- Students need a small "one stop" at Heintz for financial aid / advisors
- More food service offerings would be nice, but might not be used

Liberal Arts / Transfer Pathways / STEM

- Some concern about new MH classrooms (42 students, table not movable in some rooms, technology) but the spaces themselves are generally liked
- Faculty see benefits to both in-person classes, but see online remaining an option post-pandemic
- Student services feel disconnected
- Additional study areas are needed, with power for charging devices, taking online courses
- Student areas within faculty offices suites some students feel intimidated to enter, others use them.
 Some concern from faculty about privacy
- Capture outdoor areas for use walking paths, outdoor classes
- Addition of wind/solar on campus could bring in students; academic program opportunities?

Law Enforcement and Public Safety

- Enrollment is down and the program is currently unsure of future direction (public views, changes in job expectations, P.O.S.T. board requirements)
- Rotating use of community spaces for skills training is challenging - changes yearly
- Traveling to other locations for skills is not ideal, loss of instruction time
- Workout area is needed in Heintz for program needs.
 Sports Center is too far and scheduling is problematic
- External garage is desired for equipment, vehicles
- Rotation of classroom instruction / labs is challenging.
 (Multiple labs/classes held concurrently with student rotating through)

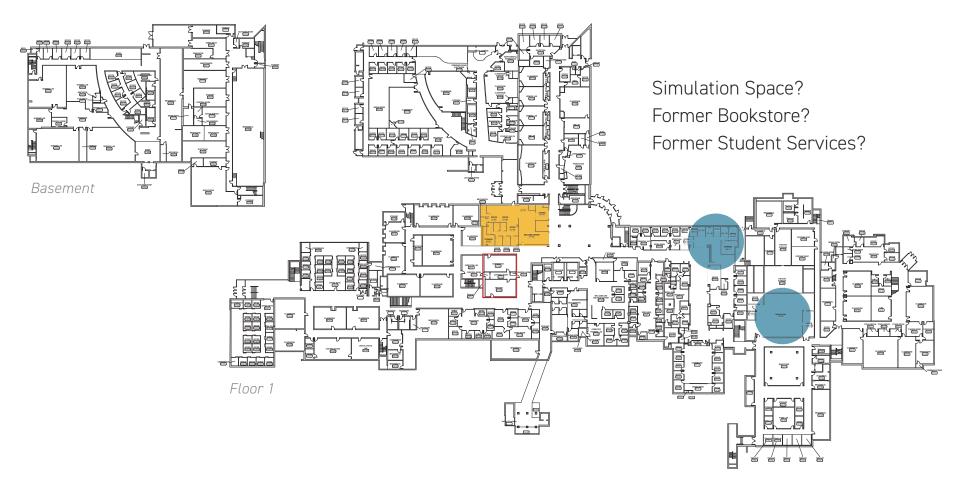
Behavior, Education and Personal Services

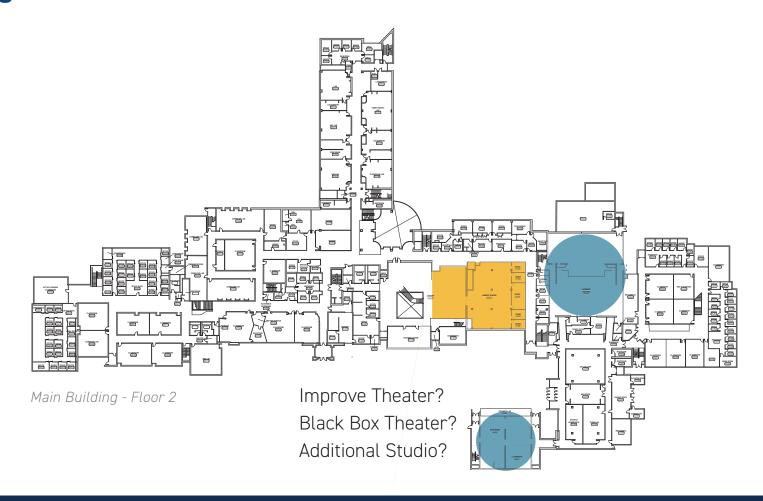
- Early Childhood Education is challenged by not having a facility that accommodates children on site
- Having a child care facility on site could benefit studentparents, faculty, and students of the program.
- Designing the Early Childhood Education area from a Reggio approach could be a draw (naturalistic learning)
- Simulation area for teaching Behavioral Health, both in terms of technology and clinic space set-up
- Space is needed for continuing education, potentially up to 60 students
- Need workout rooms that are not dedicated to classes and programs - would provide a holistic wellness approach

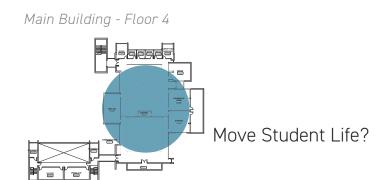
Agriculture Science and Natural Resources

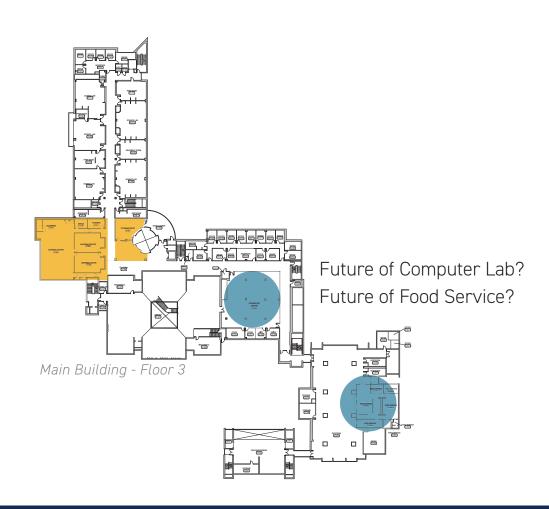
- Year-round outdoor learning spaces should be developed (wetlands, nature trails, woodland restoration)
- More outdoor seating areas are needed
- Introduce dedicated conservation areas (less mowing, support wildlife, educational opportunities)
- SMART garden should remain, regardless of the status of Horticulture
- Veterinary Program spaces need additional sinks, storage for large equipment. Ideal would be a barn for large animals
- Biology labs furniture should be replaced (too low, ergonomic complaints from students)
- Support alternative energy
- Need a better connection between Heintz and the Main Building

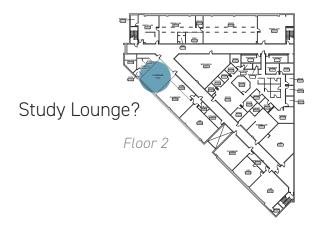
Health and Healthcare Support Services

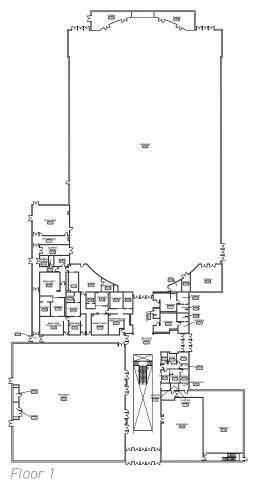

- Nursing, Dental Hygiene, and Dental Assisting programs are full, with students turned away each semester
- The nursing program is feeling pressure to increase enrollment due to nursing shortages. Concern for staffing/space
- Additional, or new, simulation spaces would help instruction.
- Labs are crowded, with the situation negatively impacted by the pandemic (social distancing)
- More computers are needed at Heintz to support students between classes
- Student support services and additional seating areas are needed at Heintz
- A better connection between Heintz and the Main Building are needed

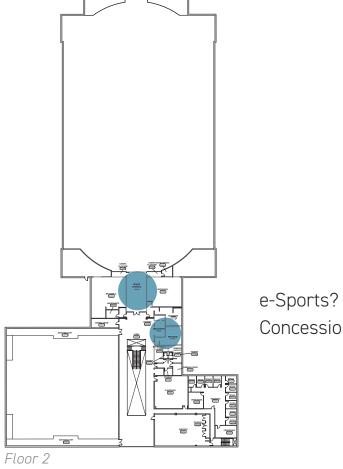



Students, Student Senate, and Student Life


- Additional quiet spaces (study, meditation, prayer)
- Meeting rooms for clubs needed. Dedicated and/or shared Audience: Students, Faculty, and/or Staff
- Difficult to find Student Life. Move to area with greater visibility (East Hall or near Atrium)
- Larger Hive Supply at both Heintz and Main Building
- Student Life spaces (meeting room, office) are needed for some clubs at Heintz
- Better wayfinding signage. Digital / Smart signage?
- Cafeteria: Busy on certain days at the lunch rush. Add mobile cart to bring food to students?
- Add athletic / workout space for non-athletes, possibly a pool / hot tub






Heintz Building

Regional Sports Center

Concessions?

Schedule

September 2021

30 Information Request Distributed

October 2021

8 Kick-off Meeting with Minnesota State

22 Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee

December 2021

3 Meeting with CFP Committee

10 Meeting with CFP Committee

16-17 Stakeholder Meetings

22 35% Completion for Review

January 2022

Stakeholder Meetings Receive Comments

28 Meeting with CFP Committee

February 2022

18 Meeting with CFP Committee

Meeting with President Campus Engagement

March 2022

15 65% Completion for Review

April 2022

Receive 65% Comments

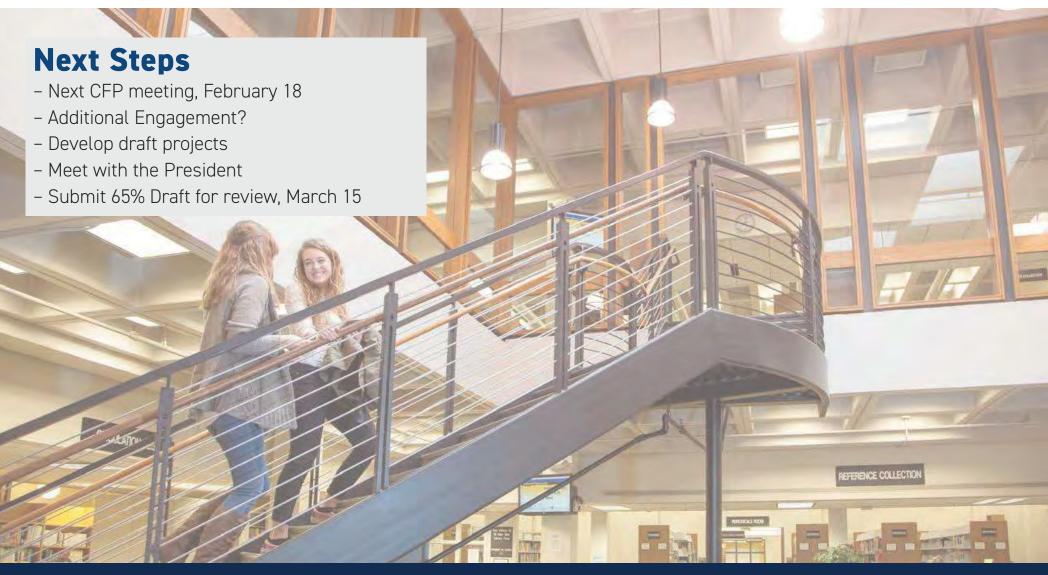
May 2022

Meeting with CFP Committee Meeting with President

June 2022

Meeting with CFP Committee

July 2022


95% Completion for Review*

September 2022

Meeting with CFP Committee
Presentation to the System Office (tentative)

October 2022

Submit 100% Document*

Committee Meeting 4

January 28, 2022

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

COMPREHENSIVE FACILITIES PLAN

Meeting Minutes

MEETING DATE: MARCH 15, 2022 LOCATION: VIRTUAL MEETING

TO: Comprehensive Facilities Plan Committee

FROM: Alicia O'Neill

RE: Committee Meeting 6

DATE SENT: March 21, 2022

PRESENT:	Name	Title / Organization	Email
	Shayn Jensson	Facilities Project Manager	Shayn.Je

Shavn.Jensson@rctc.edu Health/Phy Ed/Athletic Faculty Jean Musgjerd Jean.Musgjerd@rctc.edu Mary Dennison Mary.Dennison@rctc.edu Librarian Alicia Zeone Director of Admissions alicia.zeone@rctc.edu Michelle.Pyfferoen@rctc.edu

Michele Pyfferoen **VP Academic Affairs** Michael Sheggeby **Director of Sports Facilities** Brenda Frame Dean of Liberal Arts/Gen Ed. Academic Affairs

Steve Higgins Director of ITS and Departments IT and TSC Steve Schmall VP of Finance and Facilities Sara Phillips Planner, Architect, LHB Alicia O'Neill

Steve.Schmall@rctc.edu sara.phillips@lhbcorp.com Architectural Designer, LHB Alicia.oneill@lhbcorp.com

Michael.Sheggeby@rctc.edu

Brenda.Frame@rctc.edu

Steve.Higgins@rctc.edu

MEETING SUMMARY

Attendees discussed the following in relation to the Comprehensive Facilities Plan.

- 1. Student Survey
 - a. Identify primary location (Heintz, Main Building)
 - b. See attached presentation for survey questions
 - c. Anonymity will likely allow for more accurate responses
 - d. How long have surveys been in the past? When do responses start to taper off? Duration to be determined.
- 2. Faculty / Staff Survey
 - a. Identify primary location (Heintz, Main Building)
 - b. See attached presentation for survey questions
- 3. Building Project Concepts
 - a. Continue to improve space utilization
 - b. Support Academic Pathways
 - c. Promote connections outside the classroom
 - i. Reinforce RCTC as a place of belonging and inclusion
 - d. Variety of projects (location, scale, funding)
- 4. Building Concept Feedback from previous meeting
 - a. Concern for separating Student Life offices from gathering spaces

Duluth, MN Minneapolis, MN Cambridge, MN Superior, WI Meeting Minutes: Rochester Community and Technical College Comprehensive Facilities Plan Date of Meeting: March 15, 2022

Page: 2

- b. Concern for downsizing gathering space in College Center
 - i. Look at College Center holistically
- c. Science labs are outdated
- d. Foodservice style and/or location needs attention
- 5. Heintz Building (Capital Project)
 - a. First two projects in the CFP:
 - i. Project 1: Reimagining Education for a Diverse Workforce (Design) 2022
 - ii. Project 2: Reimagining Education for a Diverse Workforce (Construction) 2024
 - b. Can scope be expanded into the Horticulture area?
 - i. This can happen as part of the predesign verification process if the project receives funding or as part of a revised predesign if it doesn't.
- 6. Heintz Building (College Funded or Capital Projects)
 - a. Second floor student lounge
 - b. Additional dental hygiene / dental assistant labs
 - c. Dental simulation, demolish greenhouse
 - d. Student Services flex space
- 7. Main Building Approach Reconsiderations after the last meeting
 - a. Reviewed feedback from last meeting
 - b. Revisited previous CFP
 - c. Fundability
 - i. Arts and theater are difficult to fund through the legislature at this moment
 - 1. The longer this is identified in the CFP, the stronger the argument will be
 - ii. Science and technical labs are easier to fund
 - iii. Student services falls in the middle
 - iv. Student life and improvements to food service are typically revenue or campus funded projects.
 - d. Big picture view of what is needed.
- 8. Main Building Analysis
 - a. Science is 29 years old
 - b. Student services has unaddressed areas and the space does not feel cohesive
 - c. Arts / College Center
 - i. Outdated
 - d. East Hall
 - i. Feels underutilized and needs activation
 - ii. PTECH has moved into this location, which has helped.
 - e. Is there an initial priority to focus on?
 - i. Science programs continue to grow, but facilities remain outdated
 - ii. Art area and Theater is used for more than just art used for events, is outdated
 - 1. Used to be a large community experience and it has lost this attribute
 - 2. Foodservice, bookstore, theater, art gallery Area feels discombobulated and is without a main purpose "identity crisis"
 - 3. Art and College Center used to be the hub in the 70s and has since lost this spark.
 - 4. If students don't run into this area by chance, they often don't know what amenities are offered here
 - iii. Building is behind on technology capabilities for nursing and science programs
 - iv. Maintenance replacement for both Arts and Science for efficiency
 - v. Student Services Area
 - If this area is enhanced, it will act as a connection between arts and science areas Entire building will act as a web
 - 2. Pandemic has opened eyes to what services students need outside the classroom

Meeting Minutes: Rochester Community and Technical College Comprehensive Facilities Plan

Date of Meeting: March 15, 2022

3. Students are not being served the way RCTC wants to be able to serve students

Page: 3

- vi. How is information communicated to students?
 - 1. Wayfinding needs improvement
 - 2. Students often to not know of all the services RCTC has to offer
- 9. Main Building (College Funded or Capital Projects)
 - a. Floor 1
 - i. Renovate science areas
 - ii. Student Services
 - 1. Better circulation path will provide more cohesion
 - 2. Student lounge space node
 - 3. Sight lines outdoors can help orientation
 - iii. Arts Renovations
 - 1. Former bookstore becomes a new wayfinding node to feel like you are arriving at a space instead of just passing through
 - Way to showcase arts on the main circulation path
 - iv. Partial Renovation of East Hall Move marketing, reduce classrooms, lounge area, zoom, Hive supply
 - b. Floor 2
 - i. Renovate science
 - ii. Arts renovations
 - iii. Partial renovation in East Hall move mail room, reduce classrooms
 - 1. Moving mail room will free up space for art. Suggested location was East Hall.
 - 2. Idea from Attendees: move mailroom to old duplicating space near other loading dock. Some expressed concern about the Incline of drive makes access difficult, especially during the winter
 - c. Floor 3
 - i. Renovate science
 - ii. College Center renovations
 - 1. Gathering space
 - 2. Food service remains here, but upgrades needed
 - 3. Activate this area
 - iii. What are the opportunities for the event space in College Center?
 - 1. Currently not enough traffic to maintain the current cafeteria style of foodservice
 - Grab and go is more popular
 - Is this an opportunity for sponsorship?
 - Before pandemic, foodservice would make about \$20,000/year mostly concessions at sports center, but this money would be put back into maintenance of foodservice areas and equipment
 - 2. Gathering / Event space
 - Pre pandemic, it was used often by students concerts, games, fashion shows, individual clubs/groups occupied this space
 - Demolition of previous Plaza and Memorial Halls removed some of the circulation through this space
 - Enforces the importance of driving students to this space
 - Large capacity may be needed some events can have 100-200 people
 - d. Floor 4
 - i. Doubling down on student life space

10. Next steps:

- a. Launch survey
- b. Submit 65% draft March 22
- c. Receive 65% comments April
- d. CFP committee meeting May. LHB to reach out to Katrina to schedule a meeting in April.

11. Learning Commons Study

- a. Learning Center moves into Library
 - i. Second floor is the active space
 - ii. Third floor becomes quiet space

12. Student Life Diagram

- a. Student Life staff provided a plan for the former bookstore space to be reused as a game room
- b. Location in bookstore is not ideal (too small, adjacent to academic areas), but the need for a game room style space is reinforced
 - i. Could be located in the College Center to drive people here
- c. Important to limit disruptions to other programs

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Att: Committee Meeting 6 Presentation

c: LHB File No. 210539

\LHBMSPW12\MSPProjects\21Proj\210539\200 Communication\Meetings\20220315 Committee Mtg 6\210539 20220315 MM CFP Committee Meeting 6.docx

Committee Meeting 6
March 15, 2022

Agenda

- Survey Questions 10 Minutes

- Revisit Building Projects 40 Minutes

- Next Steps 5 Minutes

55 Minutes

Student Survey

- Identify your primary location (Heintz Center, Main Building)
- Please answer the following questions in relationship to your primary location:
 - It is easy to find my way around the building
 - There is adequate student study and lounge space
 - The classrooms and labs that I have been in support learning
 - I have good access to student services (advising, financial aid, technology services, academic support, etc)
 - Based on the classrooms, labs, and other built spaces,
 I would recommend attending RCTC to a friend
 - I enjoy spending time outside at RCTC
 - I feel safe walking outside in the evening at RCTC
 - If available, I would use a bike or scooter sharing program to travel between areas of RCTC's campus
- Other Feedback?

Faculty/Staff Survey

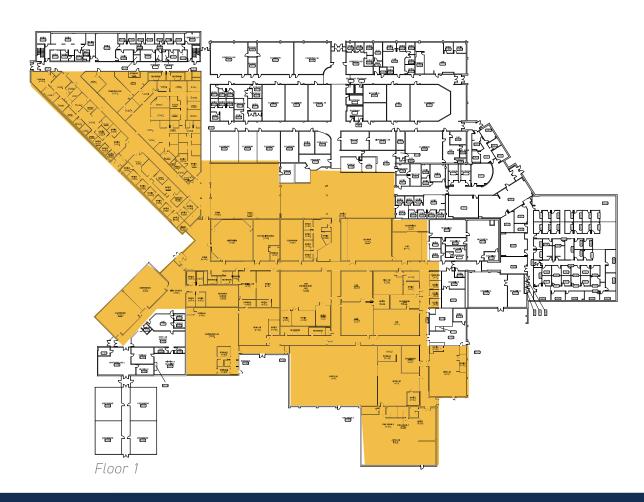
- Identify your primary location (Heintz Center, Main Building)
- Please answer the following questions in relationship to your primary location:
 - The spaces within the building align with my needs as a faculty or staff member at RCTC
 - There is adequate space to meet with other faculty and/or staff
 - There is adequate space to meet with students
 - As a faculty member, the instructional spaces available to me align with my preferred teaching methodologies
 - I believe the grounds of RCTC reflect a quality institution
 - I feel safe walking outside in the evening at RCTC
- Other Feedback?

Building Project Concepts

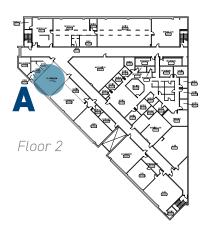
- Continue to improve space utilization (classrooms, overall)
- Support Academic Pathways
- Promote connections outside the classroom
- Variety of projects (location, scale, funding)

Building Concept Feedback

- Concern for separating Student Life offices from gathering space
- Concern for downsizing gathering space in College Center
- Look at College Center holistically
- Science upgrades needed
- What is the right location for food service?


Heintz Building (Capital Project)

Project 1:

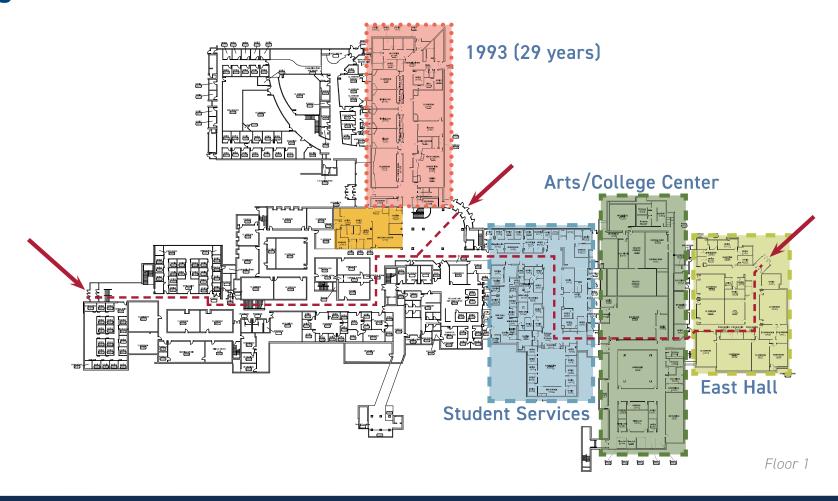

Reimagining Education for a Diverse Workforce (Design) - 2022

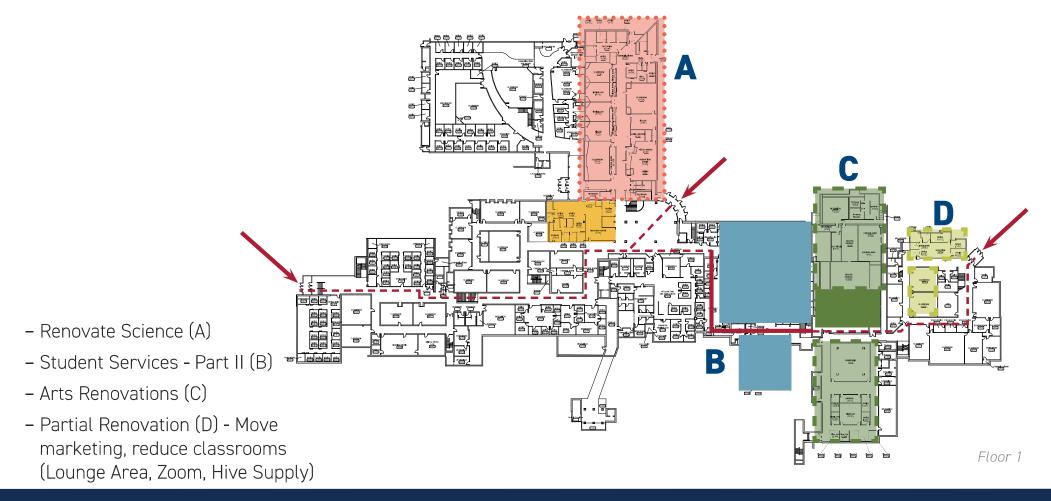
Project 2:

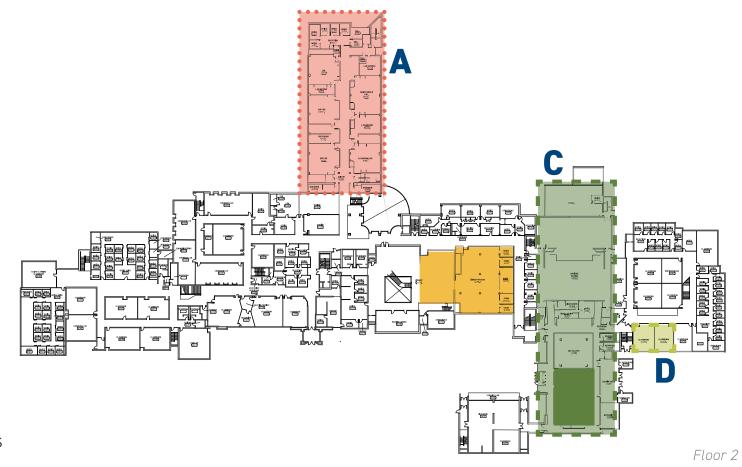

Reimagining Education for a Diverse Workforce (Construction) - 2024

Heintz Building (College Funded or Capital Projects)

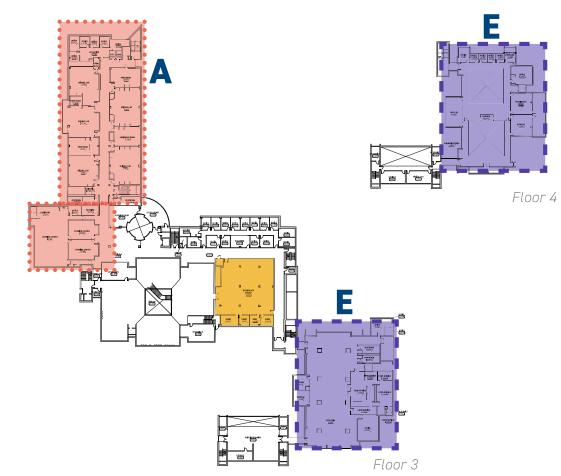
- Second Floor Student Lounge (A)
- Additional Dental Hygiene /Dental Assistant labs (B)
- Dental Simulation*, Demo Greenhouse (C)
- Student Services Flex Space (D)


- Reviewed Feedback from Last Meeting
- Revisited the prior CFP
- Big Picture What makes sense?
- Fundability





Main Building (College Funded or Capital Projects)



Main Building (College Funded or Capital Projects)

- Renovate Science (A)
- Arts Renovations (C)
- Partial Renovation (D) Move mail room, reduce classrooms

Main Building (College Funded or Capital Projects)

- Renovate Science (A)
- College Center Renovations (E)

Schedule

September 2021

30 Information Request Distributed

October 2021

8 Kick-off Meeting with Minnesota State

22 Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee

December 2021

3 Meeting with CFP Committee

10 Meeting with CFP Committee

16-17 Stakeholder Meetings

22 35% Completion for Review

January 2022

Stakeholder Meetings

Receive Comments

28 Meeting with CFP Committee

February 2022

18 Meeting with CFP Committee

March 2022

15 Meeting with CFP Committee

22 65% Completion for Review

April 2022

Receive 65% Comments

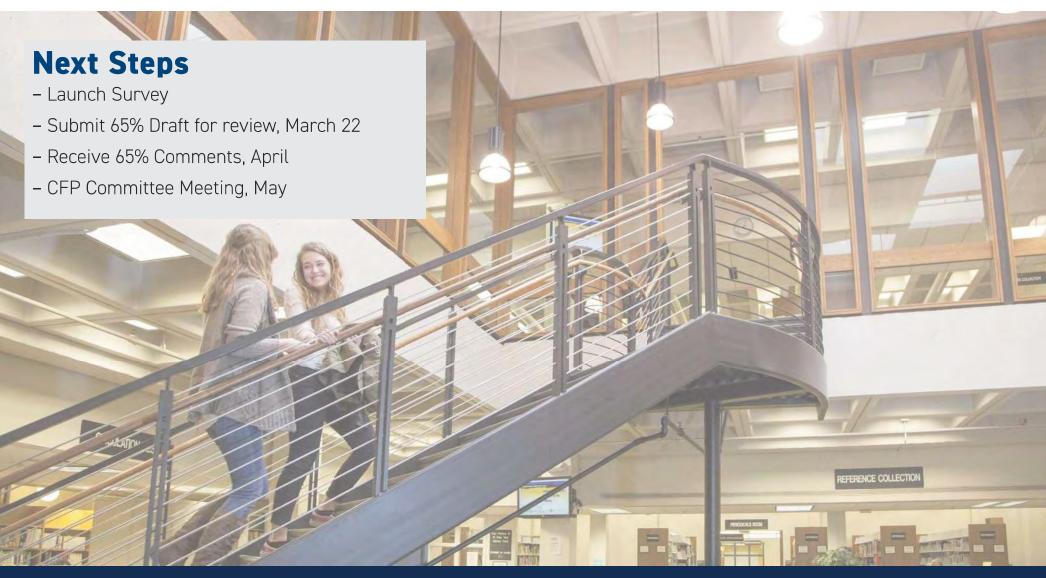
May 2022

Meeting with CFP Committee Meeting with President

June 2022

Meeting with CFP Committee

July 2022


95% Completion for Review*

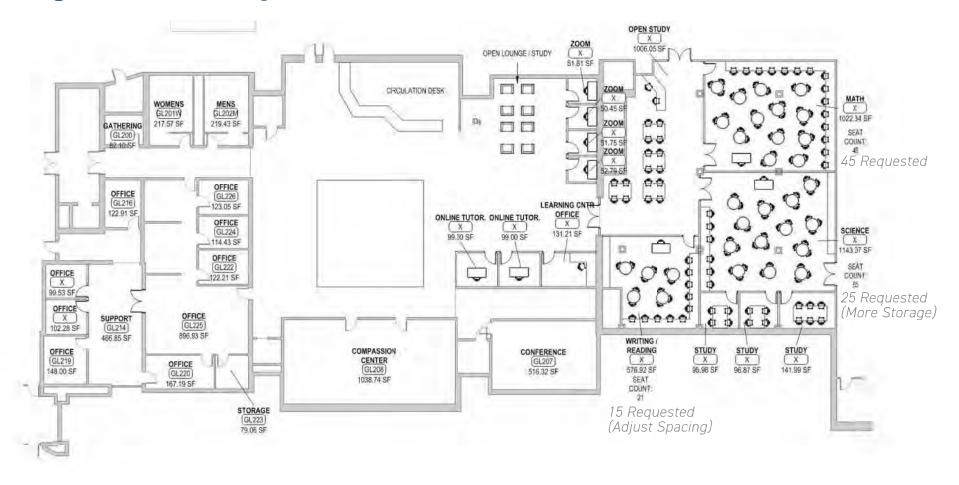
September 2022

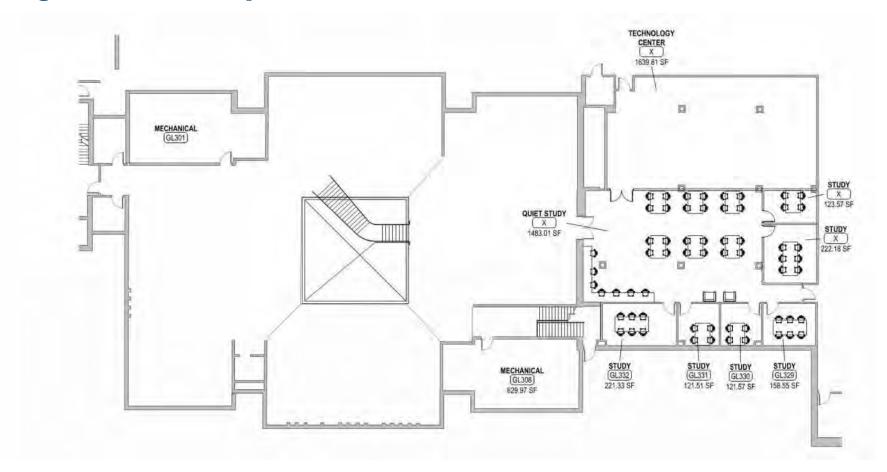
Meeting with CFP Committee
Presentation to the System Office (tentative)

October 2022

Submit 100% Document*

Committee Meeting 4
February 18, 2022




Student Life: Game Room (former Bookstore)

Learning Commons: Update

Learning Commons: Update

MEETING MINUTES

Comprehensive Facilities Plan
Rochester Community and Technical College

Friday, August 26, 2002, CF206/208

To: Steve Schmall Sara Phillips

Re: Comprehensive Facilities Plan – Meeting 7

Present:	NAME	ORGANIZATION / ROLE	EMAIL
	Steve Schmall	RCTC, VP of Finance and Facilities	Steve.Schmall@rctc.edu
	Shayne Jensson	RCTC, Facilities Project Manager	Shayn.Jensson@rctc.edu
	Michele Pyfferoen	RCTC, VP of Academic Affairs	Michelle.Pyfferoen@rctc.edu
	Jean Musgjerd	RCTC, Health, Phy Ed, Athletics	Jean.Musgjerd@rctc.edu
	Alicia Zeone	RCTC, Director of Admissions	Alicia.Zeone@rctc.edu
	Michael Sheggeby	RCTC, Director of Sports Facilities	Michael.Sheggeby@rctc.edu
	Sara Phillips	LHB, Architect	Sara.Phillips@lhbcorp.com

Meeting Summary

- 1. A general overview of the 65% submission was presented with the following comments heard:
 - a. In addition to the strategies for building development shared during the meeting, other ideas shared included:
 - Expand on PTech relationship. Promote partnerships and engagement with K-12 feeder schools to expand healthcare and tech based careers
 - ii. Support collaboration with adult basic education (ABE) and Workforce Center
 - iii. The recently completed intake survey indicated interest in expanded mental health services and financial aid
 - b. It was noted that no bonding bill in 2022 has shifted the direction of the top priority project.
 - c. The Fall enrollment data may be a sign of future trends. There is more activity on campus, but students also tended to enroll later (near the start of the semester)
- The comments from the System Office (Michelle Gerner) were reviewed. Key questions involved the Master Academic Plan and the future mix of in-person/online/hybrid classes.
- 3. The campus has begun work on a predesign for 2024 funding. It will be a small project (under \$15 mil) and have a smaller scope than the 2022 predesign.
- Other projects should be considered for inclusion in the Comprehensive Facilities Plan including:
 - a. Simulation: Technology to teach skills as finding clinic time (nursing professions, for example) is challenging. Simulation also allows for greater flexibility in scheduling.
 - b. Solar repair could be a growth area that could be tied to the FAST program.
 - c. Dental expansion and electrical vehicle servicing were also mentioned.
- 5. It was noted that the goal is to complete the CFP before the end of the calendar year. It was noted that a meeting with RCTC Leadership is scheduled for September 23 to review the potential projects. Any suggested changes will be reviewed with the committee at the October meeting.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Attachments: Committee Meeting 7 Presentation

c: LHB Project No. 210539

m:\21proj\210539\200 communication\meetings\20220826 committee mtg 7\210539 20220826 mm cfp committee meeting 7.docx

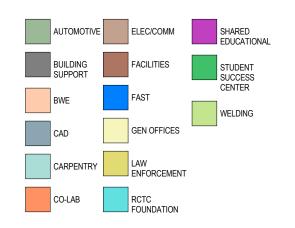
Agenda

- Review Submission
- Feedback from MN State
- 2024 Predesign: Update
- Discussion on Priorities
- Next Steps

Site Development - Short-Term

Site Development - Mid-Term

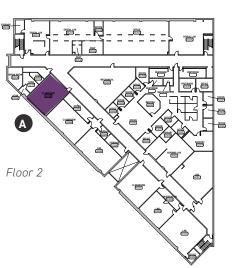
Site Development - Long-Term



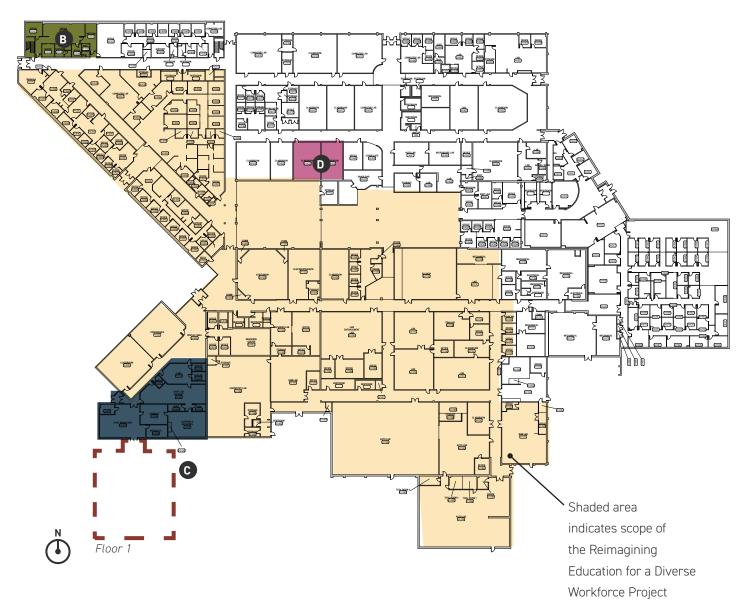
Strategies for Building Development

- Support Academic Pathways
- Promote Connections Outside the Classroom
- Improve Space Utilization
- Expand Access to Academic Support and Student Services
- Continue to Address Wayfinding Challenges

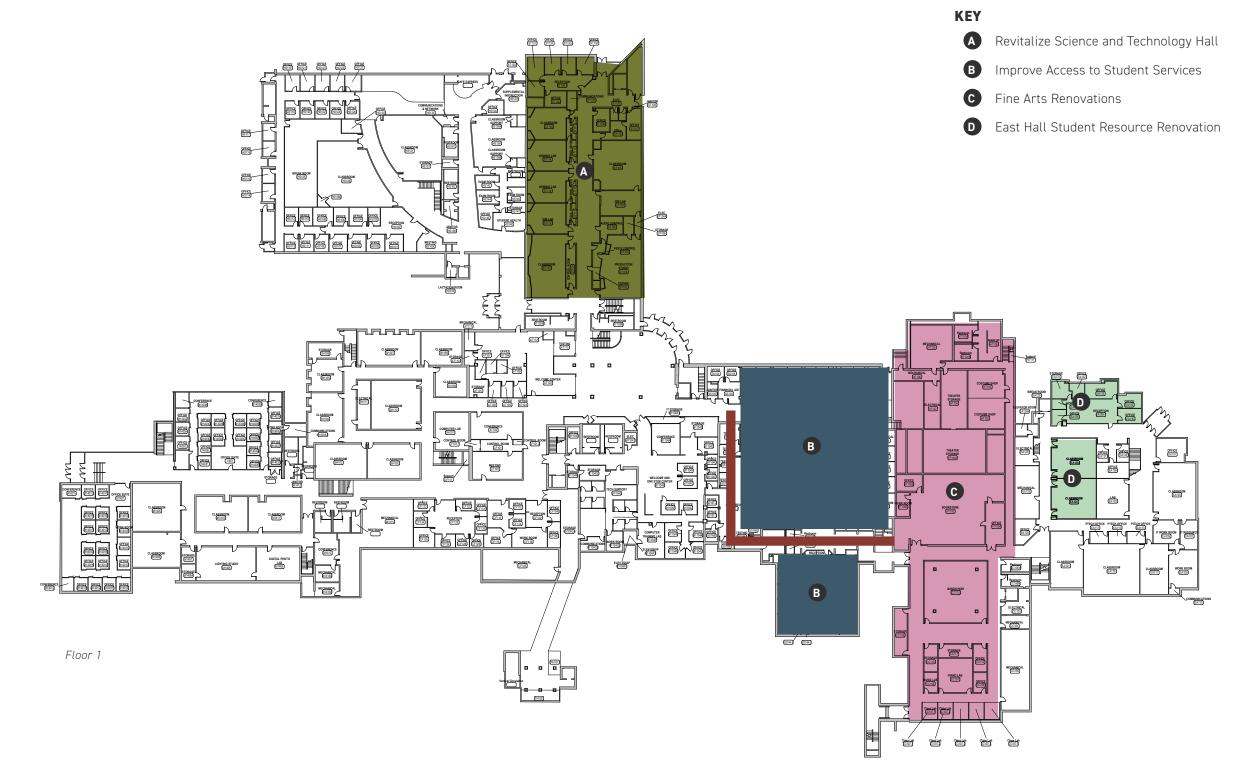
Heintz Center: Short-Term



2022: NO BONDING BILL


Heintz Center: Additional Projects

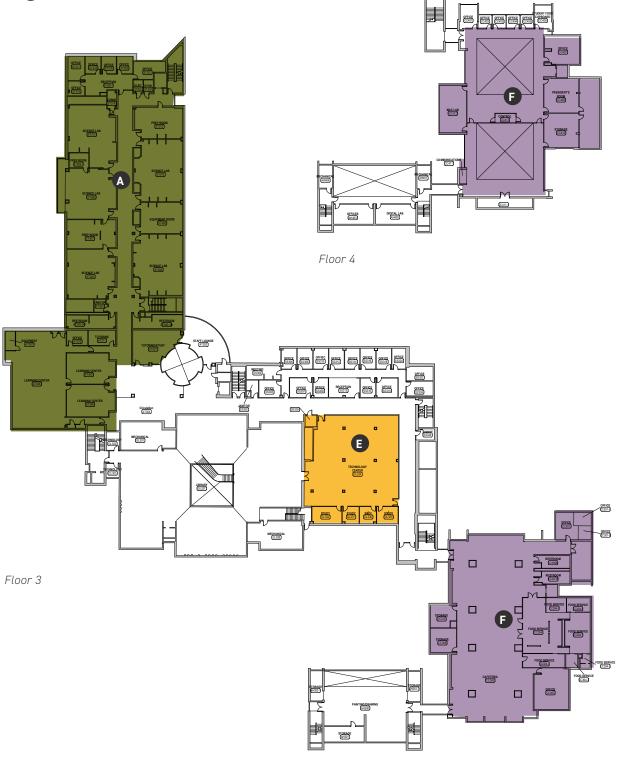
2022: NO BONDING BILL



- KEY
 - A Student Collaboration Area
 - B Dental Instructional Lab Expansion
 - Horticulture Renovation and Greenhouse

 Demolition
- Student Services Flex Space

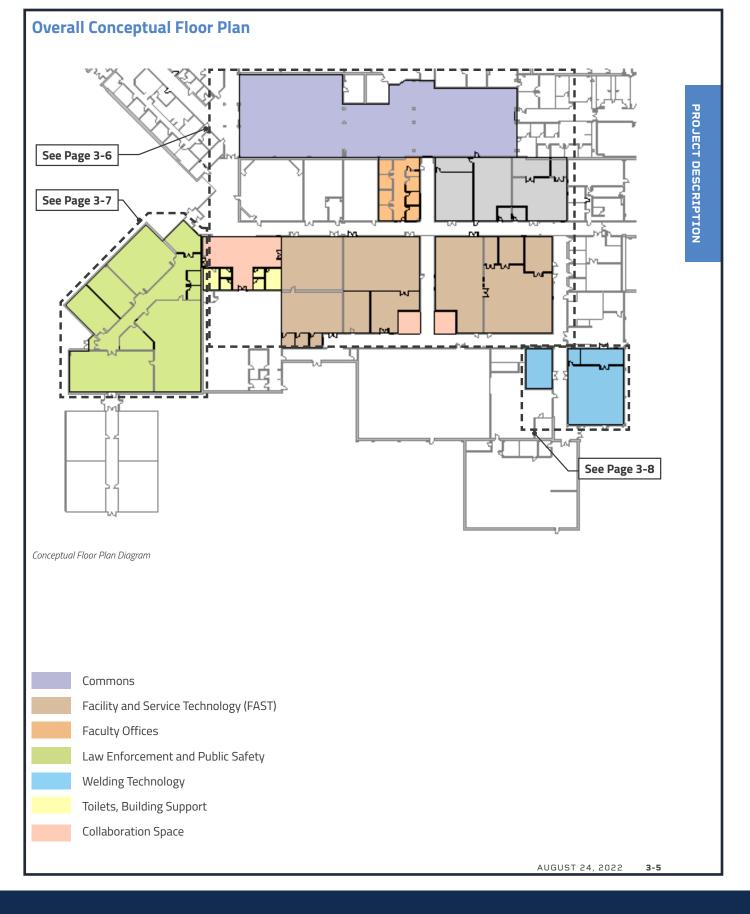
Main Building: Mid- to Long-Term


Main Building: Mid- to Long-Term

Main Building: Mid- to Long-Term

KEY

- A Renovate Science and Technology Hall
- **E** Learning Commons
- F College Center Renovations



Feedback from Minnesota State

- Proposed projects are generally modest in scale; easier to fund
- Good to see all strategies for increasing sustainability
- Good to see more outdoor amenities and improved safety across a large campus
- Is a new Master Academic Plan in the works?
- What does RCTC anticipate as its mix of in-person/ online/hybrid classes, going forward?
 - Some campuses planning on as much as 60% online; a significant impact on facilities needs

NOTE: Stakeholder Meetings Pending

Partial Enlarged Conceptual Floor Plan

- F SIM Room/ Driving Simulator
- Refrigeration Lab
- Officeration Lab

G Classroom

- P Welding
- Storage

Law Enforcement Faculty Office

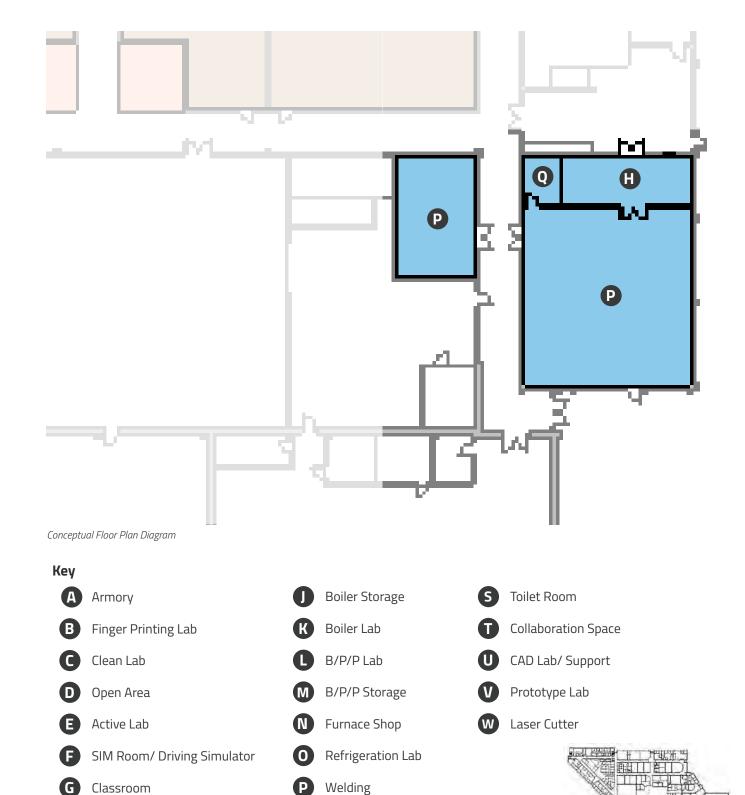
Q Office
R Commons

Partial Enlarged Conceptual Floor Plan

- Finger Printing Lab

Active Lab

- Clean Lab
- Open Area
- SIM Room/ Driving Simulator
- Classroom
- Storage
- Law Enforcement Faculty Office


- Boiler Lab
- B/P/P Lab
- M B/P/P Storage
- N Furnace Shop
- Refrigeration Lab

- R Update Finishes in Commons

- U CAD Lab/ Support
- V Prototype Lab
- W Laser Cutter

R Update Finishes in Commons

Law Enforcement Faculty Office

Priority for Other Projects?

- Revitalize Science and Technology Hall
- Improve Access to Student Services
- Fine Arts Renovations
- East Hall Student Resource Renovation
- Learning Commons
- College Center Renovations

Schedule

September 2021

30 Information Request Distributed

October 2021

8 Kick-off Meeting with Minnesota State

Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee

December 2021

3 Meeting with CFP Committee

10 Meeting with CFP Committee

16-17 Stakeholder Meetings

22 35% Completion for Review

January 2022

Stakeholder Meetings

Receive Comments

Meeting with CFP Committee

February 2022

18 Meeting with CFP Committee

March 2022

15 Meeting with CFP Committee

23 65% Completion for Campus Review

June 2022

2 65% Submittal to Minnesota State Receive 65% Comments

August 2022

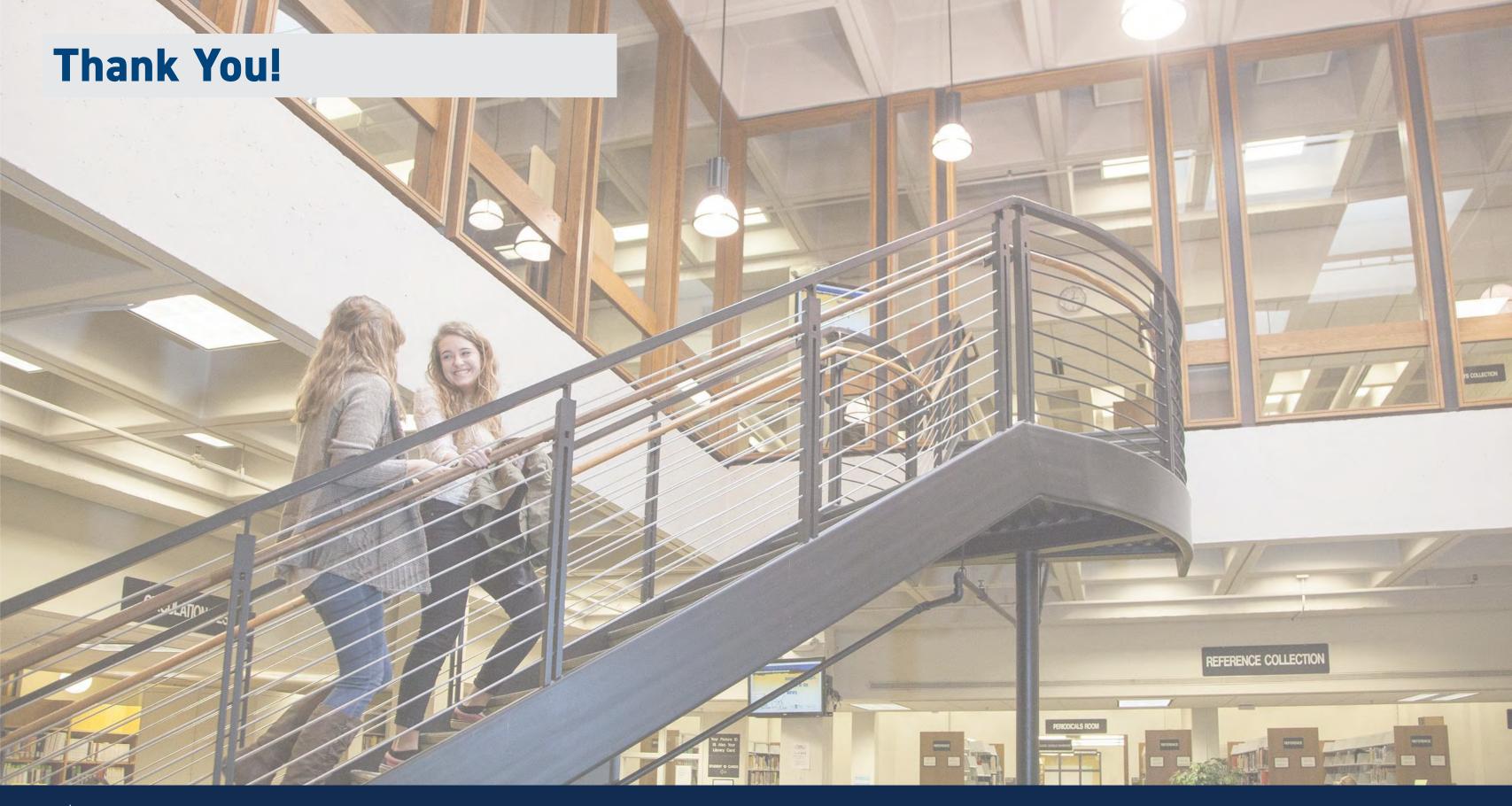
26 Meeting with CFP Committee

September 2022

16 Meeting with CFP Committee

23 Meeting with RCTC Leadership

October 2022


7 Meeting with CFP Committee 95% Submission

November 2022

Presentation to the System Office (tentative)*

December 2022

Submit 100% Document*

MEETING MINUTES

Comprehensive Facilities Plan
Rochester Community and Technical College

Friday, September 16, 2022, Virtual

To: Michele Pyfferoen and Shayn Jensson

From: Laura Heck

Re: Comprehensive Facilities Plan – Meeting 8

Present:	NAME	ORGANIZATION / ROLE	EMAIL
	Steve Schmall	RCTC, VP of Finance and Facilities	Steve.Schmall@rctc.edu
	Shayn Jensson	RCTC, Facilities Project Manager	Shayn.Jensson@rctc.edu
	Michele Pyfferoen	RCTC, VP of Academic Affairs	Michelle.Pyfferoen@rctc.edu
	Gina Korf	RCTC, Biology Faculty	Gina.Korf@rctc.edu
	Brenda Frame	RCTC, Dean of Liberal Arts / Gen	Brenda.Frame@rctc.edu
		Ed Academic Affairs	
	Mary Dennison	RCTC, Librarian	Mary.Dennison@rctc.edu
	Michael Sheggeby	RCTC, Director of Sports Facilities	Michael.Sheggeby@rctc.edu
	Alicia Zeone	RCTC, Director of Admissions	Alicia.Zeone@rctc.edu
	Sara Phillips	LHB, Architect	Sara.Phillips@lhbcorp.com
	Laura Heck	LHB, Project Coordinator	Laura.Heck@lhbcorp.com

Meeting Summary

- 1. Strategies for Building Development will be modified based on feedback at the last meeting to include:
 - a. Responding to lessons from the pandemic. Allow time to evaluate benefits of in person vs. virtual instruction and alter the physical environment in response. Determine long-term needs for hybrid learning environments.
 - b. Expand on simulated learning environments across multiple programs, including healthcare and other CTE programs.
- 2. The proposed Campus Funded projects were reviewed.
 - a. College Center Renovations (Main Campus). Could be a revenue funded project. Note in CFP as either.
 - b. Dental Instruction Lab Expansion (Heintz Center): Could be wrapped into a GO Bond project. Based on enrollment and waiting list, what makes sense?
 - i. Leverage current equipment, campus dollars and donor funded.
- 3. HEAPR projects were reviewed.
 - a. Current proposed HEAPR projects that have not yet received funding are currently listed.
 - b. Skylight Replacement: originally in the 2020 predesign scope. Moved to potential HEAPR request.
 - c. 37 other projects are on a larger HEAPR list that the campus is tracking. Shayn to send this list to LHB to include in the Appendix.
- 4. Capital Bonding Projects: Need to be ranked for the 95% submission.
 - a. Project 1: Heintz Center: Predesign is underway.
 - In relation to the current predesign, the automotive space recently received equipment updates for the electric vehicle bay. Include automotive area in predesign for remaining needs. The campus will forward data to support.

MEETING MINUTES: RCTC CFP
DATE OF MEETING: SEPTEMBER 16, 2022

b. Proposed Project 2: Revitalize Science and Technology Hall

- i. Update equipment and technology, provide collaborative learning focused on hands-on instruction, and include a simulation space for Health & Healthcare support.
- ii. Language will be added to clarify that the need for a simulation space should be evaluated in the predesign stage based on the community effort for a shared facility

c. Proposed 3: Improve access to Student Services

i. Reconfigure first floor of Student Services, address underutilized space, improve organization of services and address wayfinding.

d. Proposed 4: Fine Arts Renovation

- Highlight creative fields and connections to science, technology, engineering and math.
- ii. Would address both levels of Fine Arts.
- iii. It was noted that funding for Arts is challenging in today's political climate.

e. Proposed 5: Simulation Center

- i. Simulation center that crosses multiple academic pathways; workforce, welding, automotive, dental assisting, early childhood education, etc.
- ii. Proposed location in the Heintz Center.
- iii. Feedback:
 - 1) Accessibility: proposed location offers accessibility for students and workforce
 - 2) Need to be mindful of the current proposal for a regional simulation center for health professions. Current proposal seems to be more industry driven.
 - 3) Location: May be better located on main campus with a healthcare focus. It was clarified that this would project would focus on programs other than healthcare.
 - 4) Simulation could be an opportunity to start new programs while identifying future space needs.
 - 5) Simulation Rooms: 3,000 SF. A predesign would determine open space vs. multiple spaces. Online vs. in person will be determined based on needs and current technology at the time of the project.
 - 6) What is the extent and scope of use of simulations in the technical programs?

5. Priority Feedback

- a. Timing: Priority 1: 2022 Predesign; 2024 Funding; Facility opens in 2026. GO Bond projects tend to be spaced over 6 years at a minimum.
- b. Concern over Priority 2 Science & Tech Hall not being soon enough to address immediate and future needs. Maintenance and campus funded updates are possible. HEAPR projects are also possible.
 - One classroom retrofit (campus dollars) can be accomplished in roughly 1 year. A project such as overall hood replacements takes more time.
 - ii. It was questioned if there is another strategy for incremental updates. It was noted that the campus could fund improvements in select classrooms / labs.
 - iii. Room enlargements are needed for updated lab tables. Scope of the project is more than a whole room, and less than a whole floor.
- c. Heintz Center as Priority 1 is based on a commitment to being a community and technical college.
- d. Attendees did not request any changes to the order of the projects as presented.

DATE OF MEETING: SEPTEMBER 16, 2022

Next Steps

- LHB is meeting with RCTC leadership on Friday, September 23.
- One more committee meeting in October to report back on any concerns or changes from leadership. Any concerns from the committee can be addressed at that time as well.
- Presentation to the System office tentative for November. Katrina is working on coordinating this. It may occur on campus.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Attachments: Committee Meeting 8 Presentation

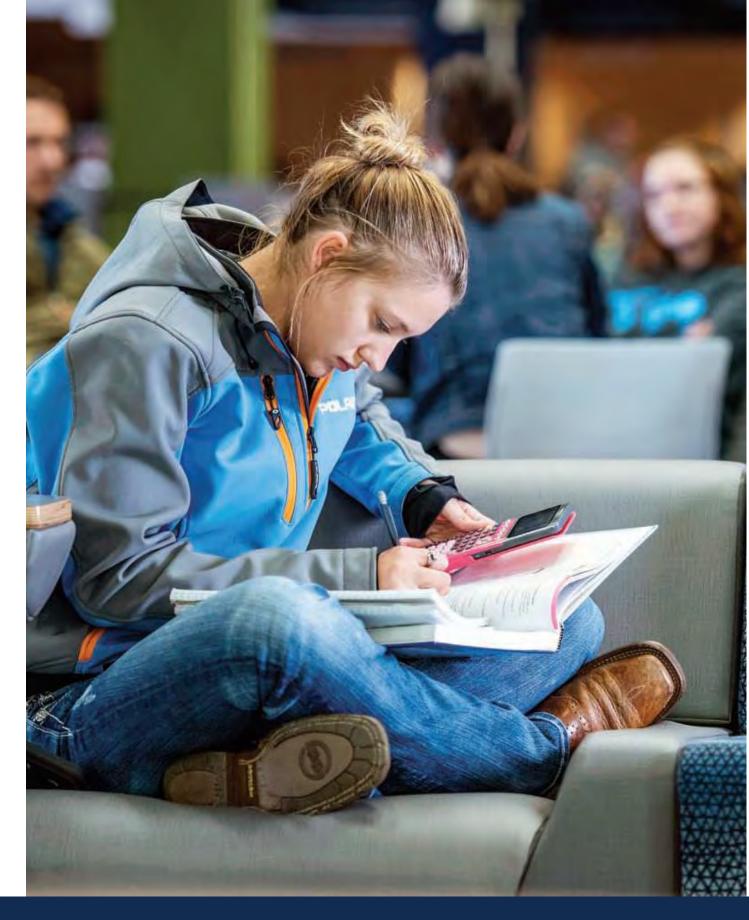
c: LHB Project No. 210539

m:\21proj\210539\200 communication\meetings\20220916 committee mtg 8\210539 mm cfp committee meeting 8.docx

Agenda

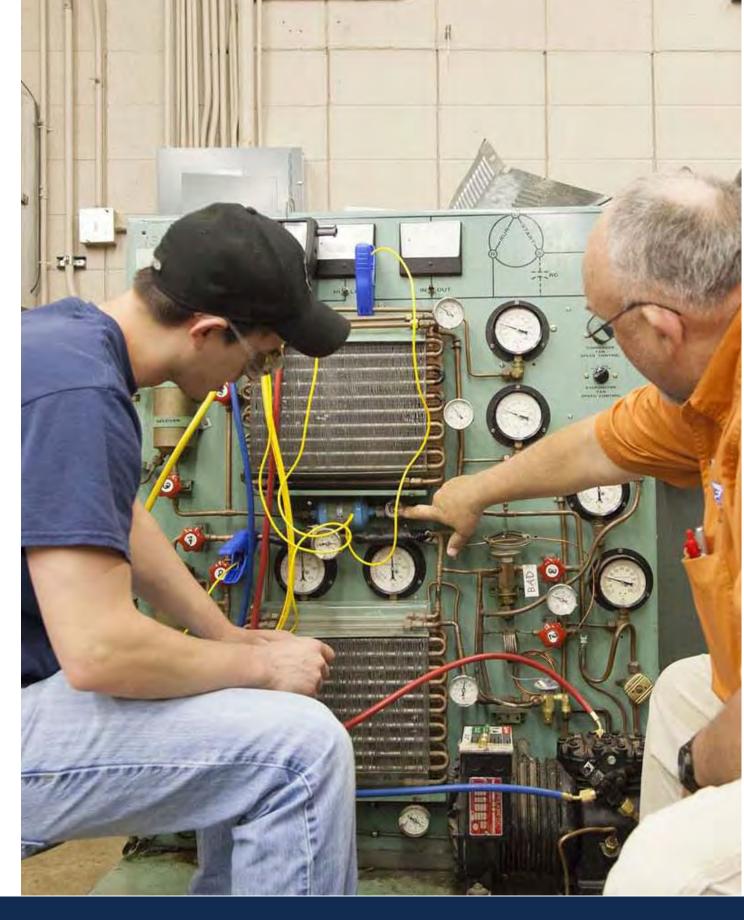
- Revisions from Last Meeting
- Information Needed
- Next Steps

Strategies for Building Development

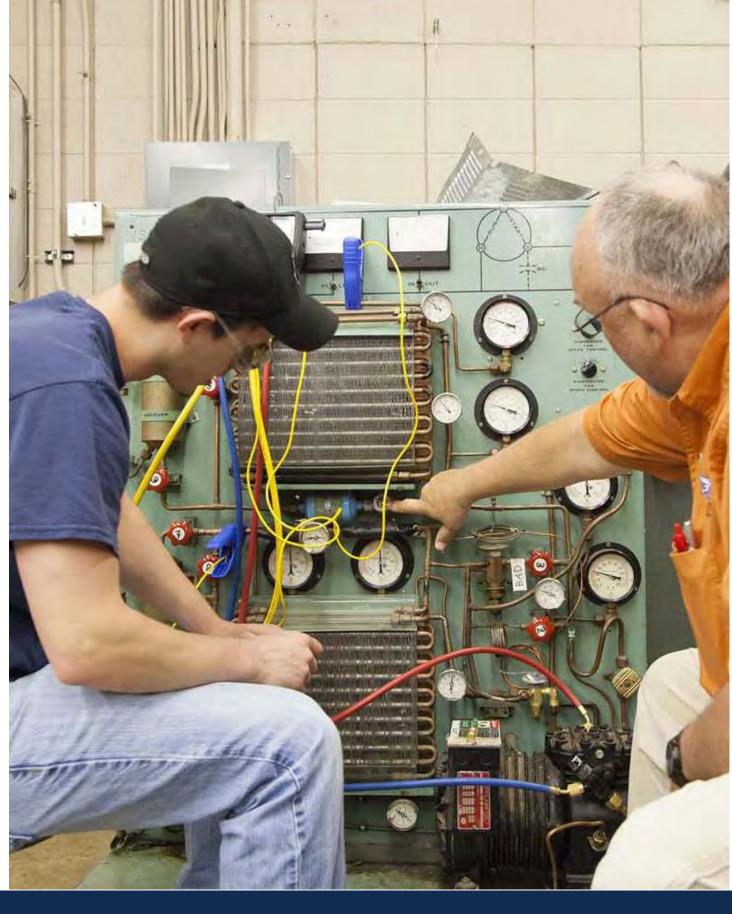

- Support Academic Pathways
- Promote Connections Outside the Classroom
- Improve Space Utilization
- Expand Access to Academic Support and Student Services
- Continue to Address Wayfinding Challenges
- Provide Areas to Foster Relationships with Academic Partners
 - Support relationships with RPS, Workforce Center, ABE, etc
 - Result: Exposure to higher education and support future enrollment in RCTC programs
- Respond to Lessons from the Pandemic
 - Evaluate benefits to students for virtual versus in-person classes, responding appropriately with facility improvements
 - Determine long-term need for additional support spaces
 (mental health services) and hybrid learning environments

Proposed Campus Funded Projects

Smaller projects that may not align with funding priorities of the Legislature or that can't wait for the GO Bonding process


- Learning Commons (Main Campus)
- College Center Renovations (Main Campus)
- Student Services Flex Space (Heintz Center)
- Student Collaboration Area (Heintz Center)
- East Hall Student Resource Renovation (Main Campus)
- Interior Wayfinding and Signage Improvements (Main Campus)
- Dental Instruction Lab Expansion (Heintz Center)

Proposed HEAPR Projects


Asset Preservation projects such as reroofing, HVAC improvements, code upgrades, fire protection, etc. A predesign is required to better define the project scope

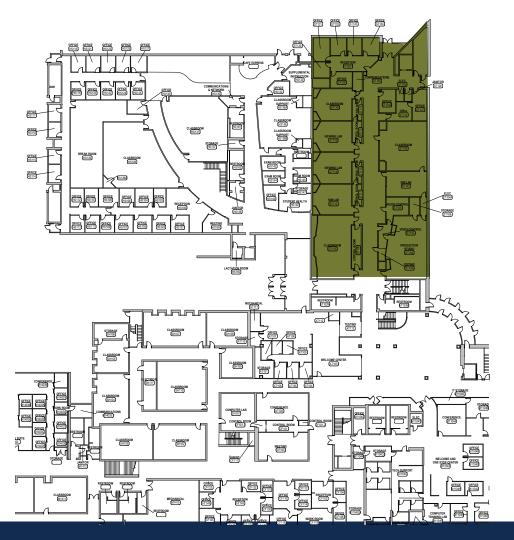
- Coffman Hall Roof Replacement (Main Campus)
- HVAC Improvements, Phase III (Heintz Center)
- Chiller Plant Upgrades and Extension (Main Campus)
- Skylight Replacement (Heintz Center)

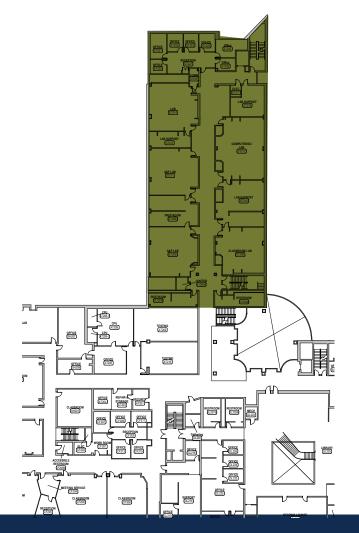
Proposed Capital Bonding Projects

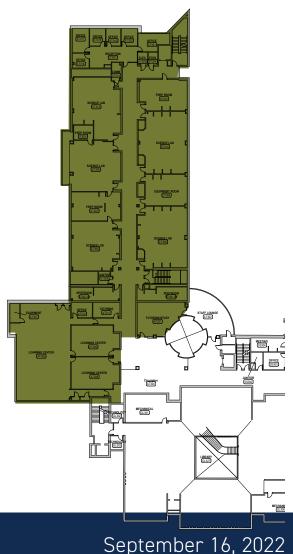
Larger renovations, additions, or new construction focused on academic or student support spaces. Projects need to be ranked in the 95% submission

Heintz Center: Priority 1 (predesign underway)

Key

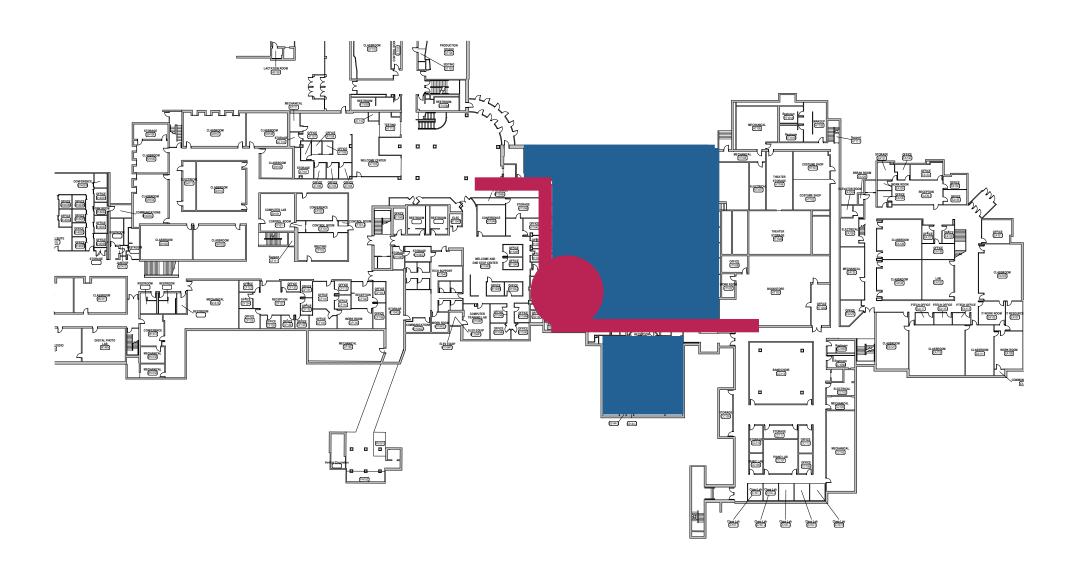

- Commons
- Facility and Service Technology (FAST)
- Faculty Offices
- Law Enforcement and Public Safety
- Welding Technology
- Toilets, Building Support
- Collaboration Space




Revitalize Science and Technology Hall: Priority 2

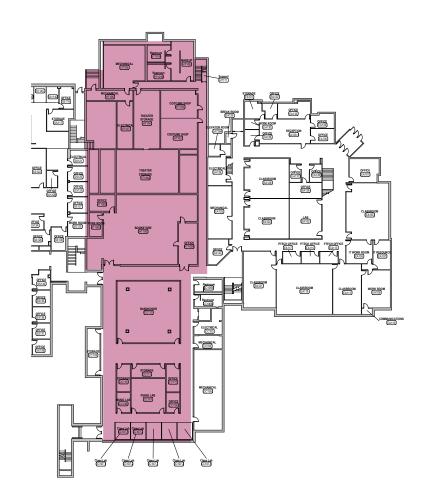
Renovate the existing building to address:

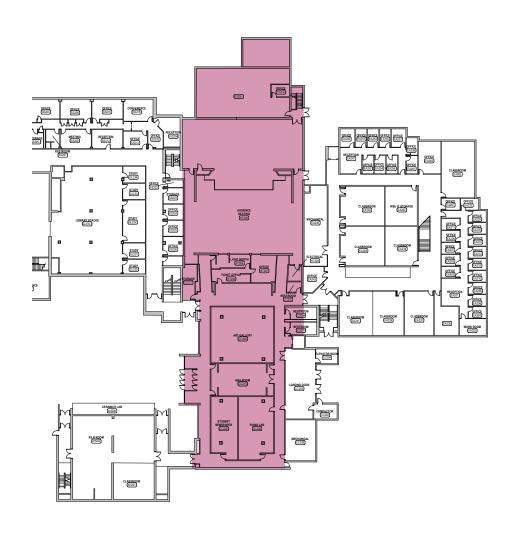
- Updated equipment and technology for STEM programs
- Provide collaborative learning focused on hands-on instruction
- Simulation space for Health and Healthcare Support Services



Improve Access to Student Services: Priority 3

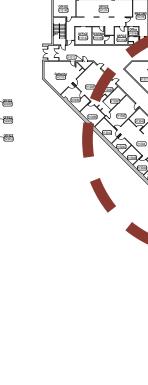
Reconfigure the first floor of Student Services


- Address underutilized space
- Improve organization of services (staff efficiencies, easy of use by students)
- Address wayfinding issues



Fine Arts Renovation: Priority 4

Modernize Fine Arts Spaces to Support STEAM instruction


- Highlight creative fields and connections to science, technology, engineering and math fields
- Renovate the theater to support use for performances, instruction, and special events

Simulation Center: Priority 5

Create a Center for Simulation that crosses multiple Academic Pathways

- Effective use of State resources by sharing the facility
- Could allow for program expansion (first step)
- Place in underutilized space

Priority Feedback?

Information Needed

- Summary of timing of next Academic Master Plan
- Academic Information
 - Curriculum and instructional goals
 - Proposed academic program development and closures
 - Online learning enrollment/potential growth
 - Individual department plans
- Financial
 - Financial sustainability initiatives and efforts
 - Capital Campaign initiatives

Schedule

September 2021

30 Information Request Distributed

October 2021

8 Kick-off Meeting with Minnesota State

Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee

December 2021

3 Meeting with CFP Committee

10 Meeting with CFP Committee

16-17 Stakeholder Meetings

22 35% Completion for Review

January 2022

Stakeholder Meetings

Receive Comments

Meeting with CFP Committee

February 2022

18 Meeting with CFP Committee

March 2022

15 Meeting with CFP Committee

23 65% Completion for Campus Review

June 2022

2 65% Submittal to Minnesota State Receive 65% Comments

August 2022

26 Meeting with CFP Committee

September 2022

16 Meeting with CFP Committee

23 Meeting with RCTC Leadership

October 2022


7 Meeting with CFP Committee 95% Submission

November 2022

Presentation to the System Office (tentative)*

December 2022

Submit 100% Document*

MEETING MINUTES

Comprehensive Facilities Plan Rochester Community and Technical College

Friday, October 7, 2022, Virtual

To: Michele Pyfferoen and Shayn Jensson

From: Laura Heck

Re: Comprehensive Facilities Plan – Meeting 9

Present:	NAME	ORGANIZATION / ROLE	EMAIL
	Shayn Jensson Michele Pyfferoen	RCTC, Facilities Project Manager RCTC, VP of Academic Affairs	Shayn.Jensson@rctc.edu Michelle.Pyfferoen@rctc.edu
	Brenda Frame	RCTC, Dean of Liberal Arts / Gen	Brenda.Frame@rctc.edu
	Alicia Zeone	Ed Academic Affairs RCTC, Director of Admissions	Alicia.Zeone@rctc.edu
	Sara Phillips	LHB, Architect	Sara.Phillips@lhbcorp.com
	Laura Heck	LHB, Project Coordinator	Laura.Heck@lhbcorp.com

Meeting Summary

- 1. The group discussed project priorities and information related to the current predesign.
- 2. It was noted that S. Schmall will be unavailable for an unknown length of time. S. Jensson and K. Maass should remain copied on all emails.
- 3. Leadership Meeting Recap:
 - a. Reflect additional campus funded projects:
 - i. ST305, ST309 and support areas
 - ii. Former Student Services area
 - iii. Additional Testing Rooms (disability services)
 - b. Expand partnership areas (i.e. PTech)
- 4. Heintz Center:
 - a. Short Term:
 - Current predesign reinforced as Priority 1.
 - 1) Some shifting occurred and automotive was added.
 - ii. Other college funded and HEAPR projects lists.
 - iii. Need to add testing spaces (college funded)
 - b. Long Term:
 - i. Heintz Center: CTE Simulation Center could be changed to "STEM".

DATE OF MEETING: OCTOBER 7, 2022

5. Main

- a. Short Term
 - College funded Student Services renovation takes care of current need.
 - Need to add testing spaces (college funded)
- Mid Term Projects:
 - East Hall Renovation: Could expand PTech or programs that support improved enrollment. College or Other funding. Could become a larger project in the future.
- Long Term Projects:
 - Main Campus: Fine Arts Renovation focusing on the lower level.
- Next Steps:
 - a. Information Needed: Financial info could wait until the 100% document if needed.
 - 95% Submission: Target for October
 - Presentation to the System Office: Target for November.
 - Goal is to submit the 100% document by the end of the year.

This constitutes my understanding of items discussed and decisions reached. If there are any omissions or discrepancies, please notify the author in writing.

Attachments: Committee Meeting 9 Presentation

c: LHB Project No. 210539

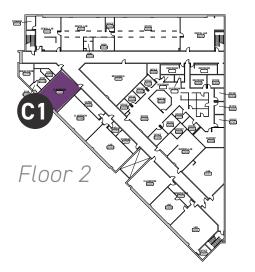
m:\21proj\210539\200 communication\meetings\20221007 committee mtg 9\210539 mm cfp committee meeting 9.docx

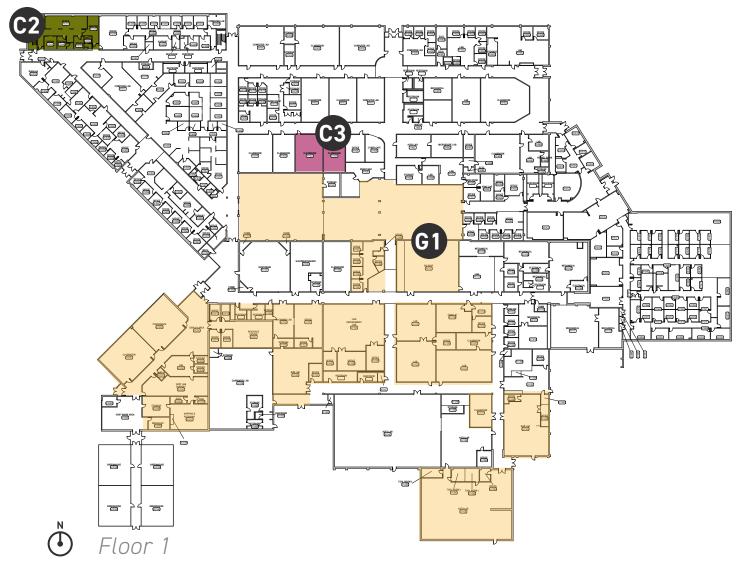
Agenda

- Leadership Recap
- Short Term Projects
- Mid Term Projects
- Long Term Projects
- Next Steps

Recap of Leadership Feedback

- Reflect additional Campus Funded projects
 - ST 305, ST 309, and support areas
 - Former Student Services Area
 - Additional Testing Rooms (Disability Services)
- Vagueness of future projects is helpful
- Expand partnership areas (PTech, for example)




Heintz Center Short Term Projects

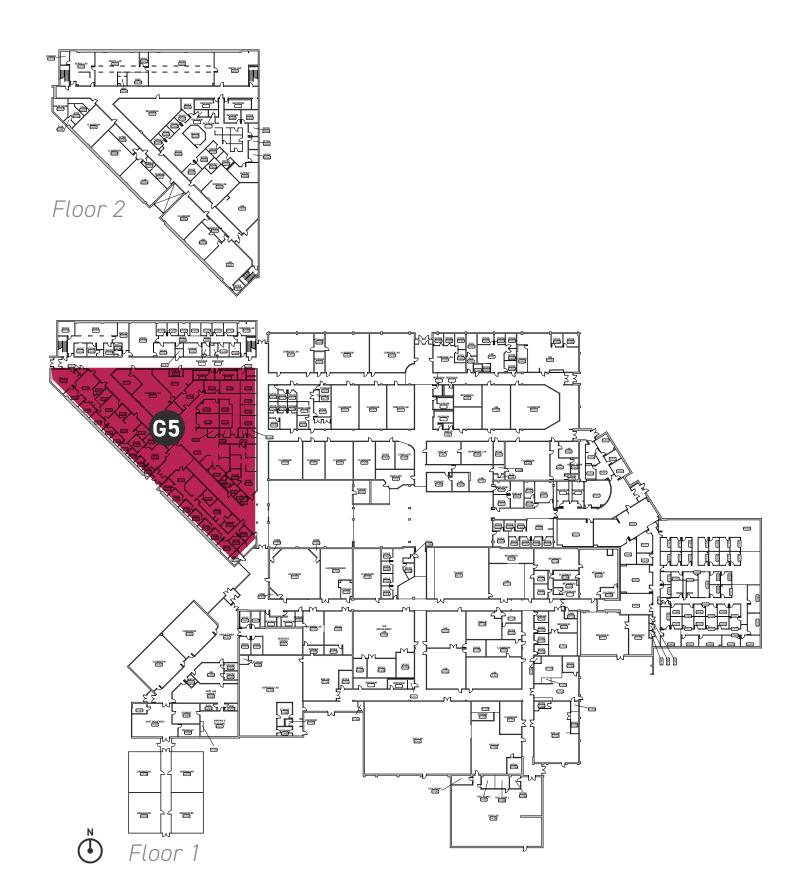
- Renovation to Support Equity in Industry and Public Safety (Capital) Predesign Underway
- © Student Collaboration Area (College)
- Dental Instructional Lab Expansion (College)
- C3 Student Services Flex Space (College)

Not pictured

- H3 HVAC Improvements Phase III (HEAPR)
- **H4** Skylight Replacement (HEAPR)

Priority 1: Renovation to Support Equity in Industry and Public Safety

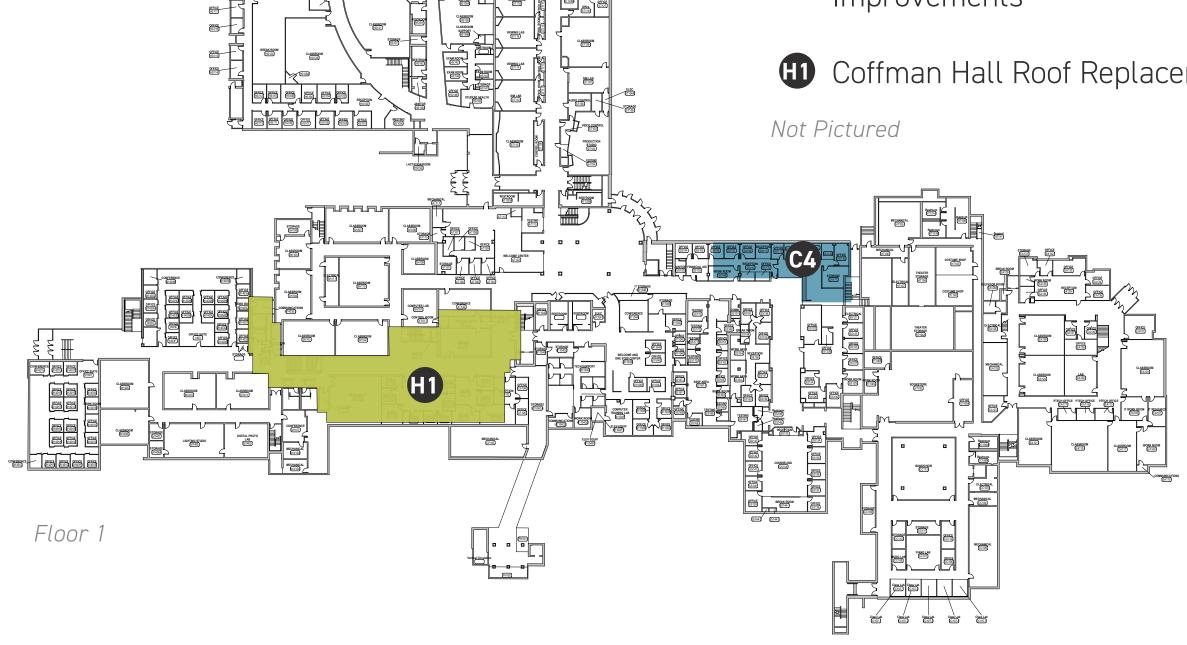
Heintz Center Predesign for 2024


Key

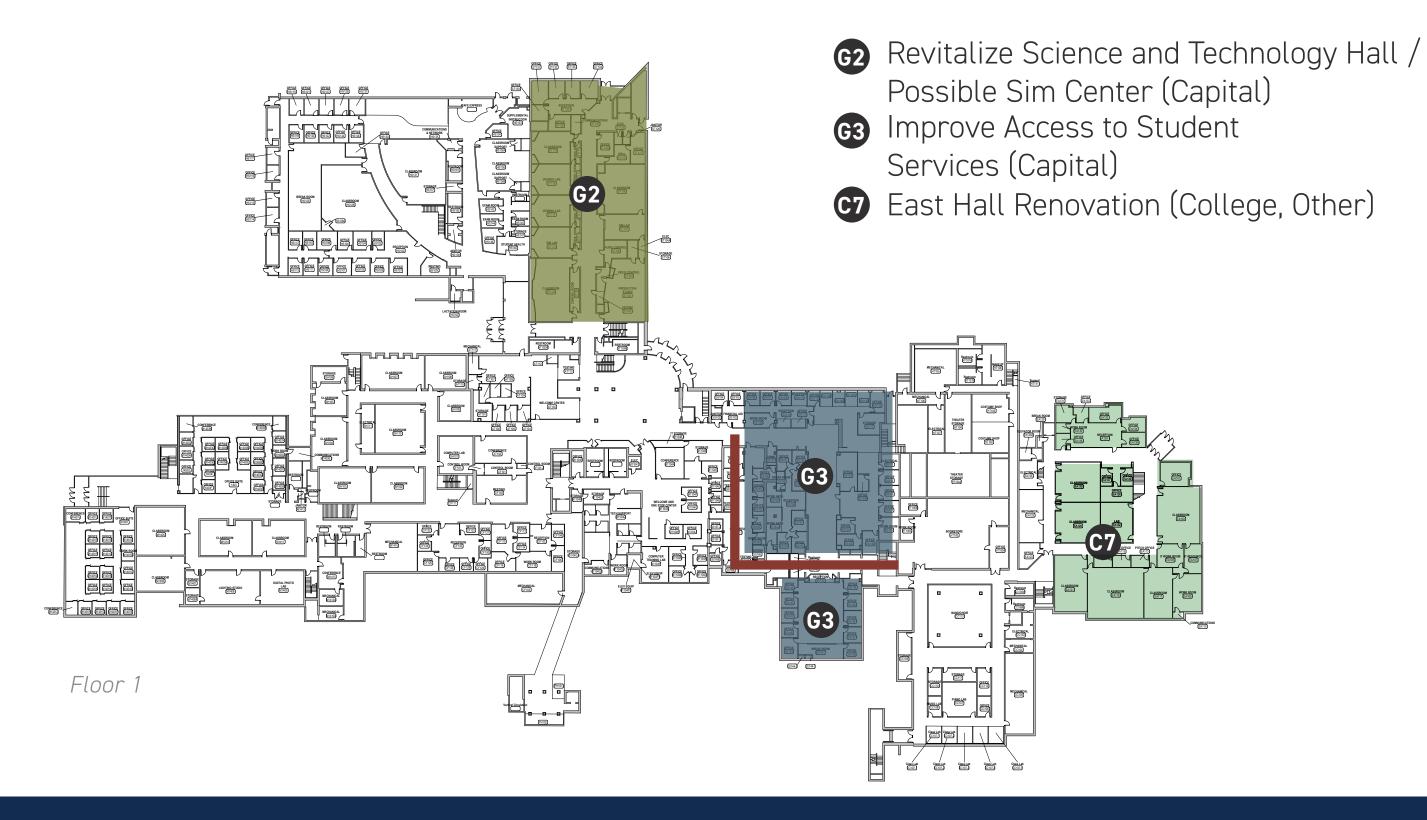
- Commons
- Facility and Service Technology (FAST)
- Faculty Offices
- Law Enforcement and Public Safety
- Welding Technology
- Automotive
- Toilets, Building Support
- Collaboration Space

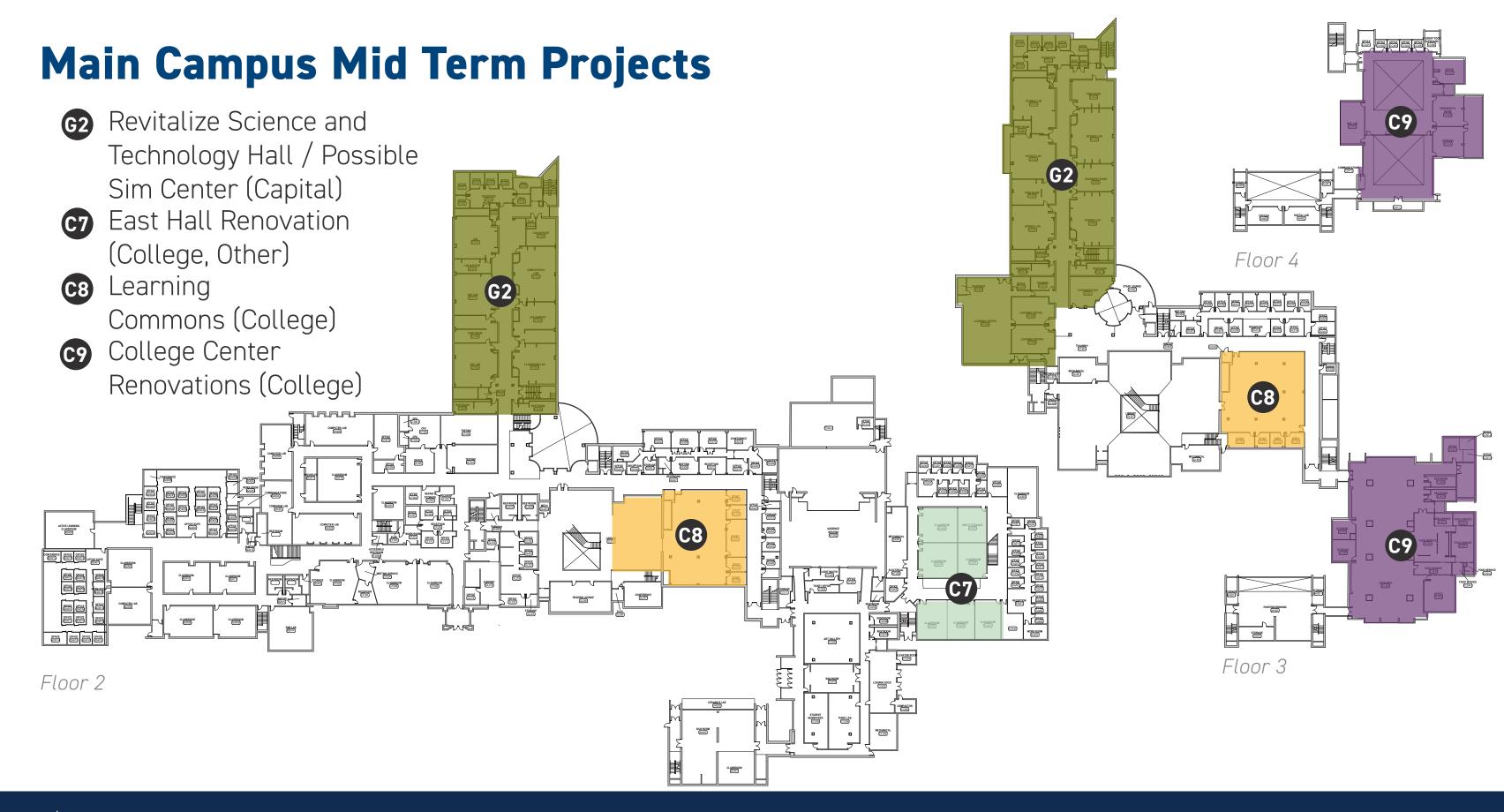
Heintz Center Long Term Projects

G5 CTE Simulation Center (Potential location)

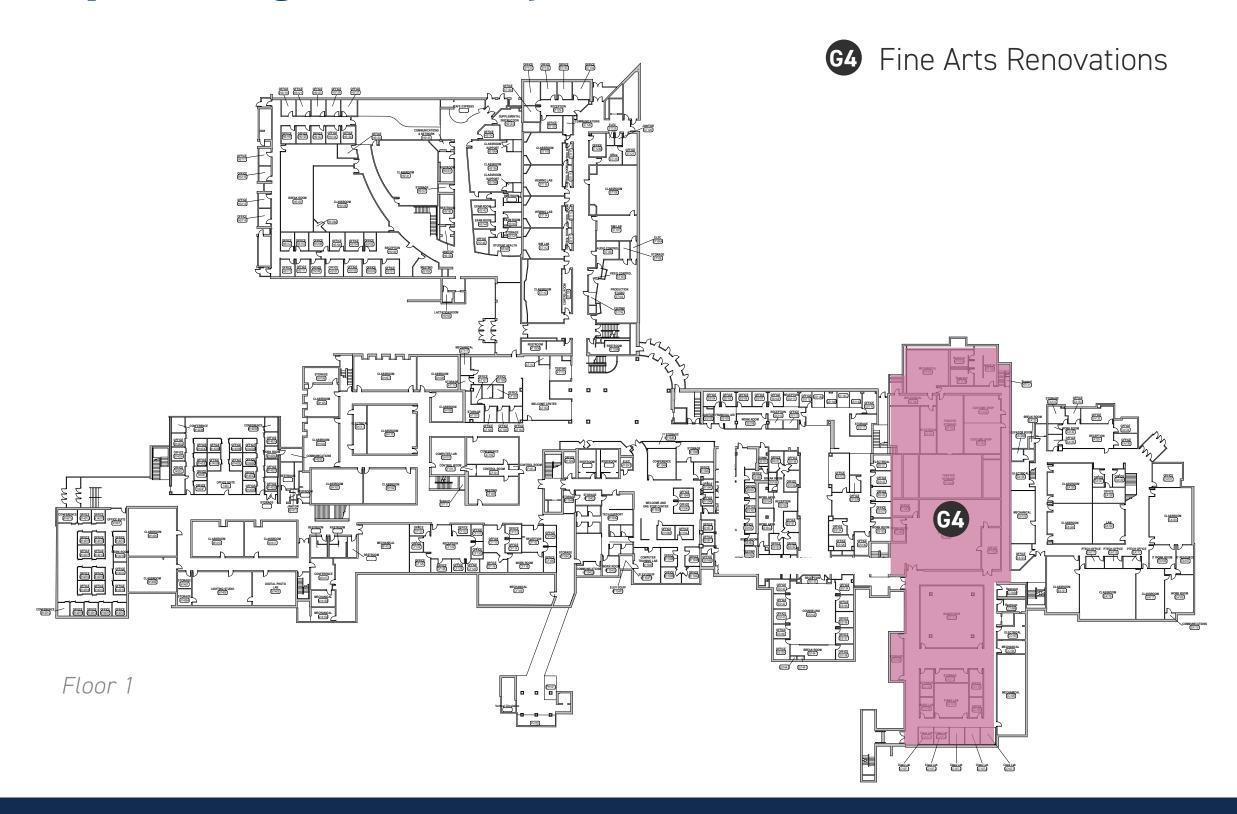


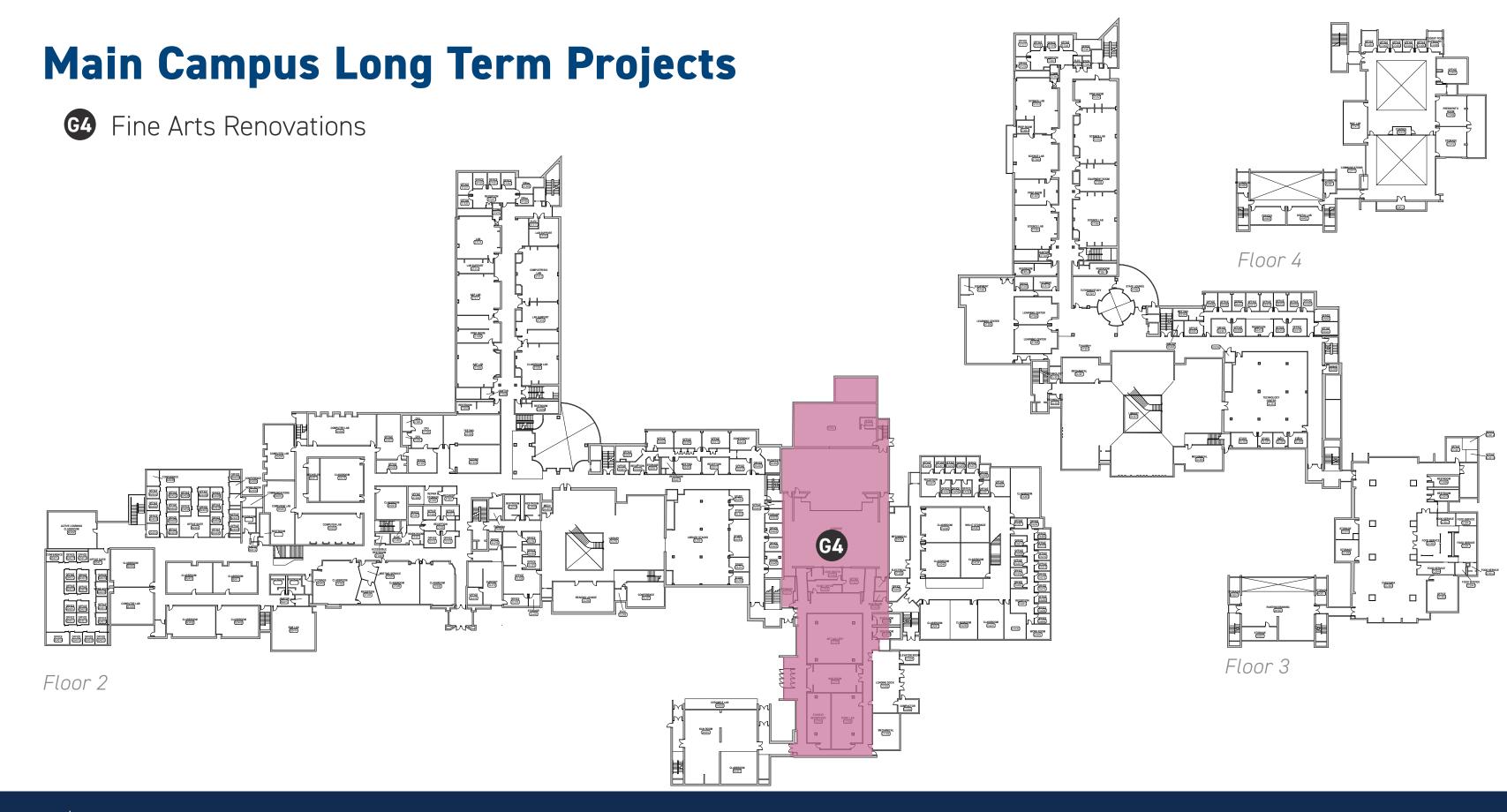
Main Campus Short Term Projects


Renovate Former Student Services



- Renovate ST 305/309
- Complete Interior Wayfinding and Signage Improvements
- Coffman Hall Roof Replacement (HEAPR)




Main Campus Mid Term Projects

Main Campus Long Term Projects

Information Needed

- Financial
 - Financial sustainability initiatives and efforts
 - Capital Campaign initiatives

Schedule

September 2021

30 Information Request Distributed

October 2021

8 Kick-off Meeting with Minnesota State

Meeting with President

November 2021

5 Kick-off Meeting with CFP Committee

December 2021

3 Meeting with CFP Committee

10 Meeting with CFP Committee

16-17 Stakeholder Meetings

22 35% Completion for Review

January 2022

Stakeholder Meetings

Receive Comments

Meeting with CFP Committee

February 2022

18 Meeting with CFP Committee

March 2022

15 Meeting with CFP Committee

23 65% Completion for Campus Review

June 2022

2 65% Submittal to Minnesota State Receive 65% Comments

August 2022

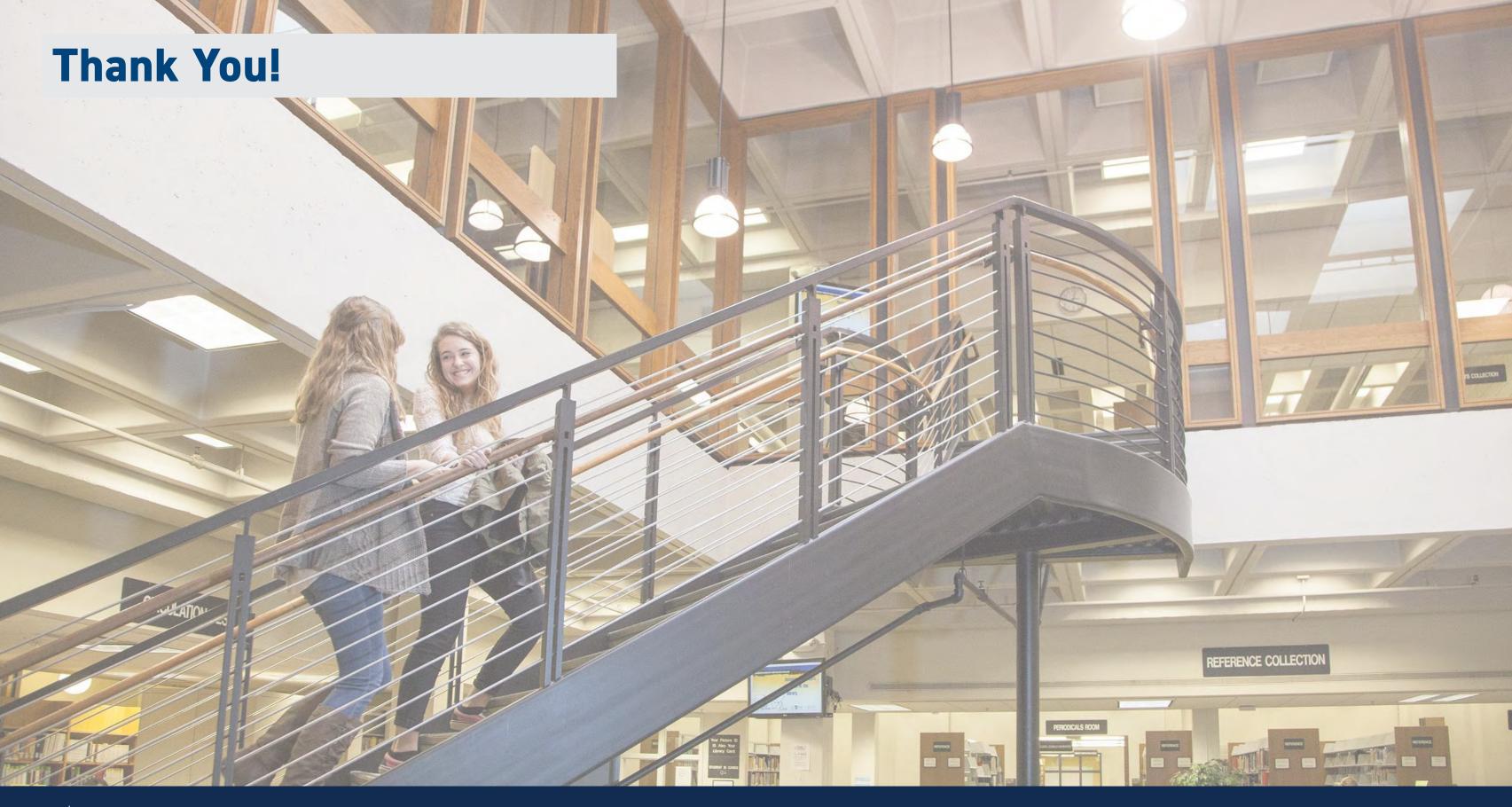
26 Meeting with CFP Committee

September 2022

16 Meeting with CFP Committee

23 Meeting with RCTC Leadership

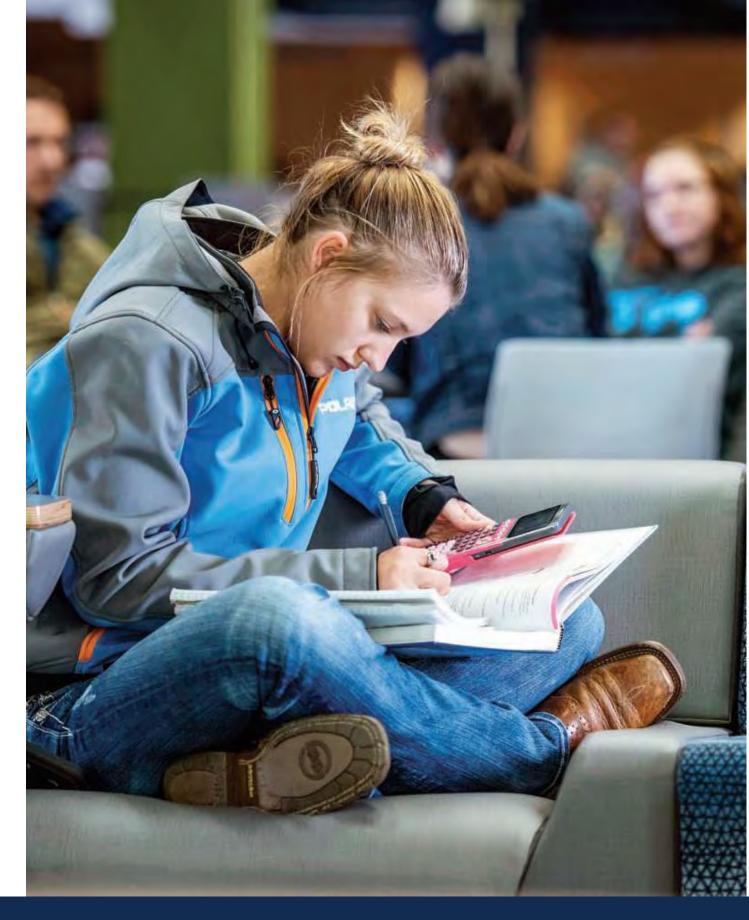
October 2022


Meeting with CFP Committee95% Submission

November 2022

Presentation to the System Office (tentative)*

December 2022


Submit 100% Document*

Proposed Campus Funded Projects

Smaller projects that may not align with funding priorities of the Legislature or that can't wait for the GO Bonding process

- Learning Commons (Main Campus)
- College Center Renovations (Main Campus)
- Student Services Flex Space (Heintz Center)
- Student Collaboration Area (Heintz Center)
- East Hall Student Resource Renovation (Main Campus)
- Interior Wayfinding and Signage Improvements (Main Campus)
- Dental Instruction Lab Expansion (Heintz Center)

Strategies for Building Development

- Support Academic Pathways
- Promote Connections Outside the Classroom
- Improve Space Utilization
- Expand Access to Academic Support and Student Services
- Continue to Address Wayfinding Challenges
- Provide Areas to Foster Relationships with Academic Partners
- Respond to Lessons from the Pandemic

Site Development - Short-Term

Site Development - Mid-Term

Site Development - Long-Term

Building Code	Room Code	Group Summary	Room Type	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday S	aturday	Average Total	Utilization
AH	200 Ceramics Lab	RCTC	Class Laboratory - 210		1.833333333	1.833333333	1.833333333	1.833333333	·		7.333333333	22.9%
AH	300 Painting/Drawing	RCTC	Classroom Facilities - 110		2.232323232	2.20952381	2.232323232	15	15	15	51.67417027	161.5%
AT	210 COMP LAB	RCTC	Testing		4 1.6875	1.964285714	2.271428571	2.270833333	2.428571429	9.5	24.12261905	75.4%
CC	206 PIANO LAB/LESSON	RCTC	Class Laboratory - 210		0.833333333		0.833333333				1.666666667	5.2%
CC	412	RCTC	Class Laboratory - 210		1.888888889	1.833333333	1.333333333	1.833333333			6.888888889	21.5%
CC	113 BAND ROOM	RCTC	Classroom Facilities - 110		0.674479167	1.25	0.833333333	1.25			4.0078125	12.5%
CF	202 Coffman	RCTC	Classroom Facilities - 110		1.035714286	2.326923077	1.25	2.94444444	0.833333333		8.39041514	26.2%
CF	202 Coffman WSU	RCTC	Classroom Facilities - 110			1					1	3.1%
CF	206/208 Coffman	RCTC	Classroom Facilities - 110		9.6 6.909090909	4.875	4.638888889	5.066666667	4.583333333	7	42.6729798	133.4%
EA	103	RCTC	Classroom Facilities - 110		1.010964912	1.986842105	1.124183007	1.22222222	4.375	3	12.71921225	39.7%
EA	121	RCTC	Classroom Facilities - 110		0.858156028	1.766666667	0.999031008	1.666666667	1.285714286		6.576234655	20.6%
EA	124	RCTC	Classroom Facilities - 110		1.25	1.347222222	1.618055556	1.25	2		7.465277778	23.3%
EA	128	RCTC	Classroom Facilities - 110		1.041666667	0.972222222	1.175213675	0.97222222	1.071428571		5.232753358	16.4%
EA	234	RCTC	Classroom Facilities - 110		7.5	6	1.8125	2	3.5		20.8125	65.0%
EA	237	RCTC	Classroom Facilities - 110		1.149659864	2	0.916666667	1			5.066326531	. 15.8%
EA	241	RCTC	Classroom Facilities - 110		1.041666667	1.108974359	1.037760417	1.111111111	6		10.29951255	32.2%
EA	244	RCTC	Classroom Facilities - 110		0.916666667	1.142361111	1.053497942		0.833333333		3.945859053	12.3%
EA	246	RCTC	Classroom Facilities - 110		0.972222222	1.001515152	1.14619883	0.97222222			4.092158426	12.8%
EA	265	RCTC	Classroom Facilities - 110		0.833333333	1.291666667	1.105691057	1.3	0.833333333		5.36402439	16.8%
EH	M1405	RCTC	Classroom Facilities - 110		0.862745098	1.322033898	1.383333333	1.143410853			4.711523182	14.7%
EH	M1406	RCTC	Classroom Facilities - 110		0.833333333	1.007751938	0.833333333	0.99537037			3.669788975	
EH	M1408	RCTC	Class Laboratory - 210			2.62254902					2.62254902	8.2%
EH	M1410	RCTC	Classroom Facilities - 110		1.317204301	1.357371795	1.317204301	1.30555556	0.833333333		6.130669286	19.2%
EH	M1411	RCTC	Classroom Facilities - 110		1.3125	1.5	0.833333333	1.5	0.90625		6.052083333	18.9%
EH	M2405	RCTC	Classroom Facilities - 110		1.0625	1.3125	1.069230769	1.25			4.694230769	
EH	M2406	RCTC	Class Laboratory - 210		0.836734694	1.333333333	0.833333333	1.333333333	0.836956522		5.173691216	
EH	M2408	RCTC	Classroom Facilities - 110		0.972222222		0.972222222		0.970588235		8.331699346	
EH	M2409	RCTC	Classroom Facilities - 110		1.166666667		1.166666667		1.166666667		6.068965517	
EH	M2410	RCTC	Classroom Facilities - 110		0.833333333	0.97222222	0.867647059	0.97222222			3.645424837	
EH	M2411	RCTC	Classroom Facilities - 110		0.972222222	0.97222222			0.833333333		4.72222222	
EH	M2414	RCTC	Class Laboratory - 210			3.833333333			3.83333333	3.833333333	17.74877451	
H?	099/124 H Commons	RCTC	Classroom Facilities - 110		11	2.25	2.833333333	4.03125		9	29.11458333	
H1	H1106	RCTC	Classroom Facilities - 110			0.833333333	1.796296296	1			4.962962963	
H1	H1109	RCTC	Class Laboratory - 210			0.833333333	0.833333333				3.333333333	
H1	H1110	RCTC	Class Laboratory - 210		8.428571429		2.511111111	4.3125			17.75739087	
H1	H1112	RCTC	Class Laboratory - 210		2.511111111		2.083333333				7.115277778	
H1	H1113	RCTC	Class Laboratory - 210		1.638888889		1.638888889				6.94444444	
H1	H1131	RCTC	Classroom Facilities - 110		1.466666667	1.25	1.083333333		1.083333333		6.133333333	
H1	H1133	RCTC	Class Laboratory - 210		1.44444444	1.55555556	1.44444444				6	
H1	H1403	RCTC	Classroom Facilities - 110		4.666666667			1.822916667	2.666666667	8		
H1	H1405	RCTC	Class Laboratory - 210		8.5	4.5		7.764705882	4	8		
H1	H1412 BUM ONLY	RCTC	Classroom Facilities - 110		1.833333333		1.833333333				8.64969697	
H1	H1413	RCTC	Classroom Facilities - 110		2.5	3		3.666666667			9.166666667	
H1	H1415	RCTC	Classroom Facilities - 110					5			5	
H1	H1416 BUM ONLY	RCTC	Classroom Facilities - 110		1.783333333		2.133333333				5.583333333	
H1	H1418	RCTC	Classroom Facilities - 110		0.946078431	0.9375	0.833333333		1	8		
H1	H1420	RCTC	Classroom Facilities - 110		2.5	3.833333333	4		2.333333333	8		
H1	H1422	RCTC	Classroom Facilities - 110			1.666666667		1.5		8		
H1	H1424	RCTC	Classroom Facilities - 110		3	1.295698925	1.634920635	1.813333333	1.90625	8	17.65020289	55.2%

Building Code	Room Code	Group Summary	Room Type	Sunday N	/londay ·	Tuesday	Wednesday	Thursday	Friday	Saturday	Average Total	Utilization
H1	H1438	RCTC	Class Laboratory - 210	<u> </u>	1.833333333	· ucouu,		1.833333333	<u> </u>	outur uu y	7.333333333	
H1	H1440	RCTC	Class Laboratory - 210			5				8.5	18.61960784	
H1	H1442	RCTC	Class Laboratory - 210			1.833333333				9	10.83333333	
H1	H1446	RCTC	Classroom Facilities - 110		1.833333333		1.333333333	1.5	0.833333333		5.5	
H2	H1100	RCTC	Classroom Facilities - 110		1.5	1	4	5		9		
H2	H1144	RCTC	Class Laboratory - 210			1.333333333	1.333333333	1.166666667	1.166666667		5	
Н3	H1132	RCTC	Class Laboratory - 210					3.404761905			10.1047619	
Н3	H1134	RCTC	Classroom Facilities - 110			2.25	1.833333333	1.833333333	1.833333333		7.75	
Н3	H1138	RCTC	Class Laboratory - 210		2.333333333	2.333333333	2.333333333	3.833333333	3.833333333		14.66666667	45.8%
Н3	H1140	RCTC	Class Laboratory - 210		3.833333333	1.833333333	3.833333333		4		17.33333333	
H4	H1146	RCTC	Class Laboratory - 210		5.833333333	2.333333333	2.333333333	2.333333333			12.83333333	40.1%
H4	H2301	RCTC	Class Laboratory - 210			5.5	1.852941176				7.352941176	
H4	H2302	RCTC	Classroom Facilities - 110		1.916666667	2	2.214285714	2.571428571			8.702380952	
H4	H2306B	RCTC	Classroom Facilities - 110		1.833333333	0.5	1.833333333				6	
H4	H2308	RCTC	Classroom Facilities - 110		0.979166667		1.527777778				5.786846405	
H4	H2312/14/18	RCTC	Class Laboratory - 210		4.5	4.5	3.416666667		3.833333333		18.47222222	
H4	H2318	RCTC	Class Laboratory - 210			1.333333333	3	3			7.333333333	
H5	H1205	RCTC	Classroom Facilities - 110		4	1.833333333	4				9.833333333	
HS	002	RCTC	Class Laboratory - 210		1.5	1.5	4	5			12	
HS	004	RCTC	Class Laboratory - 210		5.892857143		5	3.875	5.214285714		28.51155462	
HS	006	RCTC	Class Laboratory - 210		6	6		5.727272727			28.76893939	
HS	008	RCTC	Class Laboratory - 210		7.416666667	7.3125	5.333333333				31.67361111	
HS	009	RCTC	Class Laboratory - 210	5		8.529411765		4.861111111			37.20188651	
HS	010	RCTC	Class Laboratory - 210	5		5.44444444	4.95	4.75	5.3		30.50694444	
HS	128	RCTC	Classroom Facilities - 110		1.536723164		1.653439153	1.804597701	1		8.361877136	
HS	131	RCTC	Classroom Facilities - 110		1.623655914		2.666666667		1.875		11.25038372	
HS	136	RCTC	Classroom Facilities - 110		5.357843137	3.75	5.529411765	2.381944444	3.136363636		20.15556298	63.0%
HT	202 Hill Theater	RCTC	Classroom Facilities - 110	8	3.390740741	3.075581395	3.574652778		3.175	8		
MHL	M2400	RCTC	Classroom Facilities - 110		0.857142857	0.845833333	0.911764706	1.215686275	2.5		6.330427171	19.8%
SC	S2004	RCTC	Classroom Facilities - 110	1.333333333	1.25	1.112612613	0.975694444	1.102150538	1.032608696	1.545454545	8.351854169	26.1%
SH	102	RCTC	Classroom Facilities - 110		1.419047619	0.975490196	1.383838384	0.833333333	0.833333333		5.445042866	17.0%
SH	103	RCTC	Classroom Facilities - 110		14	14	13.5	14.125	14.15384615	8.357142857	78.13598901	244.2%
SH	104	RCTC	Classroom Facilities - 110		3.75	2	1.366666667	1.375	0.911764706		9.403431373	29.4%
SH	105	RCTC	Classroom Facilities - 110		0.833333333	0.97222222	1.005128205	0.97222222	1.5		5.282905983	16.5%
SH	107	RCTC	Classroom Facilities - 110		14	13.2	13.93333333	14.03846154	11.75	8.357142857	75.27893773	235.2%
SH	108	RCTC	Classroom Facilities - 110		1.666666667	1.262626263	1.775510204	1.22222222			5.927025356	18.5%
SH	109	RCTC	Classroom Facilities - 110		1	1.105263158	1.117647059	1			4.222910217	13.2%
SH	110	RCTC	Classroom Facilities - 110		0.833333333	0.849358974	0.932153392	1.166666667	0.833333333		4.6148457	14.4%
SH	202	RCTC	Class Laboratory - 210			1.842592593	1.833333333	1.913580247			5.589506173	17.5%
SH	203	RCTC	Class Laboratory - 210		1.416666667	2.6		2.125	2		8.141666667	25.4%
SH	204	RCTC	Class Laboratory - 210	1.25	1.441666667	1.229468599	1.333333333	1.089869281	1.456521739	1.25	9.050859619	28.3%
SH	206	RCTC	Class Laboratory - 210		1.88888889	1.59929078	2.023333333	1.379432624	2.678571429		9.569517055	29.9%
SH	210	RCTC	Classroom Facilities - 110			0.882075472	1.200803213				5.10783862	
ST	110	RCTC	Classroom Facilities - 110		7	4	4				15	
ST	205	RCTC	Class Laboratory - 210		1.833333333	1.833333333	1.833333333	1.833333333			7.333333333	
ST	206	RCTC	Class Laboratory - 210			1.333333333	1.333333333		0.833333333		7.166666667	
ST	211	RCTC	Class Laboratory - 210		2.490196078		1.833333333				10.41968326	
ST	212	RCTC	Class Laboratory - 210			0.833333333	2.833333333				8.666666667	
ST	305	RCTC	Class Laboratory - 210		1.833333333			1.833333333			8.208333333	
			, -									

Building Code	Room Code	Group Summary	Room Type	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Average Total	Utilization
ST	306	RCTC	Class Laboratory - 210		1.833333333	1.833333333	1.833333333	1.833333333	1.833333333		9.166666667	28.6%
ST	308	RCTC	Class Laboratory - 210		14.5	14.5	14.5	14.5	14.5	8	80.5	251.6%
ST	309	RCTC	Class Laboratory - 210		14.5	14.5	14.5	14.5	14.5	8	80.5	251.6%
ST	310	RCTC	Class Laboratory - 210		2.833333333		2.833333333	2.833333333			8.5	26.6%
ST	313	RCTC	Class Laboratory - 210				1.833333333	2.833333333			4.666666667	14.6%
Total				103	269.1686859	262.231437	247.4828643	270.4184066	203.7316403	165.3430736	1452.559441	44.1%

Building Code	Room Code	Group	Room Type Sunday	Monday -	Tuesday	Wednesday	Thursday F	riday Sat	urday Gr	and Total L	Jtilization
CF	206/208 Coffman	Other	Classroom Facilities - 110		·	1.50	5.00	1.00	3.00	10.50	32.8%
EA	103	Other	Classroom Facilities - 110	3.83	3.75	3.33	4.00		4.50	19.42	60.7%
EA	237	Other	Classroom Facilities - 110						1.00	1.00	3.1%
Н	099/124 H Commons	Other	Classroom Facilities - 110					4.00	9.00	13.00	40.6%
Н	H1100	Other	Classroom Facilities - 110				4.00			4.00	12.5%
Н	H1106	Other	Classroom Facilities - 110	2.25				5.00		7.25	22.7%
Н	H1131	Other	Classroom Facilities - 110	2.50		2.50		2.50		7.50	23.4%
Н	H1413	Other	Classroom Facilities - 110				5.00			5.00	15.6%
MHL	M2400	Other	Classroom Facilities - 110	3.00						3.00	9.4%
EA	111	Rochester Public Schools	Classroom F 8.7	14.7	14.7	14.7	14.8	14.8	9.0	91.16	284.9%
EA	119	Rochester Public Schools	Classroom F 8.7	14.7	14.7	14.7	14.8	14.8	9.0	91.16	284.9%
CC	113 BAND ROOM	WSU	Classroom Facilities - 110		1.833333333					1.83	5.7%
CF	202 Coffman	WSU	Classroom Facilities - 110		2			2		4.00	12.5%
CF	206/208 Coffman	WSU	Classroom Facilities - 110	1.0833333	2			0.75		3.83	12.0%
CF	206/208 WSU	WSU	Classroom Facilities - 110	2.3333333			1.83333	5.5	7.5	17.17	53.6%
EA	103	WSU	Classroom Facilities - 110	2.3333333			1.83333			4.17	13.0%
EA	103 WSU	WSU	Classroom Facilities - 110	2.3333333	3		2.06667			7.40	23.1%
EA	121 WSU	WSU	Classroom Facilities - 110		3					3.00	9.4%
EA	124	WSU	Classroom Facilities - 110		3					3.00	9.4%
EA	124 WSU	WSU	Classroom Facilities - 110		1.446078431		1.33333			2.78	8.7%
EA	234	WSU	Classroom Facilities - 110	1						1.00	3.1%
EA	234 WSU	WSU	Classroom Facilities - 110	2	1.5					3.50	10.9%
EA	237 WSU	WSU	Classroom Facilities - 110		2					2.00	6.2%
EA	241	WSU	Classroom Facilities - 110	1.8333333		1.833333333		9		12.67	39.6%
EA	265 WSU	WSU	Classroom Facilities - 110	3						3.00	9.4%
EA	234 WSU	WSU	Classroom Facilities - 110	4						4	12.5%
EA	241 WSU	WSU	Classroom Facilities - 110					1.25		1.25	3.9%
EH	M2411 WSU	WSU	Classroom Facilities - 110			1				1	3.1%
EH	M2408	WSU	Classroom Facilities - 110		3.5					3.50	10.9%
Н	099/124 H Commons	WSU	Classroom Facilities - 110		5	-8				-3.00	-9.4%
Н	H1100	WSU	Classroom Facilities - 110	2.8333333						2.83	8.9%
Н	H1100 WSU	WSU	Classroom Facilities - 110	1.4388889	3.5	3.5	1.82051	3.8333333		14.09	44.0%
Н	H1106	WSU	Classroom Facilities - 110			3.33333333	1.83333			5.17	16.1%
Н	H1106 [WSU]	WSU	Classroom Facilities - 110			3.33333333	3			6.33	19.8%
Н	H1403	WSU	Classroom Facilities - 110				5			5.00	15.6%
Н	H1420	WSU	Classroom Facilities - 110			3.5				3.50	10.9%
Н	H1422	WSU	Classroom Facilities - 110	1.83		1.83			3	.666666667	11.5%
H1	H1106 [WSU]	WSU	Classroom Facilities - 110		1		2.375			3.375	10.5%
H2	H1100 WSU	WSU	Classroom Facilities - 110				1			1	3.1%
HS	004	WSU	Class Laboratory - 210			8.00	6.40	10.00		24.4	76.3%
HS	006	WSU	Class Laboratory - 210			8.00	8.00	10.00		26	81.3%
HS	009	WSU	Class Laboratory - 210			8.00				8	25.0%
HS	010	WSU	Class Laboratory - 210			8.00				8	25.0%
HS	128	WSU	Classroom Facilities - 110	1.83					1	.833333333	5.7%

Building Code	Room Code	Group	Room Type Sunday	Monday T	uesday	Wednesday	Thursday F	riday Saturday	Grand Total (Jtilization
HS	131	WSU	Classroom Facilities - 110	2.50			1.75		4.25	13.3%
HS	136	WSU	Classroom Facilities - 110			1.00			1	3.1%
HS	128 WSU	WSU	Classroom Facilities - 110	1.00	2.00	2.17	1.00	1.00	7.166666667	22.4%
HS	128 WSU	WSU	Classroom Facilities - 110	1.83			0.83	1.30	3.971264368	12.4%
HS	131 WSU	WSU	Classroom F 1	1.50		1.00			3.5	10.9%
HS	131 WSU	WSU	Classroom Facilities - 110	2.50	1.00	1.50	1.42	1.00	7.416666667	23.2%
HS	136 WSU	WSU	Classroom Facilities - 110	2.00	4.00		2.50		8.5	26.6%
HS	136 WSU	WSU	Classroom Facilities - 110	3.00	1.10		2.50		6.6	20.6%
HT	202 Hill Theater	WSU	Classroom Facilities - 110					2.00	2	6.3%
SC	S2004	WSU	Classroom Facilities - 110				3.00		3	9.4%
SH	101	WSU	Classroom Facilities - 110			1.33			1.333333333	4.2%
SH	101 WSU	WSU	Classroom Facilities - 110	1.33		1.33			2.666666667	8.3%
SH	102	WSU	Classroom Facilities - 110		3.42		1.83		5.25	16.4%
SH	102 WSU	WSU	Classroom Facilities - 110	2.00	1.83	1.83	1.83		7.5	23.4%
SH	104	WSU	Classroom Facilities - 110	1.50	2.33				3.833333333	12.0%
SH	104 WSU	WSU	Classroom Facilities - 110		2.33				2.333333333	7.3%
SH	105	WSU	Classroom Facilities - 110				1.00		1	3.1%
SH	107	WSU	Classroom Facilities - 110		2.00				2	6.3%
SH	107 WSU	WSU	Classroom Facilities - 110		1.83		1.83		3.666666667	11.5%
SH	109	WSU	Classroom Facilities - 110	2.00					2	6.2%
SH	110	WSU	Classroom Facilities - 110	2.17	3.00		1.83		7	21.9%
SH	110 WSU	WSU	Classroom Facilities - 110				1.83		1.833333333	5.7%
SH	210	WSU	Classroom Facilities - 110	1.83			2.00		3.833333333	12.0%
SH	210 WSU	WSU	Classroom Facilities - 110	1.83					1.833333333	5.7%
ST	107	WSU	Class Laboratory - 210	7.42	5.56	6.92	8.00		27.88888889	87.2%
ST	108	WSU	Classroom Facilities - 110				1.33		1.333333333	4.2%
ST	108 WSU	WSU	Classroom Facilities - 110	3.60	8.22	7.60	5.56	7.17	32.14384921	100.4%
ST	110	WSU	Classroom Facilities - 110			2.00	2.50	8.17	12.66666667	39.6%
ST	110 WSU	WSU	Classroom Facilities - 110	3.30	3.50	3.79	5.50	2.00	18.09411765	56.5%
ST	112	WSU	Classroom Facilities - 110	2.00				4.00	6	18.8%
ST	112 WSU	WSU	Classroom Facilities - 110	4.54	4.00	6.92	8.00		23.45833333	73.3%
ST	114 WSU	WSU	Classroom Facilities - 110	7.42	6.33	9.00	6.68	7.17	36.6	114.4%
ST	116	WSU	Classroom Facilities - 110				8.00		8	25.0%
ST	116 WSU	WSU	Classroom Facilities - 110	5.19		9.00	6.50		20.69047619	64.7%
ST	118	WSU	Classroom Facilities - 110				0.75	9.00	9.75	30.5%
ST	118 WSU	WSU	Classroom Facilities - 110	2.0694444	2.863636364	1.842105263	2.82639	3	12.60	39.4%
			80						745.00	29.1%

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Copyright

Facilities and Infrastructure Detail Report By Facilities and Infrastructure Name

Page

1 of #

1,597,88 1,806,95 1,806,95 3,951,96	6 RI :	0.40 0.46 May 28, 2021 None ROCHESTER - 55904 - -	Currency: USD	
1,597,88 1,806,95 1,806,95 3,951,96	6 RI: 6 Date of most Recent Assessment: Construction Type Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	0.46 May 28, 2021 None ROCHESTER - 55904 -		
1,806,95 1,806,95 3,951,96	6 RI: 6 Date of most Recent Assessment: Construction Type Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	0.46 May 28, 2021 None ROCHESTER - 55904 -		
1,806,95 1,806,95 3,951,96	6 RI: 6 Date of most Recent Assessment: Construction Type Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	0.46 May 28, 2021 None ROCHESTER - 55904 -		
1,806,95 3,951,96	6 Date of most Recent Assessment: Construction Type Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	May 28, 2021 None ROCHESTER - 55904 -		
3,951,96 OUTHEAST	Construction Type Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	None ROCHESTER - 55904 -		
OUTHEAST	Construction Type Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	None ROCHESTER - 55904 -		
	Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	ROCHESTER - 55904 -		
	Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	ROCHESTER - 55904 -		
	Historical Category City State/Province/Region 2 Zip/Postal Code Architect Commission Date	ROCHESTER - 55904 -		
	City State/Province/Region 2 Zip/Postal Code Architect Commission Date	ROCHESTER - 55904 -		
	State/Province/Region 2 Zip/Postal Code Architect Commission Date	- 55904 - -		
197	State/Province/Region 2 Zip/Postal Code Architect Commission Date	55904 - -		
197	2 Zip/Postal Code Architect Commission Date	-		
	Commission Date	-		
		-		
	B3 Guidelines Apply:	No		
	Elevator Penthouse:	No		
	Mothball %:	0		
	MinnState Latitude:	N 44-00-48.9		
	General Fund %:	100		
	MinnState Contents Value (2019):	0		
	Prime System	Category	Priority Action Date	Estimated Cost
	B30 - Roofing	Lifecycle	2- Due within 2 Years of Inspection Jun 30, 2020	790,488
	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	110,287
	D30 - HVAC	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	124,992
	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	87,311
	D3040 - Distribution Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2022	312,481
	D2010 - Plumbing Fixtures	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	25,274
	D2020 - Domestic Water Distribution	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2022	147,050
	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2024	45,953
	E - Equipment and Furnishings	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	87,311
	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	75,809
				1,806,956
2-	st .			
1.0				
3,951,96	-			
3,951,96	et .			
3,951,96 3,951,96				
3,951,96 3,951,96	0			
3,951,96 3,951,96 Cos	0			
	3,951,96 3,951,96	Cost 3,951,966 3,951,966 Cost 0	3,951,966 3,951,966 Cost	3,951,966 3,951,966

VFA, Inc. All rights reserved.

Nov 5, 2021

10:04:12 AM

2021

Overhead Costs

Total Replacement Value Based on Worksheet Cost with Overheads

Description

Facilities and Infrastructure Detail Report

2 of #

By Facilities and Infrastructure Name

10:04:12 AM

Nov 5, 2021

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Atrium				
Campus	Rochester Community and Technical College -	Facilities Facilities and Infrastructure Numbe	r E26148C15	93			
Facilities and Infrastructure are order	red byFacilities and Infrastructure Name			Currer	ncy: USD		
Statistics							
FCI Cost:		984,375 FCI :	0.0	07			
RI Cost:		2,592,503 RI :	0.	19			
Total Requirements Cost:		2,592,504					
Current Replacement Value:		13,837,240 Date of most Recent Assessment:	May 28, 20	21			
Туре	Building						
Area	33,564SF						
Use	Administration	Construction Type					
Floors	3	Historical Category	None				
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTE	R			
Address 2	-	State/Province/Region	-				
Year Constructed		1993 Zip/Postal Code	55904				
Year Renovated	-	Architect	-				
Ownership	Owned	Commission Date	-				
		Decommission Date	-				
Insured Value:	10774640	B3 Guidelines Apply:	No				
Basement:	No	Elevator Penthouse:	No				
Model Type:	BASIC	Mothball %:	0				
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-50.	5			
MinnState Longitude:	W 092-25-21.0	General Fund %:	100				
MinnState Appraisal Value (2019):	11887000	MinnState Contents Value (2019):	0				
Requirements		, ,					
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Cost	LHB NOTes
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	1- Due within 1 Year of Inspection		831,522	Completed in Summer 2021
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	3- Due within 5 Years of Inspection		386,156	
d.1. HVAC - Equipment Renewal	Yes	D30 - HVAC	Lifecycle	3- Due within 5 Years of Inspection		514,874	
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	1- Due within 1 Year of Inspection		152,853	
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	3- Due within 5 Years of Inspection		103,779	
g.1. Plumbing Fixtures Renewal	Yes	D2010 - Plumbing Fixtures	Lifecycle	3- Due within 5 Years of Inspection		176,988	
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection		160,898	
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2023	265,434	
Total						2,592,504	1,760,982
Replacement Value Based on System Cost with Ov	verheads						
Worksheet Costs							
Name		Cost					
CRONAN_1618257922778		13,837,240					
Subtotal		13,837,240					

Cost

VFA, Inc. All rights reserved.

13,837,240

2021

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Career and Te	chnical Education Center		
Campus	Rochester Community and Technical College -	Facilities Facilities and Infrastructure Number	E26148C2016			
Facilities and Infrastructure are ordered byFacilit	ties and Infrastructure Name			Curren	ncy: USD	
Statistics				-	,	
FCI Cost:		0 FCI:	0.00			
RI Cost:		302,365 RI :	0.04			
Total Requirements Cost:		302,365				
Current Replacement Value:		8,260,369 Date of most Recent Assessment:	May 28, 2021			
Туре	Building			•		
Area	19,117SF					
Use		Construction Type				
Floors	1	Historical Category	None			
Address 1	2130 COLLEGE VIEW ROAD EAST	City	ROCHESTER			
Address 2	-	State/Province/Region	-			
Year Constructed		2016 Zip/Postal Code	55904			
Year Renovated	-	Architect	-			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	0	B3 Guidelines Apply:	No			
Basement:	No	Elevator Penthouse:	No			
Model Type:	BASIC	Mothball %:	0			
Off Campus (Owned):	No	MinnState Latitude:	N 44-01-14.4			
MinnState Longitude:	W 092-26-04.6	Lease %:	100			
MinnState Appraisal Value (2019):	7284000	MinnState Contents Value (2019):	0			
Other %:	100					
Requirements						
Requirement Name	Renewal	Prime System		Priority	Action Date	Estimated Cost
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2031	302,365
Total						302,365

Replacement Value Based on System Cost with Overheads

Worksheet Costs

Name	Cost
CRONAN_1618257923075	8,260,369
Subtotal	8,260,369
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	8,260,369

 Copyright
 Nov 5, 2021
 Nov 5, 2021
 10:04:12 AM
 Page
 3 of #

Facilities and Infrastructure Detail Report By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Central Chiller Plant	
Campus	Rochester Community and Technical College - Facil	ities Facilities and Infrastructure Number	E26148C2420	
Facilities and Infrast	structure are ordered byFacilities and Infrastructure Name			Currency: USD
Statistics				
FCI Cost:		0 FCI:	0.00	
RI Cost:		0 RI :	0.00	
Total Requirements Cost:				
Current Replacement Value:		88,628 Date of most Recent Assessment:	May 28, 2021	
Туре	Building			
Area	2,250SF			
Use	Physical Plant	Construction Type	IBC - Type II B	
Floors	1	Historical Category		
Address 1	851 30th Avenue SE	City	ROCHESTER	
Address 2	-	State/Province/Region	UNITED STATES OF AMERICA	
Year Constructed		2020 Zip/Postal Code	55949	
Year Renovated	-	Architect	-	
Ownership	Owned	Commission Date	Apr 24, 2020	
		Decommission Date	-	
Insured Value:	0	B3 Guidelines Apply:	Yes	
Basement:	No	Elevator Penthouse:	No	
Off Campus (Owned):	No	General Fund %:	100	
MinnState Appraisal Value (2019):	0	MinnState Contents Value (2019):	0	
Requirements				
No data available.				

Replacement Value Based on System Cost with Overheads

Worksheet Costs

Name	Cost
CRONAN_1618257900901	3,788,628
Subtotal	3,788,628
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	3,788,628

 Copyright
 VFA, Inc. All rights reserved.
 Nov 5, 2021 10:04:12 AM
 Page
 4 of #

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Coffman Hal	II	
Campus	Rochester Community and Technical College - Fac	ilities Facilities and Infrastructure Numbe	er E26148C026	8	
Facilities and Infrastructure	e are ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics					
FCI Cost:		00,237 FCI :	0.3		
RI Cost:		65,709 RI :	0.4	4	
Total Requirements Cost:		65,706			
Current Replacement Value:		88,854 Date of most Recent Assessment:	May 28, 202	11	
Туре	Building				
Area	18,686SF	Construction Type			
Use	Academic	Construction Type	None		
Floors	2	Historical Category	None		
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTER	₹	
Address 2	-	State/Province/Region	-		
Year Constructed		1968 Zip/Postal Code	55904		
Year Renovated	-	Architect	-		
Ownership	Owned	Commission Date	-		
		Decommission Date	-		
Insured Value:	6296605	B3 Guidelines Apply:	No		
Basement:	No	Elevator Penthouse:	No No		
Model Type:	BASIC	Mothball %:	0		
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-48.9		
MinnState Longitude:	W 092-25-23.6	General Fund %:	100		
MinnState Appraisal Value (2019):	7021000	MinnState Contents Value (2019):	0		
Requirements	7021000	miniotate contents value (2013).	Ü		
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	973,808
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	214,983
d.1. HVAC - Equipment Renewal	Yes	D30 - HVAC	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	94,234
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	177,361
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2031	177,361
e.1. HVAC - Distribution Renewal	Yes	D3040 - Distribution Systems	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2019	609,120
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	28,888
g.1. Plumbing Fixtures Renewal	Yes	D2010 - Plumbing Fixtures	Lifecycle	3- Due within 5 Years of Inspection Jan 1, 2020	278,118
g.2. Plumbing Rough-in Renewal	Yes	D2020 - Domestic Water Distribution	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	257,980
i.1. Fire Protection Systems Renewal	Yes	D40 - Fire Protection	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2029	98,534
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2031	89,576
k.1. Built-in Equipment Renewal	Yes	E - Equipment and Furnishings	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	170,195
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	295,548
Total					3,465,706
Replacement Value Based on System Cost	with Overheads				
Worksheet Costs					
Name		Cost			
CRONAN_1618257922278		,888,854			
Subtotal	7	,888,854			
Overhead Costs					
Description		Cost			
TAIR IN AN	_	0			
Total Replacement Value Based on Worksheet Cost with Overheads	7	,888,854			

 Copyright
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 5 of #

CRONAN_1618257922497

Total Replacement Value Based on Worksheet Cost with Overheads

Overhead Costs
Description

Subtotal

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Campus Facilities Faci	
Facilities and Infrastructure are ordered byFacilities and Infrastructure Name Currency: USD	
Statistics	
FCI Cost: 4,171,316 FCI: 0.23	
RI Cost: 6,016,129 RI: 0.33	
Total Requirements Cost: 6,016,131	
Current Replacement Value: 17,993,307 Date of most Recent Assessment: May 28, 2021	
Type Building	
Area 42,620SF	
Use Academic Construction Type	
Floors 4 Historical Category None	
Address 1 851 30TH AVENUE SOUTHEAST City ROCHESTER	
Address 2 - State/Province/Region -	
Year Constructed 1972 Zip/Postal Code 55904	
Year Renovated - Architect -	
Ownership Owned Commission Date -	
Decommission Date -	
Insured Value: B3 Guidelines Apply: No	
Basement: No Elevator Penthouse: No	
Model Type: BASIC Mothball %: 0	
Off Campus (Owned): No MinnState Latitude: N 44-00-48.8	
MinnState Longitude: W 092-25-17.5 General Fund %: 100	
MinnState Appraisal Value (2019): 15462000 MinnState Contents Value (2019): 0	
Requirements	
Requirement Name Prime System Category Priority Action Date	Estimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal Yes B30 - Roofing Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018	553,078
b.1. Building Exteriors (Hard) Renewal Yes B20 - Exterior Enclosure Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018	490,345
d.1. HVAC - Equipment - 1972 Air Handlers Renewal Yes D30 - HVAC Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018	806,005
d.2. HVAC - Controls Renewal Yes D3060 - Controls and Instrumentation Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2028	809,070
e.1. HVAC - Distribution Renewal Yes D3040 - Distribution Systems Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2022	1,389,312
f.1. Electrical Equipment Renewal Yes D50 - Electrical Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018	43,927
g.1. Plumbing Fixtures - 1972 2nd FI Renewal Yes D2010 - Plumbing Fixtures Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018	55,062
g.2. Plumbing Rough-in - 1972 Original Renewal Yes D2020 - Domestic Water Distribution Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2022	523,035
i.1. Fire Protection Systems Renewal Yes D40 - Fire Protection Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2032	224,742
j.1. Fire Detection Systems Renewal Yes D5037 - Fire Alarm Systems Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2031	204,311
k.1. Built-in Equipment Renewal Yes E - Equipment and Furnishings Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018 Very Ve	310,552
1.2. Interior Finishes Renewal Yes C30 - Interior Finishes Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2023	606,692
Total	6,016,131
Replacement Value Based on System Cost with Overheads	
Worksheet Costs	

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:04:12 AM Page 6 of

Cost

Cost

17,993,307

17,993,307

17,993,307

Overhead Costs
Description

Total Replacement Value Based on Worksheet Cost with Overheads

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	ge Facilities and Infrastructure	East Hall		
Campus	Rochester Community and Technical Colle	ge - Facilities Facilities and Infrastructure Number	E26148C138	6	
Facilities and Infrastructure are	ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics					
FCI Cost:		1,732,581 FCI :	0.1		
RI Cost:		3,251,638 RI :	0.2	3	
Total Requirements Cost:		3,251,639			
Current Replacement Value:		14,293,745 Date of most Recent Assessment:	May 28, 202	1	
Туре	Building				
Area	33,857SF				
Use	Academic	Construction Type			
Floors	2	Historical Category	None		
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTE	२	
Address 2	-	State/Province/Region	-		
Year Constructed		1986 Zip/Postal Code	55904		
Year Renovated	-	Architect	-		
Ownership	Owned	Commission Date	-		
·		Decommission Date	-		
Insured Value:	11353082	B3 Guidelines Apply:	No		
Basement:	No	Elevator Penthouse:	No		
Model Type:	BASIC	Mothball %:	0		
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-48.8		
MinnState Longitude:	W 092-25-17.5	General Fund %:	100		
MinnState Appraisal Value (2019):	11515000	MinnState Contents Value (2019):	0		
Requirements					
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	389,527
c.1. Elevators Renewal	Yes	D10 - Conveying	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	146,072
d.1. HVAC - Equipment Renewal	Yes	D30 - HVAC	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2021	256,114
d.1. HVAC - Equipment Renewal	Yes	D30 - HVAC	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2021	597,599
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	642,719
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	34,895
i.1. Fire Protection Systems Renewal	Yes	D40 - Fire Protection	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2026	178,533
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2031	162,303
k.1. Built-in Equipment Renewal	Yes	E - Equipment and Furnishings	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	308,375
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2023	535,502
Total					3,251,639
Replacement Value Based on System Cost with	h Overheads				
Worksheet Costs					
Name		Cost			
CRONAN_1618257922700		14,293,745			

 Copyright
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 7 of #

14,293,745

14,293,745

Cost

Colleges or Universities

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Endicott Hall	
Campus	Rochester Community and Technical College - Facilit	ies Facilities and Infrastructure Number	E26148C0368	
Faci	ilities and Infrastructure are ordered byFacilities and Infrastructure Name			Currency: USD
Statistics				
FCI Cost:	556	,363 FCI :	0.07	
RI Cost:	1,523	,012 RI :	0.19	
Total Requirements Cost:	1,523	,011		
Current Replacement Value:	,	,206 Date of most Recent Assessment:	May 28, 2021	
Туре	Building		<u> </u>	
Area	19,279SF			
Use	Academic	Construction Type		
Floors	2	Historical Category	None	
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTER	
Address 2	-	State/Province/Region	-	
Year Constructed		1968 Zip/Postal Code	55904	
Year Renovated		2019 Architect	-	
Ownership	Owned	Commission Date	-	
		Decommission Date	-	
Insured Value:	6337751	B3 Guidelines Apply:	No	
Basement:	No	Elevator Penthouse:	No	
Model Type:	BASIC	Mothball %:	0	
	No	MinnState Latitude:	N 44-00-50.5	
	W 092-25-21.0	General Fund %:	100	
	7185000	MinnState Contents Value (2019):	0	
Requirements		,		
Ownership Insured Value: Basement: Model Type: Off Campus (Owned): MinnState Longitude: MinnState Appraisal Value (2019):	Owned 6337751 No BASIC No W 092-25-21.0	Commission Date Decommission Date B3 Guidelines Apply: Elevator Penthouse: Mothball %: MinnState Latitude:	No 0 N 44-00-50.5 100	

Pachastar Community and Tachnical College

Requirement Name Renewal Prime System Category **Action Date Estimated Cost** b.1. Building Exteriors (Hard) Renewal B20 - Exterior Enclosure Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018 221,806 Yes d.2. HVAC - Controls Renewal Yes D3060 - Controls and Instrumentation Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2028 365,980 f.1. Electrical Equipment Renewal Yes D50 - Electrical Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018 158,961 g.1. Plumbing Fixtures Renewal Yes D2010 - Plumbing Fixtures 3- Due within 5 Years of Inspection Jun 30, 2028 101,661 Lifecycle 101,661 i.1. Fire Protection Systems Renewal Yes D40 - Fire Protection 3- Due within 5 Years of Inspection Jun 30, 2032 Lifecycle j.1. Fire Detection Systems Renewal Yes D5037 - Fire Alarm Systems Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2031 92,419 k.1. Built-in Equipment Renewal Yes E - Equipment and Furnishings Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018 175,596 289,681 I.2. Interior Finishes Renewal Yes C30 - Interior Finishes Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2028 I.2. Interior Finishes Renewal Yes C30 - Interior Finishes 3- Due within 5 Years of Inspection Jun 30, 2023 15,246 Lifecycle 1,523,011

Escilities and Infrastructure

Endicott Hall

Replacement Value Based on System Cost with Overheads

Worksheet Costs

Name	Cost
CRONAN_1618257922325	8,139,206
Subtotal	8,139,206
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	8 139 206

 Copyright
 2021
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 8 of #

Total Replacement Value Based on Worksheet Cost with Overheads

Copyright

Facilities and Infrastructure Detail Report

Page

9 of #

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical Colle	ge Facilities and Infrastructure	Goddard Lik	rary		
Campus	Rochester Community and Technical Colleg	ge - Facilities Facilities and Infrastructure Number	E26148C016	8		
Facilities and Infrastructure	are ordered byFacilities and Infrastructure Name			Currer	ncy: USD	
Statistics				_		
FCI Cost:		1,668,212 FCI :	0.1			
RI Cost:		3,365,482 RI :	0.2	1		
Total Requirements Cost:		3,365,482				
Current Replacement Value:		15,866,817 Date of most Recent Assessment:	May 28, 202	<u>1</u>		
Гуре	Building					
Area	38,487SF					
Jse	Library	Construction Type				
loors	3	Historical Category	None			
ddress 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTE	₹		
ddress 2	-	State/Province/Region	-			
ear Constructed		1968 Zip/Postal Code	55904			
ear Renovated	-	Architect	-			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
nsured Value:	12540935	B3 Guidelines Apply:	No			
Basement:	No	Elevator Penthouse:	Yes			
Model Type:	BASIC	Mothball %:	0			
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-51.2			
MinnState Longitude:	W 092-25-20.3	General Fund %:	100			
MinnState Appraisal Value (2019):	14466000	MinnState Contents Value (2019):	0			
Requirements		,				
equirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Cost
.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	908,081
Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	442,795
2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2023	350,546
I. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	317,330
I. Fire Protection Systems Renewal	Yes	D40 - Fire Protection	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2029	202,946
Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2031	184,498
.1. Built-in Equipment Renewal	Yes	E - Equipment and Furnishings	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2028	350,546
2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2025	608,732
otal						3,365,482
Replacement Value Based on System Cost	with Overheads					
Vorksheet Costs						
lame		Cost				
CRONAN_1618257922216		15,866,817				
Subtotal		15,866,817				
Overhead Costs		01				
Description		Cost				

15,866,817

VFA, Inc. All rights reserved.

Nov 5, 2021

10:04:12 AM

2021

Colleges or Universities

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Campus	Rochester Community and Technical Coll	lege - Facilities Facilities and Infrastructure Number	r E26148C2119	
•	ties and Infrastructure are ordered byFacilities and Infrastructure Name			
Statistics	ties and initiastructure are ordered by actities and initiastructure value			
FCI Cost:		0 FCI :	0.0	00
RI Cost:		15,604 RI:	0.0	02
Total Requirements Cost:		15,604		
Current Replacement Value:		978,976 Date of most Recent Assessment:	May 28, 202	21
уре	Building			
Area	4,000SF			
Jse	Storage	Construction Type		
Floors	1	Historical Category		
Address 1	851 30th Avenue SE	City	ROCHESTER	
Address 2	-	State/Province/Region	-	
ear Constructed		2019 Zip/Postal Code	55904	
ear Renovated	-	Architect	Bentz Thompson Reito	W
Ownership	Owned	Commission Date	-	
		Decommission Date	-	
sured Value:	941243	B3 Guidelines Apply:	No	
asement:	No	Elevator Penthouse:	No	
Off Campus (Owned):	No	General Fund %:	100	
//innState Appraisal Value (2019):	926376	MinnState Contents Value (2019):	0	
Requirements				
equirement Name	Renewal	Prime System	Category	Priority
e Alarm System Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5
tal				

Facilities and Infrastructure

Grounds Storage Garage

Rochester Community and Technical College

Replacement Value Based on System Cost with Overheads

W	or	ksl	neet	Co	sts
---	----	-----	------	----	-----

Name	Cost
CRONAN_1618257936280	978,976
Subtotal	978,976
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	978,976

 Copyright
 Nov 5, 2021
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Health Scie	ience Hall	
Campus	Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	E26148C05	9570	
Facilities and Infrastructure are ordered byFacil	ities and Infrastructure Name			Currency: USD	
Statistics					
FCI Cost:		648,479 FCI :	0.	0.04	
RI Cost:		2,008,692 RI :	0.	0.12	
Total Requirements Cost:		2,008,693			
Current Replacement Value:		16,902,837 Date of most Recent Assessment:	May 28, 20	2021	
Туре	Building				
Area	41,000SF				
Use	Academic	Construction Type			
Floors	2	Historical Category	None		
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTE	ΓER	
Address 2	-	State/Province/Region	_		
Year Constructed		2007 Zip/Postal Code	55904		
Year Renovated	-	Architect	-		
Ownership	Owned	Commission Date	-		
		Decommission Date	-		
Insured Value:	13162308	B3 Guidelines Apply:	Yes		
Basement:	Yes	Elevator Penthouse:	No		
Model Type:	BASIC	Mothball %:	0		
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-52.	2.5	
MinnState Longitude:	W 092-25-24.4	General Fund %:	100		
MinnState Appraisal Value (2019):	12459000	MinnState Contents Value (2019):	0		
Requirements					
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2032	239,909
c.1. Elevators Renewal	Yes	D10 - Conveying	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2032	176,890
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2027	373,435
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2027	196,545
k.1. Built-in Equipment Renewal	Yes	E - Equipment and Furnishings	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2032	373,435
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2022	648,479
Total					2,008,693
Replacement Value Based on System Cost with Overhead	s				
Workshoot Costs	-				

Worksheet Costs

CRONAN_1618257922435	16,902,837
Subtotal	16,902,837
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	16,902,837

 Copyright
 2021
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Colleges or Universities

Copyright

Facilities and Infrastructure Detail Report

of

By Facilities and Infrastructure Name

Heintz Center 76 Rem. & Add. (H1100 Suite)

Coneges of Oniversities	Rochester Community and reclinical Co	nege racinties and initiastructure	Heintz Gente	i 70 Neill: & Add. (111 100 Gaile)	
Campus	Rochester Community and Technical Co	llege - Facilities Facilities and Infrastructure Numbe	r E26275T027	3	
Facilities and Infrastructure	e are ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics				-	
FCI Cost:		301,336 FCI:	0.	05	
RI Cost:		1,388,523 RI :	0.:		
Total Requirements Cost:		1,388,524	0		
Current Replacement Value:		5,771,701 Date of most Recent Assessment:	May 28, 20	21	
Туре	Building		ay 20, 20		
Area	14,000SF				
Use	Academic	Construction Type			
Floors	1	Historical Category	None		
		5 ,			
Address 1	1926 COLLEGE VIEW ROAD EAST	City	ROCHESTER	₹	
Address 2	-	State/Province/Region	-		
Year Constructed		1976 Zip/Postal Code	55904		
Year Renovated	-	Architect	-		
Ownership	Owned	Commission Date	-		
		Decommission Date	-		
Insured Value:	0	Addition:	v		
B3 Guidelines Apply:	No	Basement:	x No		
Elevator Penthouse:	No	Model Type:	BASIC		
Mothball %:	0	Off Campus (Owned):	No		
MinnState Latitude:	N 44-01-12.3	MinnState Longitude:	W 092-26-10	2	
General Fund %:	100	MinnState Longitude: MinnState Appraisal Value (2019):	5006000	3	
MinnState Contents Value (2019):	0	immotate Appraisar value (2015).	300000		
Requirements	Ç .				
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
d.1. HVAC - Equipment Renewal	Yes	D30 - HVAC	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	214,761
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	127,514
e.1. HVAC - Distribution Renewal	Yes	D3040 - Distribution Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2026	456,367
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	86,576
g.2. Plumbing Rough-in Renewal	Yes	D2020 - Domestic Water Distribution	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2026	214,761
i.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2032	67,113
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2023	221,432
Total					1,388,524
Replacement Value Based on System Cost	with Overheads				
·	with Overheads				
Worksheet Costs					
Name		Cost			
CRONAN_1618257923216		5,771,701			
Subtotal Control Control		5,771,701			
Overhead Costs		Cont			
Description		Cost			
Total Replacement Value Based on Worksheet Cost with Overheads		5,771,7 01			
otal Nepiacement value dased on worksheet Cost with Overneads		9,771,701			

VFA, Inc. All rights reserved.

Nov 5, 2021

10:04:12 AM

Facilities and Infrastructure

Rochester Community and Technical College

Overhead Costs

Total Replacement Value Based on Worksheet Cost with Overheads

Description

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Heintz Cent	ter Diesel Truck. (H1100 Suit	te)	
Campus	Rochester Community and Technical College -	Facilities Facilities and Infrastructure Number	r E26275T037	79		
Facilities and Infrastructur	e are ordered byFacilities and Infrastructure Name			Currer	ncy: USD	
Statistics						
FCI Cost:		148,450 FCI :	0.1	12		
RI Cost:		238,155 RI :	0.1	19		
Total Requirements Cost:		238,155				
Current Replacement Value:		1,270,158 Date of most Recent Assessment:	May 28, 202	21		
Туре	Building					
Area	8,280SF					
Use	Academic	Construction Type				
Floors	1	Historical Category	None			
Address 1	851 30th Avenue SE	City	ROCHESTE	ER .		
Address 2	-	State/Province/Region	_			
Year Constructed		1979 Zip/Postal Code	55904			
Year Renovated	-	Architect	_			
Ownership	Owned	Commission Date	_			
		Decommission Date	-			
Insured Value:	0	B3 Guidelines Apply:	No			
Basement:	No	Elevator Penthouse:	No			
Model Type:	SIMPLE	Mothball %:	0			
Off Campus (Owned):	No	General Fund %:	100			
MinnState Appraisal Value (2019):	1201913	MinnState Contents Value (2019):	0			
Requirements	1201010	immiotato contente value (2010).	· ·			
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Cost
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection	n Jun 30, 2018	95,262
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	1- Due within 1 Year of Inspection	1 Jun 30, 2019	31,754
e.1. HVAC - Distribution Renewal	Yes	D3040 - Distribution Systems	Lifecycle	3- Due within 5 Years of Inspectio	on Jun 30, 2029	47,631
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection	n Jun 30, 2018	9,526
g.2. Plumbing Rough-in Renewal	Yes	D2020 - Domestic Water Distribution	Lifecycle	3- Due within 5 Years of Inspectio	on Jun 30, 2029	18,259
i.1. Fire Protection Systems Renewal	Yes	D40 - Fire Protection	Lifecycle	1- Due within 1 Year of Inspection	n Jun 30, 2019	11,908
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspectio		15,877
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspectio	on Jun 30, 2023	7,938
Total			,			238,155
Replacement Value Based on System Cost	t with Overheads					
Worksheet Costs						
Name		Cost				
CRONAN_1618257923263		1,270,158				
· · · · · · · · ·						

1,270,158

1,270,158

Cost 0

Copyright

Facilities and Infrastructure Detail Report

Page

of

By Facilities and Infrastructure Name

Rochester Community and Technical College - Facilities and Infrastructure Name Currency: USD	
Statistics	
FCI Cost: 673,851 FCI: 0.06 RI Cost: 3,451,204 RI: 0.30 Cost: 0.3	
RI Cost: Total Requirements Cost: Current Replacement Value: Type Area Use Floors Address 1 Address 2 Year Constructed Constructed Year Renovated Ownership No No No No No No No No No N	
Total Requirements Cost: Current Replacement Value: 11,390,000 Date of most Recent Assessment: May 28, 2021 Type Area 19,800SF Use Floors 1 Construction Type Historical Category None Address 1 Address 2 Year Constructed Year Renovated Ownership Owned Teach Ownership Insured Value: Basement: No Building Constructed Academic 19,800SF Constructed Historical Category City ROCHESTER State/Province/Region State/Province/Region Architect	
Type Building Area 19,800SF Use Academic Construction Type Floors 1926 COLLEGE VIEW ROAD EAST City ROOT East/Province/Region State/Province/Region Commission Date Commission Date Decommission Date Decommission Date Basement: No	
Type Building 19,800SF Use Academic Construction Type Historical Category None Address 1 1926 COLLEGE VIEW ROAD EAST City ROCHESTER Address 2 State/Province/Region - Year Constructed 2002 Zip/Postal Code 55904 Year Renovated Ownership Owned Commission Date - Decommission Date - Insured Value: Basement: No Selevator Penthouse: No No Elevator Penthouse: No No Selevator Penthouse: No No Selevator Penthouse: No Service On Serv	
Area Use Floors Address 1 Address 1 Address 2 Year Constructed Year Renovated Ownership Ownership Insured Value: Basement: 19,800SF Academic Academic Academic Academic Academic Academic Academic Academic Construction Type Historical Category None ROCHESTER ACITY ROCHESTER ACITY State/Province/Region	
Use Floors Academic Construction Type Historical Category None Address 1 1926 COLLEGE VIEW ROAD EAST City ROCHESTER Address 2 State/Province/Region - Year Constructed Year Renovated Ownership Commission Date Decommission Date Decommission Date Insured Value: Basement: No 0	
Floors 1 1926 COLLEGE VIEW ROAD EAST City ROCHESTER Address 2 State/Province/Region - Year Constructed 2002 Zip/Postal Code 55904 Year Renovated - Ownership Owned Commission Date Decommission Date Decommission Date - Insured Value: Basement: No Owned Elevator Penthouse: No Owned Elevator Penthouse: No Owned Decommission Date Decommission Date Decompose No Owned Decompose	
Address 1 Address 2 Year Constructed Year Renovated Ownership Insured Value: Basement: Address 1 1926 COLLEGE VIEW ROAD EAST 1926 COLLEGE VIEW ROAD EAST City State/Province/Region - Stote/Province/Region - Stote/Provinc	
Address 2 Year Constructed Year Renovated Ownership Insured Value: Basement: Address 2	
Address 2 Year Constructed Year Renovated Year Renovated Ownership Insured Value: Basement: Address 2 Year Constructed Year Renovated Owned Architect Commission Date Decommission Date Basemet: State/Province/Region - Commission Code S5904 - Commission Date - Commission Date - Decommission Date - No	
Year Renovated Ownership-Architect Commission Date Decommission Date-Insured Value: Basement:0B3 Guidelines Apply: Elevator Penthouse:No	
Ownership Commission Date Decommission Date	
Insured Value: Basement: Decommission Date - No Basement: No Basement: No Decommission Date - No No Basement: No No Basement: No No No No No No No No No N	
Insured Value: Basement: No Bilevator Penthouse: No	
Basement: No Elevator Penthouse: No	
Basement: No Elevator Penthouse: No	
Model Type: COMPLEX Mothball %: 0	
Off Campus (Owned): No MinnState Latitude: N 44-01-13.8	
MinnState Longitude: W 092-26-14.4 General Fund %: 100	
MinnState Appraisal Value (2019): 8727000 MinnState Contents Value (2019): 0	
Requirements	
Requirement Name Prime System Category Priority Action Date	stimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal Yes B30 - Roofing Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2027	233,585
b.1. Building Exteriors (Hard) Renewal Yes B20 - Exterior Enclosure Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2032	227,800
d.2. HVAC - Controls Renewal Yes D3060 - Controls and Instrumentation Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2022	360,683
f.1. Electrical Equipment Renewal Yes D50 - Electrical Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2032 g.1. Plumbing Fixtures Renewal Yes D2010 - Plumbing Fixtures Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2032	616,958 275,258
g.1. Plumbing Fixtures Renewal yes D2010 - Plumbing Fixtures Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2032 j.1. Fire Detection Systems Renewal Yes D5037 - Fire Alarm Systems Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2032	94,917
k.1. Built-in Equipment Renewal Yes E - Equipment and Furnishings Lifecycle 3- Due within 5 Years of Inspection Jun 30, 2027	1,328,833
1.2. Interior Finishes Renewal Yes C30 - Interior Finishes Lifecycle 1- Due within 1 Year of Inspection Jun 30, 2018	313,168
Total	3,451,202
Replacement Value Based on System Cost with Overheads	
Worksheet Costs	
Name Cost	
CRONAN_1618257923560 11,390,000	
Subtotal 11,390,000	
Overhead Costs 2	
Description Cost	
Total Replacement Value Based on Worksheet Cost with Overheads 11,390,000	
Total Replacement Value Based on Worksheet Cost with Overheads 11,390,000	

VFA, Inc. All rights reserved.

Nov 5, 2021

10:04:12 AM

Total Replacement Value Based on Worksheet Cost with Overheads

Copyright

Facilities and Infrastructure Detail Report

of

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical Colle	ge Facilities and Infrastructure	Heintz Center	Main Bldg (H1100	& H1400 Suites)	
Campus	Rochester Community and Technical Colle	ge - Facilities Facilities and Infrastructure Number	E26275T0169			
Facilities and Infrastructu	re are ordered byFacilities and Infrastructure Name				Currency: USD	
Statistics						
FCI Cost:		2,583,997 FCI:	0.0			
RI Cost:		5,681,569 RI :	0.1	7		
Total Requirements Cost:		5,681,568	M 00, 000			
Current Replacement Value: Type	Duilding	33,028,822 Date of most Recent Assessment:	May 28, 202	11		
Area	Building 78,234SF					
Use	Academic	Construction Type				
Floors	1	Historical Category	None			
110013	1	mstorical dategory	None			
Address 1	1926 COLLEGE VIEW ROAD EAST	City	ROCHESTER			
Address 2	-	State/Province/Region	-			
Year Constructed		1969 Zip/Postal Code	55904			
Year Renovated	-	Architect	-			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	0	Addition:	275T0276, 275T0886, 148C1714			
B3 Guidelines Apply:	No	Basement:	No			
Elevator Penthouse:	No	Model Type:	BASIC			
Mothball %:	0	Off Campus (Owned):	No			
MinnState Latitude:	N 44-01-16.2	MinnState Longitude:	W 092-26-11.8	3		
General Fund %:	100	MinnState Appraisal Value (2019):	28801000			
MinnState Contents Value (2019):	0	μ, ,				
Requirements						
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Cost
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle		of Inspection Jun 30, 2018	900,086
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years	of Inspection Jun 30, 2028	742,571
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years	of Inspection Jun 30, 2028	742,571
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle		of Inspection Jun 30, 2018	483,796
g.2. Plumbing Rough-in Renewal	Yes	D2020 - Domestic Water Distribution	Lifecycle		of Inspection Jun 30, 2019	1,200,115
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle		of Inspection Jun 30, 2032	375,036
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years	of Inspection Jun 30, 2023	1,237,393
Total						5,681,568
Replacement Value Based on System Cos	t with Overheads					
Worksheet Costs						
Name		Cost				
CRONAN_1618257923154		33,028,822				
Subtotal		33,028,822				
Overhead Costs						
Description		Cost				

33,028,822

VFA, Inc. All rights reserved.

Nov 5, 2021

10:04:12 AM

Copyright

Facilities and Infrastructure Detail Report

of

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Heintz Center	Phase I Add. (H1300 Suite)	
Campus	Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	E26275T0886		
	ered byFacilities and Infrastructure Name			Currency: USD	
Statistics				<u>_</u>	
FCI Cost:		3,940,192 FCI :	0.1		
RI Cost:		7,772,131 RI :	0.2	6	
Total Requirements Cost:		7,772,132			
Current Replacement Value:	Duilding	30,246,682 Date of most Recent Assessment:	May 28, 202	<u>1</u>	
Type Area	Building 70,000SF				
Use	Academic	Construction Type			
Floors	2	Historical Category	None		
110013	2	Thistorical category	140110		
Address 1	1926 COLLEGE VIEW ROAD EAST	City	ROCHESTER		
Address 2	-	State/Province/Region	-		
Year Constructed		1986 Zip/Postal Code	55904		
Year Renovated	-	Architect	-		
Ownership	Owned	Commission Date	-		
		Decommission Date	-		
Insured Value:	0	Addition:	X		
B3 Guidelines Apply:	No	Basement:	No		
Elevator Penthouse:	No	Model Type:	BASIC		
Mothball %:	0	Off Campus (Owned):	No		
MinnState Latitude:	N 44-01-14.8	MinnState Longitude:	W 092-26-15.4	L	
General Fund %:	100	MinnState Appraisal Value (2019):	26474000		
MinnState Contents Value (2019):	0				
Requirements					
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	44,965
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	805,354
c.1. Elevators Renewal	Yes	D10 - Conveying	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	302,008
d.1. HVAC - Equipment Renewal	Yes	D30 - HVAC	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2021	2,210,696
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	2,020,095
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	577,170
i.1. Fire Protection Systems Renewal	Yes	D40 - Fire Protection	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2026	369,120
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2032	335,564
I.2. Interior Finishes Renewal Total	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2023	1,107,160 7,772,132
Replacement Value Based on System Cost with O	verheads				
Worksheet Costs					
Name		Cost			
CRONAN_1618257923341		30,246,682			
Subtotal		30,246,682			
Overhead Costs					
Description		Cost			
		0			
Total Replacement Value Based on Worksheet Cost with Overheads		30,246,682			

VFA, Inc. All rights reserved.

Nov 5, 2021

10:04:12 AM

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Heintz Cente	er Workforce Add. (H1000 Su	ite)	
Campus	Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	E26148C171	4		
Facilities and Infrastructure are ordered byFacili	ties and Infrastructure Name			Currence	v: USD	
Statistics					•	
FCI Cost:		0 FCI:	0.0	0		
RI Cost:		1,822,883 RI :	0.2	0		
Total Requirements Cost:		1,822,883				
Current Replacement Value:		9,292,179 Date of most Recent Assessment:	May 28, 202	1		
Туре	Building					
Area	22,010SF					
Use	Administration	Construction Type				
Floors	1	Historical Category	None			
Address 1	2070 COLLEGE VIEW ROAD EAST	City	ROCHESTE	₹		
Address 2	-	State/Province/Region	-			
Year Constructed		2014 Zip/Postal Code	55904			
Year Renovated	-	Architect	TKDA			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	7515461	B3 Guidelines Apply:	Yes			
Basement:	No	Elevator Penthouse:	No			
Model Type:	BASIC	Mothball %:	0			
Off Campus (Owned):	No	MinnState Latitude:	N 44-01-15.1			
MinnState Longitude:	W 092-26-09.3	General Fund %:	15			
Lease %:	85	MinnState Appraisal Value (2019):	7889000			
MinnState Contents Value (2019):	0	Other %:	85			
Requirements						
Requirement Name	Renewal	Prime System	Category	•	Action Date	Estimated Cost
a.4. Roofing - MnSCU Standard Renewal	Yes	B30 - Roofing	Lifecycle	3- Due within 5 Years of Inspection		 1,474,760
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection	Jun 30, 2029	348,123
Total						1,822,883

Replacement Value Based on System Cost with Overheads

Worksheet Costs

Name	Cost
CRONAN_1618257922888	9,292,179
Subtotal	9,292,179
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	9,292,179

 Copyright
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	e Facilities and Infrastructure	Hill Theater		
Campus	Rochester Community and Technical College	e - Facilities Facilities and Infrastructure Number	r E26148C117	4	
Faciliti	es and Infrastructure are ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics	oo ana minadhadana ara dhadhaa ayr adminad ana minadhadhadhan hamb			ourrondy.	
		4 007 704 FO I.	0.44	<u> </u>	
FCI Cost: RI Cost:		1,007,794 FCI: 2,491,121 RI:	0.12		
Total Requirements Cost:		2,491,121 KI : 2,491,122	0.3		
Current Replacement Value:		8,134,140 Date of most Recent Assessment:	May 28, 202	1	
Туре	Building	0,104,140 Date of most Recent Assessment.	Way 20, 202	<u>'1</u>	
Area	19.267SF				
Use	Performing Arts	Construction Type			
Floors	2	Historical Category	None		
	-	···oto···ou. cutogory			
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTER	2	
Address 2	-	State/Province/Region	_		
Year Constructed		1974 Zip/Postal Code	55904		
Year Renovated	-	Architect	-		
Ownership	Owned	Commission Date	-		
		Decommission Date	-		
Insured Value:	6429289	B3 Guidelines Apply:	No		
Basement:	No	Elevator Penthouse:	No		
Model Type:	BASIC	Mothball %:	0		
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-48.8		
MinnState Longitude:	W 092-25-17.5	General Fund %:	100		
MinnState Appraisal Value (2019):	7690000	MinnState Contents Value (2019):	0		
Requirements					
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	221,668
d.1. HVAC - 1974 Air Handlers Renewal	Yes	D30 - HVAC	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	340,075
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	365,752
e.1. HVAC - Distribution Renewal	Yes	D3040 - Distribution Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2024	628,059
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	39,715
g.1. Plumbing Fixtures Renewal	Yes	D2010 - Plumbing Fixtures	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	101,598
g.2. Plumbing Rough-in Renewal	Yes	D2020 - Domestic Water Distribution	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2024	295,557
i.1. Fire Protection Systems Renewal	Yes	D40 - Fire Protection	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2032	101,598
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2031	92,362
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jan 1, 2019	213,316
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jan 1, 2019	60,948
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	30,474
Total					2,491,122

Replacement Value Based on System Cost with Overheads

Worksheet Costs

Name	Cost
CRONAN_1618257922653	8,134,140
Subtotal	8,134,140
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	8,134,140

 Copyright
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Total Replacement Value Based on Worksheet Cost with Overheads

Facilities and Infrastructure Detail Report By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Memorial Hall	
Campus	Rochester Community and Technical College - Facilit	ies Facilities and Infrastructure Number	E26148C2320	
Facilities and Infrastructure are ordered byFaci	lities and Infrastructure Name			Cı
Statistics				
FCI Cost:		0 FCI:	0.00	
RI Cost:		0 RI :	0.00	
Total Requirements Cost:				
Current Replacement Value:	·	6,670 Date of most Recent Assessment:	May 28, 2021	
Туре	Building			
Area	21,202SF			
Use	Academic	Construction Type	IBC - Type II B	
Floors	2	Historical Category		
Address 1	851 30th Avenue SE	City	ROCHESTER	
Address 2	-	State/Province/Region	-	
Year Constructed		2020 Zip/Postal Code	55904	
Year Renovated	-	Architect	Bentz Thompson Reitow	
Ownership	Owned	Commission Date	Jan 20, 2020	
		Decommission Date	-	
Insured Value:	0	B3 Guidelines Apply:	No	
Basement:	No	Elevator Penthouse:	No	
Off Campus (Owned):	No	General Fund %:	100	
MinnState Appraisal Value (2019):	0	MinnState Contents Value (2019):	0	
Requirements				
No data available.				
Replacement Value Based on System Cost with Overhead	s			
Worksheet Costs				
Name		Cost		
CRONAN_1618257900870	5,7	96,670		
Subtotal	5,7	96,670		
Overhead Costs				
Description		Cost		

 Copyright
 2021
 VFA, Inc. All rights reserved.
 Nov 5, 2021 10:04:12 AM
 Page
 # of

5,796,670

Subtotal

Description

Overhead Costs

Total Replacement Value Based on Worksheet Cost with Overheads

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	e Facilities and Infrastructure	Rochester	Regional Sports Cei	nter	
Campus	Rochester Community and Technical College	e - Facilities Facilities and Infrastructure Number	r E26275T12	02		
Facilities and Infrastructure	are ordered byFacilities and Infrastructure Name				Currency: USD	
Statistics	·				-	
FCI Cost:		5,147,462 FCI :	0.	10		
RI Cost:		11,002,248 RI :	0.	22		
Total Requirements Cost:		11,002,249				
Current Replacement Value:		49,786,039 Date of most Recent Assessment:	May 28, 20	21		
Туре	Building					
Area	115,220SF					
Use	Sports Facility - Field House	Construction Type				
Floors	1	Historical Category	None			
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTE	:R		
Address 2	-	State/Province/Region	-			
Year Constructed		2002 Zip/Postal Code	55904			
Year Renovated	-	Architect	-			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	38767147	B3 Guidelines Apply:	No			
Basement:	No	Elevator Penthouse:	No			
Model Type:	BASIC	Mothball %:	0			
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-57.	4		
MinnState Longitude:	W 092-25-21.5	MinnState Appraisal Value (2019):	44984000			
MinnState Contents Value (2019):	0	Other %:	100			
Requirements						
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Cost
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle		of Inspection Jun 30, 2032	1,325,612
c.1. Elevators Renewal	Yes	D10 - Conveying	Lifecycle		of Inspection Jun 30, 2027	497,105
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle		of Inspection Jun 30, 2022	3,325,077
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle		of Inspection Jun 30, 2032	2,375,055
g.1. Plumbing Fixtures Renewal	Yes	D2010 - Plumbing Fixtures	Lifecycle		of Inspection Jun 30, 2032	607,572
k.1. Built-in Equipment Renewal	Yes	E - Equipment and Furnishings	Lifecycle		of Inspection Jun 30, 2027	1,049,443
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	1- Due within 1 Year o	of Inspection Jun 30, 2018	1,822,385
Total						11,002,249
Replacement Value Based on System Cost	with Overheads					
Worksheet Costs						
Name		Cost				
CRONAN_1618257923466		49,786,039				
Outstand		40.706.020				

49,786,039

49,786,039

Cost 0

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Rochester Regional Stadium Don	ne	
Campus	Rochester Community and Technical College - I	Facilities Facilities and Infrastructure Number	r E26275T1203		
Facilities and Infrastructu	ure are ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics					
FCI Cost:		0 FCI:	0.00		
RI Cost:		1,940,519 RI :	0.00 0.63		
Total Requirements Cost:		1,940,519 KI. 1,940,519	0.63		
Current Replacement Value:		3,104,830 Date of most Recent Assessment:	May 28, 2021		
Type	Building	5,104,030 Date of most recent Assessment.	Way 20, 2021		
Area	88,000SF				
Use	Sports Facility - Dome	Construction Type			
Floors	1	Historical Category	None		
110010	'	rnotoriour outogory	110110		
Address 1	851 30th Avenue SE	City	ROCHESTER		
Address 2	-	State/Province/Region	-		
Year Constructed		2008 Zip/Postal Code	55904		
Year Renovated	-	Architect	Design/Build - Knutson/HGA		
Ownership	Owned	Commission Date	-		
•		Decommission Date	-		
Insured Value:	1492292	Addition:	148C1815,		
			275T2011		
B3 Guidelines Apply:	No	Basement:	No		
Elevator Penthouse:	No	Model Type:	SIMPLE		
Mothball %:	0	Off Campus (Owned):	No		
MinnState Appraisal Value (2019):	2938009	MinnState Contents Value (2019):	0		
Other %:	100				
Requirements					
Requirement Name	Renewal	Prime System	Category Priority	Action Date	Estimated Cost
b.2. Building Exteriors (Soft) Renewal	Yes	B20 - Exterior Enclosure		vithin 5 Years of Inspection Jun 30, 2028	1,349,926
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle 3- Due w	vithin 5 Years of Inspection Jun 30, 2028	337,482
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle 3- Due w	vithin 5 Years of Inspection Jun 30, 2028	168,741
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle 3- Due w	vithin 5 Years of Inspection Jun 30, 2023	84,370
Total					1,940,519

Replacement Value Based on System Cost with Overheads

Worksheet	Costs
-----------	-------

Name	Cost
CRONAN_1618257923497	3,104,830
Subtotal	3,104,830
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	3.104.830

 Copyright
 Nov 5, 2021
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Colleges or Universities

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Rochester Regional Stadium Entry Building

		- and an		egional cuatian and a canang	
Campus	Rochester Community and Technical (College - Facilities Facilities and Infrastructure Number	r E26148C181	5	
Facilities and Infrastructu	ure are ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics				,	
FCI Cost:		0 FCI :	0.0	0	
RI Cost:		32,709 RI :	0.0	4	
Total Requirements Cost:		32,709			
Current Replacement Value:		852,563 Date of most Recent Assessment:	May 28, 202	1	
Туре	Building			_	
Area	2,068SF				
Use	Sports Facility - Stadium	Construction Type			
Floors	1	Historical Category	None		
Address 1	851 30th Avenue SE	City	ROCHESTE	3	
Address 2	-	State/Province/Region	-		
Year Constructed		2015 Zip/Postal Code	55904		
Year Renovated	-	Architect	TKDA		
Ownership	Owned	Commission Date	-		
·		Decommission Date	-		
Insured Value:	673719	Addition:	Х		
B3 Guidelines Apply:	No	Basement:	No		
Elevator Penthouse:	No	Model Type:	BASIC		
Mothball %:	0	Off Campus (Owned):	No		
MinnState Appraisal Value (2019):	806755	MinnState Contents Value (2019):	0		
Other %:	100	,			
Requirements					
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2030	32,709
Total					32,709

Facilities and Infrastructure

Replacement Value Based on System Cost with Overheads

W	lo:	'ks	hee	et (Cos	t
---	-----	-----	-----	------	-----	---

Total Replacement Value Based on Worksheet Cost with Overheads	852,563	
	0	
Description	Cost	
Overhead Costs		
Subtotal	852,563	
CRONAN_1618257922935	852,563	

Rochester Community and Technical College

 Copyright
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Rochester Regional Stadium Gar	age (air-lock)		
Campus	Rochester Community and Technical College - Fa	acilities Facilities and Infrastructure Number	r E26275T2011			
Facilities and Infrastructure are ordered by Facilities	ies and Infrastructure Name			Currency: USD		
Statistics				•		
FCI Cost:		0 FCI:	0.00			
RI Cost:		6,053 RI :	0.02			
Total Requirements Cost:		6,053	0.02			
Current Replacement Value:		273,973 Date of most Recent Assessment:	May 28, 2021			
Туре	Building	.,.	· ,			
Area	563SF					
Use	Storage	Construction Type				
Floors	1	Historical Category	None			
	054.00# 4 05		DOGUEOTED			
Address 1	851 30th Avenue SE	City	ROCHESTER			
Address 2	-	State/Province/Region	-			
Year Constructed		2008 Zip/Postal Code	55904			
Year Renovated	-	Architect	Design/Build - Knutson/HGA			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	95507	Addition:	x			
B3 Guidelines Apply:	No	Basement:	No			
Elevator Penthouse:	No	Model Type:	BASIC			
Mothball %:	0	Off Campus (Owned):	No			
MinnState Appraisal Value (2019):	259252	MinnState Contents Value (2019):	0			
Other %:	100	,				
Requirements						
Requirement Name	Renewal	Prime System	Category Priori	y Action	Date E	stimated Cost
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation		within 5 Years of Inspection Jun 30,	2028	6,053
Total						6,053

Replacement Value Based on System Cost with Overheads

2021

Worksheet	Costs
-----------	-------

Copyright

Name	Cost
CRONAN_1618257923654	273,973
Subtotal	273,973
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	273,973

Nov 5, 2021

10:04:12 AM

VFA, Inc. All rights reserved.

Estimated Cost

103,361

By Facilities and Infrastructure Name

Action Date

3- Due within 5 Years of Inspection Jun 30, 2030

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Rochester Regional Stadium Support Building
Campus	Rochester Community and Technical College - Fac	ilities Facilities and Infrastructure Number	E26148C1915
Facilities and Infrastructure are ordered by Faciliti	es and Infrastructure Name		Currency: USD
Statistics			
FCI Cost:		0 FCI:	0.00
RI Cost:	1	03,361 RI :	0.04
Total Requirements Cost:	1	03,361	
Current Replacement Value:	2,6	94,147 Date of most Recent Assessment:	May 28, 2021
Туре	Building		
Area	6,535SF		
Use	Sports Facility - Stadium	Construction Type	
Floors	1	Historical Category	None
Address 1	851 30th Avenue SE	City	ROCHESTER
Address 2	-	State/Province/Region	
Year Constructed		2015 Zip/Postal Code	55904
Year Renovated	-	Architect	TKDA
Ownership	Owned	Commission Date	
		Decommission Date	-
Insured Value:	2128949	B3 Guidelines Apply:	No
Basement:	No	Elevator Penthouse:	No
Model Type:	BASIC	Mothball %:	0
Off Campus (Owned):	No	MinnState Appraisal Value (2019):	2549392
MinnState Contents Value (2019):	0	Other %:	100
Requirements			

Prime System

Replacement Value Based on System Cost with Overheads

W	orks	heet	Cos	ts
---	------	------	-----	----

Requirement Name

Name	Cost
CRONAN_1618257922982	2,694,147
Subtotal	2,694,147
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	2,694,147

Renewal

 Copyright
 2021
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of
 #

Overhead Costs

Total Replacement Value Based on Worksheet Cost with Overheads

Description

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities		Rochester Community and Technical College	Facilities and Infrastructure	Science & T	echnology Hall			
Campus		Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	E26148C169	93			
Fac	ilities and Infrastructure are ordered byFacilitie	es and Infrastructure Name			Currer	ıcy: USD		
Statistics	-					-		
FCI Cost:			1,101,109 FCI :	0.0	03			
RI Cost:			6,514,174 RI :	0.1	19			
Total Requirements Cost:			6,514,173					
Current Replacement Value:			34,971,998 Date of most Recent Assessment:	May 28, 202	21			
Туре		Building						
Area		58,004SF						
Use		Academic	Construction Type					
Floors		4	Historical Category	None				
Address 1		851 30TH AVENUE SOUTHEAST	City	ROCHESTE	R			
Address 2		-	State/Province/Region	_				
Year Constructed			1993 Zip/Postal Code	55904				
Year Renovated		-	Architect	_				
Ownership		Owned	Commission Date	_				
			Decommission Date	-				
Insured Value:		27232162	B3 Guidelines Apply:	No				
Basement:		Yes	Elevator Penthouse:	No				
Model Type:		COMPLEX	Mothball %:	0				
Off Campus (Owned):		No	MinnState Latitude:	N 44-00-51.0)			
MinnState Longitude:		W 092-25-19.1	General Fund %:	100				
MinnState Appraisal Value (2019):		26455000	MinnState Contents Value (2019):	0				
Requirements			,					
Requirement Name		Renewal	Prime System	Category	Priority	Action Date	Estimat	ed Cost
b.1. Building Exteriors (Hard) Renewal		Yes	B20 - Exterior Enclosure	Lifecycle	3- Due within 5 Years of Inspectio	n Jun 30, 2023		667,339
d.1. HVAC - Equipment Renewal		Yes	D30 - HVAC	Lifecycle	3- Due within 5 Years of Inspectio	n Jun 30, 2028	2,	,382,400
d.2. HVAC - Controls Renewal		Yes	D3060 - Controls and Instrumentation	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	1,	,101,109
f.1. Electrical Equipment Renewal		Yes	D50 - Electrical	Lifecycle	3- Due within 5 Years of Inspectio	n Jun 30, 2023		361,475
g.1. Plumbing Fixtures Renewal		Yes	D2010 - Plumbing Fixtures	Lifecycle	3- Due within 5 Years of Inspectio	n Jun 30, 2023		806,368
j.1. Fire Detection Systems Renewal		Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspectio	n Jun 30, 2031		278,058
I.2. Interior Finishes Renewal		Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2023		917,424
Total							6,	,514,173
Replacement Value Based	on System Cost with Overheads							
Worksheet Costs	on eyelem eyel min eyelmoude							
Name			Cost					
CRONAN_1618257922841			34,971,998					
Subtotal			34,971,998					
Junital			J+,J1 1,J30					

Cost 0

34,971,998

Copyright

Facilities and Infrastructure Detail Report

of

Page

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Singley Hall				
Campus	Rochester Community and Technical College -	Facilities Facilities and Infrastructure Number	E26148C046	8			
	ered byFacilities and Infrastructure Name			Currer	ıcy: USD		
Statistics				<u>_</u>			
FCI Cost:		1,458,294 FCI :	0.1				
RI Cost:		1,670,676 RI :	0.1	9			
Total Requirements Cost:		1,670,676					
Current Replacement Value:	D. Tata	8,697,541 Date of most Recent Assessment:	May 28, 202	<u>:1 </u>			
Туре	Building						
Area	21,097SF	Comptunation True					
Use	Academic 2	Construction Type	None				
Floors	2	Historical Category	None				
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTER	₹			
Address 2	-	State/Province/Region	-				
Year Constructed		1968 Zip/Postal Code	55904				
Year Renovated	-	Architect	-				
Ownership	Owned	Commission Date	-				
		Decommission Date	-				
Insured Value:	6772399	B3 Guidelines Apply:	No				
Basement:	No	Elevator Penthouse:	No				
Model Type:	BASIC	Mothball %:	0				
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-48.9)			
MinnState Longitude:	W 092-25-23.6	General Fund %:	100				
MinnState Appraisal Value (2019):	7501000	MinnState Contents Value (2019):	0				
Requirements							
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated	ed Cost
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	24	242,722
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	19	192,155
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	17	173,951
g.1. Plumbing Fixtures Renewal	Yes	D2010 - Plumbing Fixtures	Lifecycle	3- Due within 5 Years of Inspection	n Jun 30, 2028	11	111,248
g.2. Plumbing Rough-in Renewal	Yes	D2020 - Domestic Water Distribution	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	32	323,629
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection			101,134
k.1. Built-in Equipment Renewal	Yes	E - Equipment and Furnishings	Lifecycle	1- Due within 1 Year of Inspection			192,155
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018		333,682
Total						1,67	670,676
Replacement Value Based on System Cost with C)verheads						
Worksheet Costs							
		04					
Name CRONAN 1618257922372		Cost 8,697,541					
Subtotal		8,697,541					
Overhead Costs		-,,					
Description		Cost					
· · · · · · · · ·		0					
		0					

VFA, Inc. All rights reserved.

Nov 5, 2021

10:04:12 AM

47,938

By Facilities and Infrastructure Name

3- Due within 5 Years of Inspection Jun 30, 2026

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Building 01 - Main Campus East (south)	
Campus	Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	E26275T0101	
	Facilities and Infrastructure are ordered byFacilities and Infrastructure Name		Currency: USD	
Statistics	•			
FCI Cost:		0 FCI:	0.00	
RI Cost:		47,938 RI :	0.20	
Total Requirements Cost:		47,938		
Current Replacement Value:		239,689 Date of most Recent Assessment:	May 28, 2021	
Туре	Building			
Area	1,000SF			
Use	Storage	Construction Type		
Floors	1	Historical Category	None	
Address 1	851 30th Avenue SE	City	ROCHESTER	
Address 2		State/Province/Region	-	
Year Constructed		2001 Zip/Postal Code	55904	
Year Renovated		Architect	-	
Ownership	Owned	Commission Date	-	
		Decommission Date	-	
Insured Value:	67453	B3 Guidelines Apply:	No	
Basement:	No	Elevator Penthouse:	No	
Model Type:	SMALL	Mothball %:	0	
Off Campus (Owned):	No	General Fund %:	100	
MinnState Appraisal Value (20	19) : 226810	MinnState Contents Value (2019):	0	
Requirements				
Requirement Name	Renewal	Prime System	Category Priority Action Da	ate Estimated Cost

F10 - Special Construction

Replacement Value Based on System Cost with Overheads

W	or	ks	heet	C	osts
---	----	----	------	---	------

m.1. All Renewal - SMALL Renewal

Name	Cost
CRONAN_1618257923091	239,689
Subtotal	239,689
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	239,689

 Copyright
 2021
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Estimated Cost

47,938

By Facilities and Infrastructure Name

Action Date

3- Due within 5 Years of Inspection Jun 30, 2026

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Building 02 - Main Campus East (north)
Campus	Rochester Community and Technical College - Faci	lities Facilities and Infrastructure Number	E26275T0201
Facilities and Infrastructure are ordered by Facilities	es and Infrastructure Name		Currency: USD
Statistics			
FCI Cost:		0 FCI:	0.00
RI Cost:	4	47,938 RI:	0.20
Total Requirements Cost:		47,938	
Current Replacement Value:	23	39,689 Date of most Recent Assessment:	May 28, 2021
Туре	Building		
Area	1,000SF		
Use	Storage	Construction Type	
Floors	1	Historical Category	None
Address 1	851 30th Avenue SE	City	ROCHESTER
Address 2	-	State/Province/Region	-
Year Constructed		2001 Zip/Postal Code	55904
Year Renovated	-	Architect	-
Ownership	Owned	Commission Date	-
		Decommission Date	-
Insured Value:	67453	B3 Guidelines Apply:	No
Basement:	No	Elevator Penthouse:	No No
Model Type:	SMALL	Mothball %:	0
Off Campus (Owned):	No	General Fund %:	100
MinnState Appraisal Value (2019):	226810	MinnState Contents Value (2019):	0
Requirements			

Prime System

Replacement Value Based on System Cost with Overheads

Worksheet C	osts
-------------	------

m.1. All Renewal - SMALL Renewal

Name	Cost
CRONAN_1618257923169	239,689
Subtotal	239,689
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	239.689

Renewal

Copyright 2021 VFA, Inc. All rights reserved. Nov 5, 2021 10:04:12 AM Page # of #

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Bui	ilding 04 - Heintz (brown - so	outh)	
Campus	Rochester Community and Technical College - F	Facilities Facilities and Infrastructure Number	E26275T078	32		
Facilities and Infrastructure are ordered by Facilities	ties and Infrastructure Name			Curren	cy: USD	
Statistics					,	
FCI Cost:		27,137 FCI :	0.1	18		
RI Cost:		27,137 RI :	0.1			
Total Requirements Cost:		27,137				
Current Replacement Value:		153,401 Date of most Recent Assessment:	May 28, 202	21		
Туре	Building					
Area	1,000SF					
Use	Storage	Construction Type				
Fioors	1	Historical Category	None			
Address 1	1926 College View Road E	City	ROCHESTE	:R		
Address 2	-	State/Province/Region	-			
Year Constructed		1997 Zip/Postal Code	55904			
Year Renovated	-	Architect	-			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	37971	B3 Guidelines Apply:	No			
Basement:	No	Elevator Penthouse:	No			
Model Type:	SIMPLE	Mothball %:	0			
Off Campus (Owned):	No	General Fund %:	100			
MinnState Appraisal Value (2019):	145158	MinnState Contents Value (2019):	0			
Requirements						
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	3- Due within 5 Years of Inspection	·	11,797
b.2. Building Exteriors (Soft) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	1- Due within 1 Year of Inspection	Jun 30, 2018	15,340
Total						27,137

Replacement Value Based on System Cost with Overheads

Worksheet Costs

Name	Cost
CRONAN_1618257923294	153,401
Subtotal	153,401
Overhead Costs	
Description	Cos
	C
Total Replacement Value Based on Worksheet Cost with Overheads	153.401

 Copyright
 2021
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Bui	lding 05 - Heintz (brown - no	orth)	
Campus	Rochester Community and Technical College - F	acilities Facilities and Infrastructure Number	E26275T099	00		
Facilities and Infrastructure are ordered by Facilities	ties and Infrastructure Name			Currer	ncy: USD	
Statistics					-	
FCI Cost:		0 FCI:	0.0	00		
RI Cost:		27,137 RI :	0.1			
Total Requirements Cost:		27,137				
Current Replacement Value:		153,401 Date of most Recent Assessment:	May 28, 202	21		
Туре	Building					
Area	1,000SF					
Use	Storage	Construction Type				
Floors	1	Historical Category	None			
				_		
Address 1	1926 College View Road E	City	ROCHESTE	R		
Address 2	-	State/Province/Region	-			
Year Constructed		1998 Zip/Postal Code	55904			
Year Renovated	-	Architect	-			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	28977	B3 Guidelines Apply:	No			
Basement:	No	Elevator Penthouse:	No			
Model Type:	SIMPLE	Mothball %:	0			
Off Campus (Owned):	No	General Fund %:	100			
MinnState Appraisal Value (2019):	145158	MinnState Contents Value (2019):	0			
Requirements		,				
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	3- Due within 5 Years of Inspectio	n Jun 30, 2023	 11,797
b.2. Building Exteriors (Soft) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	3- Due within 5 Years of Inspectio	n Jun 30, 2023	15,340
Total						27,137

Replacement Value Based on System Cost with Overheads

W	lo:	'ks	hee	et (Cos	t
---	-----	-----	-----	------	-----	---

Name	Cost
CRONAN_1618257923372	153,401
Subtotal	153,401
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	153,401

 Copyright
 Nov 5, 2021
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Colleges or Universities

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Storage Building 06 - Youth Baseball

Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	r E26275T109	04		
Facilities and Infrastructure Name			Currer	ncy: USD	
	41,418 FCI :	0.2	20		
	41,418 RI :	0.2	20		
	41,418				
	207,091 Date of most Recent Assessment:	May 28, 202	21		
Building			_		
864SF					
Storage	Construction Type				
1	Historical Category	None			
2591 College Pkwy SE	City	ROCHESTE	R		
Rocheser Regional Youth Baseball Complex	State/Province/Region	_			
	1994 Zip/Postal Code	55904			
-	Architect	-			
Owned	Commission Date	-			
	Decommission Date	-			
28977	B3 Guidelines Apply:	No			
No	Elevator Penthouse:	No			
SMALL	Mothball %:	0			
No	General Fund %:	100			
100	MinnState Appraisal Value (2019):	195964			
0					
0					
·					
Renewal	Prime System	Category	Priority	Action Date	Estin
1 -	Building 864SF Storage 1 2591 College Pkwy SE Rocheser Regional Youth Baseball Complex - Owned 28977 No SMALL No	### Apply 1 ### Apply 2 ### Apply 2 ### Apply 3 ### Apply 4 ### Apply 4 ### Apply 4 ### Apply 4 ### Apply 6 ### A	A	41,418 FCI: 0.20	A

Facilities and Infrastructure

Replacement Value Based on System Cost with Overheads

۸	lο	rks	he	et	Co	st
---	----	-----	----	----	----	----

· · · · · · · · · · · · · · · · · · ·	
CRONAN_1618257923388	207,091
Subtotal	207,091
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	207,091

Rochester Community and Technical College

 Copyright
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Colleges or Universities

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Storage Building 07 - Youth Football

Campus	Rochester Community and Technical College	e - Facilities Facilities and Infrastructure Number	r E26275T119	95		
Facilities and Infrastructi	ure are ordered byFacilities and Infrastructure Name			Curre	ency: USD	
Statistics						
FCI Cost:		46,020 FCI :	0.2			
RI Cost:		46,020 RI :	0.2	20		
Total Requirements Cost:		46,020				
Current Replacement Value:		230,101 Date of most Recent Assessment:	May 28, 20	21		
Туре	Building					
Area	960SF					
Use	Storage	Construction Type				
Floors	1	Historical Category	None			
Address 1	1926 College View Road E	City	ROCHESTE	:R		
Address 2	Rochester Regional Youth Football Complex	State/Province/Region	-			
Year Constructed	•	1995 Zip/Postal Code	55904			
Year Renovated	-	Architect	-			
Ownership	Owned	Commission Date	-			
		Decommission Date	-			
Insured Value:	0	B3 Guidelines Apply:	No			
Basement:	No	Elevator Penthouse:	No			
Model Type:	SMALL	Mothball %:	0			
Off Campus (Owned):	No	General Fund %:	100			
Lease %:	100	MinnState Appraisal Value (2019):	217737			
MinnState Contents Value (2019):	0	,				
Requirements						
Requirement Name	Renewal	Prime System	Category	Priority	Action Date	Estimated Co
m.1. All Renewal - SMALL Renewal	Yes	F10 - Special Construction	Lifecycle	2- Due within 2 Years of Inspect	ion Jun 30, 2020	46,0
Total						46,0

Facilities and Infrastructure

Rochester Community and Technical College

Replacement Value Based on System Cost with Overheads

Name	Cost
CRONAN_1618257923419	230,101
Subtotal	230,101
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	230,101

 Copyright
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Bu	ilding 08 - Heintz (large)			
Campus	Rochester Community and Technical College -	Facilities Facilities and Infrastructure Number	E26275T170	00			
Facilities and Infrastructure are ordered byFacili	ities and Infrastructure Name			Curren	cy: USD		
Statistics					•		
FCI Cost:		62,587 FCI :	0.	10			
RI Cost:		110,720 RI :	0.				
Total Requirements Cost:		110,720					
Current Replacement Value:		625,875 Date of most Recent Assessment:	May 28, 20	21			
Туре	Building						
Area	4,080SF						
Use	Storage	Construction Type					
Floors	1	Historical Category	None				
Address 1	1926 College View Road E	City	ROCHESTE	:R			
Address 2	-	State/Province/Region	-				
Year Constructed		2002 Zip/Postal Code	55904				
Year Renovated	-	Architect	-				
Ownership	Owned	Commission Date	-				
		Decommission Date	-				
Insured Value:	28977	B3 Guidelines Apply:	No				
Basement:	No	Elevator Penthouse:	No				
Model Type:	SIMPLE	Mothball %:	0				
Off Campus (Owned):	No	General Fund %:	100				
MinnState Appraisal Value (2019):	592246	MinnState Contents Value (2019):	0				
Requirements							
Requirement Name	Renewal	Prime System	Category	Priority	Action Date		Estimated Cost
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	Yes	B30 - Roofing	Lifecycle	3- Due within 5 Years of Inspection	*	·	48,133
b.2. Building Exteriors (Soft) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	3- Due within 5 Years of Inspection	Jun 30, 2022		62,587
Total							110,720

Replacement Value Based on System Cost with Overheads

۸	lο	rks	he	et	Co	st
---	----	-----	----	----	----	----

Name	Cost
CRONAN_1618257923591	625,875
Subtotal	625,875
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	625.875

 Copyright
 2021
 VFA, Inc. All rights reserved.
 Nov 5, 2021
 10:04:12 AM
 Page
 # of #

Estimated Cost

47,938

By Facilities and Infrastructure Name

Action Date

3- Due within 5 Years of Inspection Jun 30, 2031

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Building 09 - Heint	z (
Campus	Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	E26148C1506	
Facilities and Infrastructure are ordered	byFacilities and Infrastructure Name			
Statistics				
FCI Cost:		0 FCI :	0.00	
RI Cost:		47,938 RI :	0.20	
Total Requirements Cost:		47,938		
Current Replacement Value:	5.75	239,689 Date of most Recent Assessment:	May 28, 2021	
Туре	Building			
Area Use	1,000SF Storage	Construction Type		
Floors	1	Historical Category	None	
Address 1	1926 College View Road E	City	ROCHESTER	
Address 2	-	State/Province/Region	-	
Year Constructed		2006 Zip/Postal Code	55904	
Year Renovated	<u>.</u>	Architect	-	
Ownership	Owned	Commission Date	-	
		Decommission Date	-	
Insured Value:	0	B3 Guidelines Apply:	No	
Basement:	No	Elevator Penthouse:	No	
Model Type:	SMALL	Mothball %:	0	
Off Campus (Owned):	No	General Fund %:	100	
MinnState Appraisal Value (2019):	226810	MinnState Contents Value (2019):	0	
Requirements				

Prime System

F10 - Special Construction

Category

Priority

Replacement Value Based on System Cost with Overheads

Worksheet 0	Costs
-------------	-------

m.1. All Renewal - SMALL Renewal

Name	Cost
CRONAN_1618257922732	239,689
Subtotal	239,689
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	239,689

Renewal

Copyright 2021 VFA, Inc. All rights reserved. Nov 5, 2021 10:04:12 AM Page # of #

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Bu	ilding 10 - Youth Soccer	
Campus	Rochester Community and Technical College - I	Facilities Facilities and Infrastructure Number	r E26275T20	08	
Facilities and Infrastructur	re are ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics	•				
FCI Cost:		0 FCI:	0.	00	
RI Cost:		16,299 RI :	0.	11	
Total Requirements Cost:		16,299			
Current Replacement Value:		153,401 Date of most Recent Assessment:	May 28, 20	21	
Туре	Building				
Area	1,000SF				
Use	Storage	Construction Type			
Floors	1	Historical Category	None		
Address 1	2150 College View Road E	City	ROCHESTE	R	
Address 2	Faud Monsour Soccer Complex	State/Province/Region	-		
Year Constructed		2008 Zip/Postal Code	55904		
Year Renovated	-	Architect	-		
Ownership	Owned	Commission Date	-		
		Decommission Date	-		
Insured Value:	0	B3 Guidelines Apply:	No		
Basement:	No	Elevator Penthouse:	No		
Model Type:	SIMPLE	Mothball %:	0		
Off Campus (Owned):	No	General Fund %:	100		
Lease %:	100	MinnState Appraisal Value (2019):	145158		
MinnState Contents Value (2019):	0				
Requirements					
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
b.2. Building Exteriors (Soft) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	15,340
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2023	959
Total					16,299
Replacement Value Based on System Cos	t with Overheads				
•	t with Overheads				
Worksheet Costs					

CRONAN_101025/925022	153,401
Subtotal	153,401
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	153,401

Facilities and Infrastructure Detail Report By Facilities and Infrastructure Name

Colleges or Universities	Roc	chester Community and Technical College	Facilities and Infrastructure	Storage Building 11 -	Heintz (grounds)
Campus	Roc	chester Community and Technical College - Facilities	Facilities and Infrastructure Number	E26275T1309	
	Facilities and Infrastructure are ordered byFacilities and	I Infrastructure Name			Currency: USD
Statistics	·				-
FCI Cost:			0 FCI:	0.00	
RI Cost:			0 RI:	0.00	
Total Requirements Cost:					
Current Replacement Value:		,	4 Date of most Recent Assessment:	May 28, 2021	
Туре		lding			
Area	5009				
Use	Stor	rage	Construction Type		
Floors	1		Historical Category	None	
Address 1	1920	26 College View Road E	City	ROCHESTER	
Address 2	-	-	State/Province/Region	-	
Year Constructed		200	9 Zip/Postal Code	55904	
Year Renovated	-		Architect	-	
Ownership	Owr	ned	Commission Date	-	
			Decommission Date	-	
Insured Value:	0		B3 Guidelines Apply:	No	
Basement:	No		Elevator Penthouse:	No	
Model Type:	SMA	ALL	Mothball %:	0	
Off Campus (Owned):	No		General Fund %:	100	
MinnState Appraisal Value (2019):	113-	405	MinnState Contents Value (2019):	0	
Requirements			,		

No data available.

Replacement Value Based on System Cost with Overheads

Worksheet Costs

Name	Cost
CRONAN_1618257923575	119,844
Subtotal	119,844
Overhead Costs	
Description	Cost
	0
Total Replacement Value Based on Worksheet Cost with Overheads	119,844

Copyright 2021 VFA, Inc. All rights reserved. Nov 5, 2021 10:04:12 AM Page

e.1. HVAC - Gas Fired Renewal

Description

Facilities and Infrastructure Detail Report

Estimated Cost

73,898 **73,898**

By Facilities and Infrastructure Name

Action Date

3- Due within 5 Years of Inspection Apr 27, 2031

Priority

Category

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Storage Building 12 - Youth Fa	ıs
Campus	Rochester Community and Technical College - Fac	cilities Facilities and Infrastructure Number	r E26257T2218	
Facilities and Infrastructure are ordered byFacil	ities and Infrastructure Name			
Statistics				
FCI Cost:		0 FCI :	0.00	
RI Cost:		73,898 RI :	0.11	
Total Requirements Cost:		73,898		
Current Replacement Value:		678,141 Date of most Recent Assessment:	May 28, 2021	
Type	Building			
Area Use	2,080SF Storage	Construction Type	IBC - Type V B	
Floors	1	Historical Category	IDO - Type v D	
Address 1	Hwy. 14 E	City	ROCHESTER	
Address 2	Rochester Regional Youth Fast Pitch Softball Complex		-	
Year Constructed		2018 Zip/Postal Code	55904	
Year Renovated	-	Architect	Widseth Smith Nolting	
Ownership	Owned	Commission Date	-	
		Decommission Date	-	
Insured Value:	0	B3 Guidelines Apply:	No	
Basement:	No	Elevator Penthouse:	No	
Off Campus (Owned):	No	General Fund %:	100	
Lease %:	100	MinnState Appraisal Value (2019):	0	
MinnState Contents Value (2019):	0			
Requirements				

Prime System

Cost 678,141 **678,141**

Cost

D3050 - Terminal and Package Units

Replacement Value Based on System Cost with Overheads

Worksheet Costs		
Name		
CRONAN_1618257900838		
Subtotal		
Overhead Costs		

Total Replacement Value Based on Worksheet Cost with Overheads	678,141	

Renewal

Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:04:12 AM	Page	# of #
Copyright	2021	VI 7 t, IIIO. 7 til rigitto reserved.	1404 0, 202 1	10.04.12710	i ugo	" 01 "

Overhead Costs

Total Replacement Value Based on Worksheet Cost with Overheads

Description

Facilities and Infrastructure Detail Report

By Facilities and Infrastructure Name

Colleges or Universities	Rochester Community and Technical College	Facilities and Infrastructure	Student Serv	ces	
Campus	Rochester Community and Technical College	- Facilities Facilities and Infrastructure Number	r E26148C1073		
Facilities and Infrastructure	e are ordered byFacilities and Infrastructure Name			Currency: USD	
Statistics	·			•	
FCI Cost:		206,892 FCI:	0.01		
RI Cost:		2,695,998 RI :	0.14		
Total Requirements Cost:		2,695,998			
Current Replacement Value:		18,729,168 Date of most Recent Assessment:	May 28, 2021		
Туре	Building				
Area	45,430SF				
Use	Administration	Construction Type			
Floors	3	Historical Category	None		
Address 1	851 30TH AVENUE SOUTHEAST	City	ROCHESTER		
Address 2	-	State/Province/Region	-		
Year Constructed		1973 Zip/Postal Code	55904		
Year Renovated		1993 Architect	-		
Ownership	Owned	Commission Date	-		
·		Decommission Date	-		
Insured Value:	14584477	B3 Guidelines Apply:	No		
Basement:	No	Elevator Penthouse:	No		
Model Type:	BASIC	Mothball %:	0		
Off Campus (Owned):	No	MinnState Latitude:	N 44-00-51.2		
MinnState Longitude:	W 092-25-20.4	General Fund %:	100		
MinnState Appraisal Value (2019):	15739000	MinnState Contents Value (2019):	0		
Requirements					
Requirement Name	Renewal	Prime System	Category	Priority Action Date	Estimated Cost
b.1. Building Exteriors (Hard) Renewal	Yes	B20 - Exterior Enclosure	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2023	522,674
d.1. HVAC - Equipment Renewal	Yes	D30 - HVAC	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2028	696,899
d.2. HVAC - Controls Renewal	Yes	D3060 - Controls and Instrumentation	Lifecycle	1- Due within 1 Year of Inspection Jun 30, 2018	206,892
f.1. Electrical Equipment Renewal	Yes	D50 - Electrical	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2023	93,646
g.1. Plumbing Fixtures Renewal	Yes	D2010 - Plumbing Fixtures	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2023	239,559
j.1. Fire Detection Systems Renewal	Yes	D5037 - Fire Alarm Systems	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2031	217,781
I.2. Interior Finishes Renewal	Yes	C30 - Interior Finishes	Lifecycle	3- Due within 5 Years of Inspection Jun 30, 2024	718,547
Total					2,695,998
Replacement Value Based on System Cost	with Overheads				
Worksheet Costs					
N		04			

18,729,168

18,729,168

Cost 0

5 Yr Renewal Report

By Category

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Art Hall-E26148C0972

Reporting Currency : USD

Prime System :All

Requirement Priority:
Requirement Category: All
Requirements Included: All

Requirements Included: All								
Category	Requirement Name	Prime System	Priority Syste	em Group Action	n Year Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	g.2. Plumbing Rough-in Renewal	D2020 - Domestic Water Distribution	3- Due within 5 Years of Inspection Pluml	bing System 2022	Jun 30, 202	2	Open g.2. Plumbing Rough-in	147,050
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection HVAC	C System 2028	Jun 30, 202	3	Open d.2. HVAC - Controls	87,311
Lifecycle	e.1. HVAC - Distribution Renewal	D3040 - Distribution Systems	3- Due within 5 Years of Inspection HVAC	C System 2022	Jun 30, 202	2	Open e.1. HVAC - Distribution	312,481
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection Interio	or Construction and Conveyance 2028	Jun 30, 202	3	Open I.2. Interior Finishes	75,809
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection Electr	rical System 2024	Jun 30, 2024	4	Open j.1. Fire Detection Systems	45,953
							Lifecycle	668,604
							Art Hall-E26148C0972	668,604
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	Page	1	of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Atrium-E26148C1593

Reporting Currency : USD

Prime System :All

Requirement Priority : Requirement Category : All Requirements Included: All

Requirements included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2031	Jun 30, 2031	Open j.1. Fire Detection Systems	160,898
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	Exterior Enclosure	2023	Jun 30, 2023	Open b.1. Building Exteriors (Hard)	386,156
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	3- Due within 5 Years of Inspection	n Electrical System	2023	Jun 30, 2023	Open f.1. Electrical Equipment	103,779
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection	Plumbing System	2023	Jun 30, 2023	Open g.1. Plumbing Fixtures	176,988
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2023	Jun 30, 2023	Open I.2. Interior Finishes	265,434
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	3- Due within 5 Years of Inspection	n HVAC System	2028	Jun 30, 2028	Open d.1. HVAC - Equipment	514,874
							Lifecycle	1,608,129
							Atrium-E26148C1593	1,608,129
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	1 10:49:30 A	М	Page	2 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Career and Technical Education Center-E26148C2016

Reporting Currency : USD

Prime System :All
Requirement Priority :
Requirement Category : All
Requirements Included: All

Requirements included: All Category	Requirement Name	Prime System	Priority System	n Group Actio	on Year Action Date Fi	nish Date Status Linked System	Requirement Cost
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection Interior	Construction and Conveyance 2031	Jun 30, 2031	Open I.2. Interior Finish	es 302,365
						Lifed	ycle 302,365
					Career and T	echnical Education Center-E26148C	2016 302,365
Oznacials	0004	MEA In a All sights assessed	Nov. 5, 0004	40:40:00 AM	D	0 -4	00
Copyright	2021	VFA, Inc. All rights reserved	. Nov 5, 2021	10:49:30 AM	Page	3 of	38

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Central Chiller Plant-E26148C2420

Reporting Currency: USD

Prime System :All

Requirement Priority: 3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:49:30 AM Page 4 of #

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Coffman Hall-E26148C0268

Reporting Currency : USD

Prime System :All

Requirement Priority: 3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentatio	3- Due within 5 Years of Inspection	HVAC System	2031	Jun 30, 2031		Open d.2. HVAC - Controls	177,361
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection	Plumbing System	2020	Jan 1, 2020		Open g.1. Plumbing Fixtures	278,118
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2031	Jun 30, 2031		Open j.1. Fire Detection Systems	89,576
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	3- Due within 5 Years of Inspection	Fire Protection	2029	Jun 30, 2029		Open i.1. Fire Protection System	s 98,534
								Lifecyo	ele 643,589
								Coffman Hall-E26148C02	68 643,589
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM		Page	5	of 3	38

3- Due within 5 Years of Inspection

2021

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: College Center-E26148C0872

Reporting Currency : USD

Prime System :All

Copyright

Requirement Priority : Requirement Category : All

Requirements Included: All									
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	g.2. Plumbing Rough-in - 1972 Original Renewal	D2020 - Domestic Water Distribution	3- Due within 5 Years of Inspection	Plumbing System	2022	Jun 30, 2022		Open g.2. Plumbing Rough-in - 1972 Original	523,035
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2023	Jun 30, 2023		Open I.2. Interior Finishes	606,692
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2028	Jun 30, 2028		Open d.2. HVAC - Controls	809,070
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2031	Jun 30, 2031		Open j.1. Fire Detection Systems	204,311
Lifecycle	e.1. HVAC - Distribution Renewal	D3040 - Distribution Systems	3- Due within 5 Years of Inspection	HVAC System	2022	Jun 30, 2022		Open e.1. HVAC - Distribution	1,389,312
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	3- Due within 5 Years of Inspection	Fire Protection	2032	Jun 30, 2032		Open i.1. Fire Protection Systems	224,742
								Lifecycle	3,757,162
								College Center-E26148C0872	3,757,162

Nov 5, 2021

10:49:30 AM

Page

6 of

38

VFA, Inc. All rights reserved.

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: East Hall-E26148C1386

Reporting Currency : USD

Prime System :All

Requirement Priority : Requirement Category : All Requirements Included: All

Requirements included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	n 3- Due within 5 Years of Inspecti	on HVAC System	2028	Jun 30, 2028	Open d.2. HVAC - Controls	642,719
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	3- Due within 5 Years of Inspecti	on HVAC System	2021	Jun 30, 2021	Open d.1. HVAC - Equipment	256,114
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	3- Due within 5 Years of Inspecti	on Fire Protection	2026	Jun 30, 2026	Open i.1. Fire Protection Systems	178,533
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspecti	on Electrical System	2031	Jun 30, 2031	Open j.1. Fire Detection Systems	162,303
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	3- Due within 5 Years of Inspecti	on HVAC System	2021	Jun 30, 2021	Open d.1. HVAC - Equipment	597,599
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspecti	on Interior Construction and Conv	eyance 2023	Jun 30, 2023	Open I.2. Interior Finishes	535,502
							Lifecycle	2,372,770
							East Hall-E26148C1386	2,372,770
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 20	21 10:49:	:30 AM	Page	7 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Endicott Hall-E26148C0368

Reporting Currency : USD

Prime System :All

Requirement Priority :

Requirement Category : All

Requirements Included: All										
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status L	inked System	Requirement Cost
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2023	Jun 30, 2023		Open I.	2. Interior Finishes	15,246
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2028	Jun 30, 2028		Open I.	2. Interior Finishes	289,681
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	3- Due within 5 Years of Inspection	Fire Protection	2032	Jun 30, 2032		Open i.	1. Fire Protection Systems	101,661
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2028	Jun 30, 2028		Open d	I.2. HVAC - Controls	365,980
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection	Plumbing System	2028	Jun 30, 2028		Open g	1.1. Plumbing Fixtures	101,661
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2031	Jun 30, 2031		Open j.	1. Fire Detection Systems	92,419
									Lifecycle	966,648
								E	Indicott Hall-E26148C0368	966,648
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AI	M	Page	8	3 of	38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Goddard Library-E26148C0168

Reporting Currency : USD

Prime System :All

Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Voor	Action Date Finish Date	Status Linked System	Requirement Cost
Category	- 1	· · · / · · ·	•	•			· · · · · · · · · · · · · · · · · · ·	
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	n HVAC System	2023	Jun 30, 2023	Open d.2. HVAC - Controls	350,546
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	n Electrical System	2031	Jun 30, 2031	Open j.1. Fire Detection Systems	184,498
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	3- Due within 5 Years of Inspection	n Fire Protection	2029	Jun 30, 2029	Open i.1. Fire Protection Systems	202,948
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	n Interior Construction and Conveyanc	e 2025	Jun 30, 2025	Open I.2. Interior Finishes	608,732
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	3- Due within 5 Years of Inspection	n Equipment and Furnishings	2028	Jun 30, 2028	Open k.1. Built-in Equipment	350,546
							Lifecycle	1,697,270
							Goddard Library-E26148C0168	1,697,270
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	10:49:30 A	М	Page	9 of 38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Grounds Storage Garage-E26148C2119

Reporting Currency : USD Prime System :All Requirement Priority : Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status Li	inked System	Requirement Cost
Lifecycle	Fire Alarm System Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	n Electrical System	2029	Jan 1, 2029		Open Fi	ire Alarm System	15,604
									Lifecycle	15,604
							Grounds Stor	age Gara	ge-E26148C2119	15,604
Copyright	2021	VFA, Inc. All rights reserved	I. Nov 5, 202	1 10:49:30 AM		Page	10	of	38	
.,, c			·			·				

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Health Science Hall-E26148C0570

Reporting Currency : USD

Prime System :All

Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	c.1. Elevators Renewal	D10 - Conveying	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2032	Jun 30, 2032	Open c.1. Elevators	176,890
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	3- Due within 5 Years of Inspection	Equipment and Furnishings	2032	Jun 30, 2032	Open k.1. Built-in Equipment	373,435
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	3- Due within 5 Years of Inspection	Exterior Enclosure	2032	Jun 30, 2032	Open a.5. Roofing - Builit-up, Membrane, Cedar	239,909
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2027	Jun 30, 2027	Open j.1. Fire Detection Systems	196,545
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2022	Jun 30, 2022	Open I.2. Interior Finishes	648,479
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2027	Jun 30, 2027	Open d.2. HVAC - Controls	373,435
							Lifecycle	2,008,693
							Health Science Hall-E26148C0570	2,008,693
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	Л	Page 1	1 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center 76 Rem. & Add. (H1100 Suite)-E26275T0276

Reporting Currency : USD Prime System :All Requirement Priority : Requirement Category : All

Requirements Included: All									
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date St	atus Linked System	Requirement Cost
Lifecycle	e.1. HVAC - Distribution Renewal	D3040 - Distribution Systems	3- Due within 5 Years of Inspecti	on HVAC System	2026	Jun 30, 2026	Ор	en e.1. HVAC - Distribution	456,367
Lifecycle	g.2. Plumbing Rough-in Renewal	D2020 - Domestic Water Distribution	3- Due within 5 Years of Inspecti	on Plumbing System	2026	Jun 30, 2026	Op	en g.2. Plumbing Rough-in	214,761
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspecti	on Electrical System	2032	Jun 30, 2032	Op	en j.1. Fire Detection Systems	67,113
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspecti	on HVAC System	2028	Jun 30, 2028	Op	en d.2. HVAC - Controls	127,514
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspecti	on Interior Construction and Convey	ance 2023	Jun 30, 2023	Op	en I.2. Interior Finishes	221,432
								Lifecycle	1,087,187
						Heintz Ce	enter 76 Rem. & A	dd. (H1100 Suite)-E26275T0276	1,087,187
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 20	21 10:49:3	0 AM	Page	12 o	f 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Diesel Truck. (H1100 Suite)-E26275T0379

Reporting Currency : USD

Prime System :All Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Da	te Status Linked System	Requirement Cost
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection I	nterior Construction and Conveyance	2023	Jun 30, 2023	Open I.2. Interior Finishes	7,938
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2032	Jun 30, 2032	Open j.1. Fire Detection System	s 15,877
Lifecycle	g.2. Plumbing Rough-in Renewal	D2020 - Domestic Water Distribution	3- Due within 5 Years of Inspection F	Plumbing System	2029	Jun 30, 2029	Open g.2. Plumbing Rough-in	18,259
Lifecycle	e.1. HVAC - Distribution Renewal	D3040 - Distribution Systems	3- Due within 5 Years of Inspection I	HVAC System	2029	Jun 30, 2029	Open e.1. HVAC - Distribution	47,631
							Lifecycle	e 89,705
						Heintz Center Die	sel Truck. (H1100 Suite)-E26275T037	9 89,705
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AN	Л	Page	13 of 38	3
						-		

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Horticulture (H1200 Suite)-E26275T1302

Reporting Currency : USD Prime System :All Requirement Priority : Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	on Electrical System	2032	Jun 30, 2032	Open j.1. Fire Detection Systems	94,917
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	on Exterior Enclosure	2032	Jun 30, 2032	Open b.1. Building Exteriors (Hard)	227,800
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection	on Plumbing System	2032	Jun 30, 2032	Open g.1. Plumbing Fixtures	275,258
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	a 3- Due within 5 Years of Inspection	on HVAC System	2022	Jun 30, 2022	Open d.2. HVAC - Controls	360,683
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	3- Due within 5 Years of Inspection	on Exterior Enclosure	2027	Jun 30, 2027	Open a.5. Roofing - Builit-up, Membrane, Cedar	233,585
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	3- Due within 5 Years of Inspection	on Equipment and Furnishing	js 2027	Jun 30, 2027	Open k.1. Built-in Equipment	1,328,833
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	3- Due within 5 Years of Inspection	on Electrical System	2032	Jun 30, 2032	Open f.1. Electrical Equipment	616,958
							Lifecycle	3,138,034
						He	intz Center Horticulture (H1200 Suite)-E26275T1302	3,138,034
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	21 10:49:30 A	M	Page	14 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Main Bldg (H1100 & H1400 Suites)-E26275T0169

Reporting Currency : USD Prime System :All Requirement Priority : Requirement Category : All

Requirements Included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish	Date Status Linked System	Requirement Cost
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2032	Jun 30, 2032	Open j.1. Fire Detection Systems	375,036
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2028	Jun 30, 2028	Open d.2. HVAC - Controls	742,571
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2023	Jun 30, 2023	Open I.2. Interior Finishes	1,237,393
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2028	Jun 30, 2028	Open d.2. HVAC - Controls	742,571
							Lifecycle	3,097,571
						Heintz Center Main E	ldg (H1100 & H1400 Suites)-E26275T0169	3,097,571
	2224	\ -	N = 0004	40.40.00.41		_	45 6	
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	VI	Page	15 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Phase I Add. (H1300 Suite)-E26275T0886

Reporting Currency : USD Prime System :All Requirement Priority : Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority Sy	stem Group Action Yea	r Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	3- Due within 5 Years of Inspection Fir	e Protection 2026	Jun 30, 2026	Open i.1. Fire Protection Systems	369,120
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection Ele	ectrical System 2032	Jun 30, 2032	Open j.1. Fire Detection Systems	335,564
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection HV	/AC System 2028	Jun 30, 2028	Open d.2. HVAC - Controls	2,020,095
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	3- Due within 5 Years of Inspection HV	/AC System 2021	Jun 30, 2021	Open d.1. HVAC - Equipment	2,210,696
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection Into	erior Construction and Conveyance 2023	Jun 30, 2023	Open I.2. Interior Finishes	1,107,160
						Lifecycle	6,042,635
					Heintz Center Ph	ase I Add. (H1300 Suite)-E26275T0886	6,042,635
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	Page	16 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Workforce Add. (H1000 Suite)-E26148C1714

Reporting Currency : USD Prime System :All Requirement Priority : Requirement Category : All Requirements Included: All

Requirements included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Da	te Status Linked System	Requirement Cost
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2029	Jun 30, 2029	Open I.2. Interior Finishes	348,123
Lifecycle	a.4. Roofing - MnSCU Standard Renewal	B30 - Roofing	3- Due within 5 Years of Inspection	Exterior Enclosure	2025	Jun 30, 2025	Open a.4. Roofing - MnSCU Standard	1,474,760
							Lifecycle	1,822,883
						Heintz Center	Workforce Add. (H1000 Suite)-E26148C171	1,822,883
Copyright	2021	VFA, Inc. All rights reserved	I. Nov 5, 2021	10:49:30 Al	М	Page	17 of 38	3
			1101 0, 2021	. 10.10.0071	••	. 490		•

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Hill Theater-E26148C1174

Reporting Currency : USD

Prime System :All

Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Requirements included: All									
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	e.1. HVAC - Distribution Renewal	D3040 - Distribution Systems	3- Due within 5 Years of Inspection	HVAC System	2024	Jun 30, 2024		Open e.1. HVAC - Distribution	628,059
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2028	Jun 30, 2028		Open d.2. HVAC - Controls	365,752
Lifecycle	g.2. Plumbing Rough-in Renewal	D2020 - Domestic Water Distribution	3- Due within 5 Years of Inspection	Plumbing System	2024	Jun 30, 2024		Open g.2. Plumbing Rough-in	295,557
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2019	Jan 1, 2019		Open I.2. Interior Finishes	213,316
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2019	Jan 1, 2019		Open I.2. Interior Finishes	60,948
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2031	Jun 30, 2031		Open j.1. Fire Detection Systems	92,362
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	3- Due within 5 Years of Inspection	Fire Protection	2032	Jun 30, 2032		Open i.1. Fire Protection Systems	101,598
								Lifecyc	le 1,757,592
								Hill Theater-E26148C11	1,757,592
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	М	Page	18	of 3	8

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Memorial Hall-E26148C2320

Reporting Currency: USD

Prime System :All

Requirement Priority: 3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

No Data Available

Copyright 2021 VFA, Inc. All rights reserved. Nov 5, 2021 10:49:30 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Sports Center-E26275T1202

Reporting Currency : USD

Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Fin	ish Date Statu	ıs Linked System	Requirement Cost
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2022	Jun 30, 2022	Open	d.2. HVAC - Controls	3,325,077
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	3- Due within 5 Years of Inspection	Electrical System	2032	Jun 30, 2032	Open	f.1. Electrical Equipment	2,375,055
Lifecycle	c.1. Elevators Renewal	D10 - Conveying	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2027	Jun 30, 2027	Open	c.1. Elevators	497,105
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection	Plumbing System	2032	Jun 30, 2032	Open	g.1. Plumbing Fixtures	607,572
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	3- Due within 5 Years of Inspection	Equipment and Furnishings	2027	Jun 30, 2027	Open	n k.1. Built-in Equipment	1,049,443
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	Exterior Enclosure	2032	Jun 30, 2032	Open	b.1. Building Exteriors (Hard)	1,325,612
								Lifecycle	9,179,864
						F	Rochester Region	nal Sports Center-E26275T1202	9,179,864
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AN	1	Page	20 of	38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Dome-E26275T1203

Reporting Currency : USD Prime System :All

Requirement Priority : Requirement Category : All

Requirements Included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date F	Finish Date Status Linked System	Requirement Cost
Lifecycle	b.2. Building Exteriors (Soft) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	Exterior Enclosure	2028	Jun 30, 2028	Open b.2. Building Exteriors (Soft)	1,349,926
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2028	Jun 30, 2028	Open j.1. Fire Detection Systems	168,741
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System	2028	Jun 30, 2028	Open d.2. HVAC - Controls	337,482
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	2023	Jun 30, 2023	Open I.2. Interior Finishes	84,370
							Lifecycle	1,940,519
						R	Rochester Regional Stadium Dome-E26275T1203	1,940,519
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	10:49:30 AM	1	Page	21 of 38	}

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Entry Building-E26148C1815

Reporting Currency : USD

Prime System :All Requirement Priority :

Requirement Category : All	3- Due within 3 Tears of hispection							
Requirements Included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	n Interior Construction and Conveyance	2030	Jun 30, 2030	Open I.2. Interior Finish	nes 32,709
							Lifed	cycle 32,709
						Rochester Regional Stadiu	ım Entry Building-E26148C	1815 32,709
					_	_		
Copyright	2021	VFA, Inc. All rights reserved	l. Nov 5, 202	1 10:49:30 AM	1	Page 2	22 of	38

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Garage (air-lock)-E26275T2011

Reporting Currency : USD Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

	Category	Requirement Name	Prime System	Priority	System Group Action Year	Action Date Fin	nish Date St	tatus Linked System	Requirement Cost
_	Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	3- Due within 5 Years of Inspection	HVAC System 2028	Jun 30, 2028	O	pen d.2. HVAC - Controls	6,053
								Lifecycle	6,053
						Rochester Regiona	al Stadium Ga	rage (air-lock)-E26275T2011	6,053
	Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	Page	23 c	of 38	
	., ,		. 3			•			

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Support Building-E26148C1915

Reporting Currency : USD Prime System :All

Requirement Priority : Requirement Category : All Requirements Included: All

Requirements included. All							
Category	Requirement Name	Prime System	Priority System	em Group Acti	on Year Action Date Finish	Date Status Linked System	Requirement Cost
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection Interi	or Construction and Conveyance 2030	Jun 30, 2030	Open I.2. Interior Finishes	103,361
						Lifecycle	103,361
					Rochester Regional State	lium Support Building-E26148C1915	103,361
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	Page	24 of 38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Science & Technology Hall-E26148C1693

Reporting Currency : USD Prime System :All

Requirement Priority : Requirement Category : All

Requirement Category : All Requirements Included: All

Requirements included. All									
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status	Linked System	Requirement Cost
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection	Plumbing System	2023	Jun 30, 2023	Open	g.1. Plumbing Fixtures	806,368
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	Exterior Enclosure	2023	Jun 30, 2023	Open	b.1. Building Exteriors (Hard)	667,339
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	3- Due within 5 Years of Inspection	Electrical System	2023	Jun 30, 2023	Open	f.1. Electrical Equipment	361,475
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	3- Due within 5 Years of Inspection	HVAC System	2028	Jun 30, 2028	Open	d.1. HVAC - Equipment	2,382,400
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	Interior Construction and Conveyance	e 2023	Jun 30, 2023	Open	I.2. Interior Finishes	917,424
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	Electrical System	2031	Jun 30, 2031	Open	j.1. Fire Detection Systems	278,058
								Lifecycle	5,413,064
						Sci	ence & Te	echnology Hall-E26148C1693	5,413,064
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 Al	М	Page 29	5 of	38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Singley Hall-E26148C0468

Reporting Currency : USD Prime System :All

Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority System G	oup Action Year	Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection Plumbing 9	ystem 2028	Jun 30, 2028		Open g.1. Plumbing Fixtures	111,248
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection Electrical S	ystem 2031	Jun 30, 2031		Open j.1. Fire Detection Systems	101,134
							Lifecycle	212,382
							Singley Hall-E26148C0468	212,382
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021 10:49:	0 AM	Page	26	6 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 01 - Main Campus East (south)-E26275T0101

Reporting Currency : USD

Prime System :All Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All Category

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	m.1. All Renewal - SMALL Renewal	F10 - Special Construction	3- Due within 5 Years of Inspection	Special Construction	2026	Jun 30, 2026	Open m.1. All Renewal - SMALL	47,938
							Lifecycle	47,938
						Storage Building 01 - Main	Campus East (south)-E26275T0101	47,938
Copyright	2021	VFA, Inc. All rights reserved	. Nov 5, 202	1 10:49:30 AM	1	Page 2	27 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 02 - Main Campus East (north)-E26275T0201

Reporting Currency : USD

Prime System :All Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	m.1. All Renewal - SMALL Renewal	F10 - Special Construction	3- Due within 5 Years of Inspectio	n Special Construction	2026	Jun 30, 2026	Open m.1. All Renewal - SMALL	47,938
							Lifecycle	47,938
						Storage Building 02 - Main	Campus East (north)-E26275T0201	47,938
Copyright	2021	VFA, Inc. All rights reserved	d. Nov 5, 202	1 10:49:30 AN	Л	Page 2	8 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 04 - Heintz (brown - south)-E26275T0782

Reporting Currency : USD

Prime System :All Requirement Priority :

3- Due within 5 Years of Inspection

Requirement Category : All Requirements Included: All

Requirements included: All						
Category	Requirement Name	Prime System	Priority System Group	Action Year Action Date	Finish Date Status Linked System	Requirement Cost
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	3- Due within 5 Years of Inspection Exterior Enclosure	2022 Jun 30, 2022	Open a.5. Roofing - Builit-up, Membrane, Cedar	11,797
					Lifecycle	11,797
					Storage Building 04 - Heintz (brown - south)-E26275T0782	11,797
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021 10:49:30 AM	A Page	29 of 38	1
Copyrigin	2021	VI A, IIIC. All rights reserved.	140V 5, 2021 10.43.50 AII	n rage	29 01	,

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 05 - Heintz (brown - north)-E26275T0990

Reporting Currency : USD

Prime System :All Requirement Priority : Requirement Category : All

Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date Status Linked System	Requirement Cost
Lifecycle	b.2. Building Exteriors (Soft) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	Exterior Enclosure	2023	Jun 30, 2023	Open b.2. Building Exteriors (Soft)	15,340
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	3- Due within 5 Years of Inspection	Exterior Enclosure	2023	Jun 30, 2023	Open a.5. Roofing - Builit-up, Membra	ne, Cedar 11,797
								Lifecycle 27,137
							Storage Building 05 - Heintz (brown - north)-E2	275T0990 27,137
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM		Page	30 of	38

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 06 - Youth Baseball-E26275T1094

Reporting Currency: USD

Prime System :All Requirement Priority : Requirement Category : All

Requirements Included: All

3- Due within 5 Years of Inspection

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:49:30 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 07 - Youth Football-E26275T1195

Reporting Currency: USD

Prime System :All Requirement Priority : Requirement Category : All

Requirements Included: All

3- Due within 5 Years of Inspection

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:49:30 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 08 - Heintz (large)-E26275T1700

Reporting Currency : USD Prime System :All

Requirement Priority :

Requirement Category : All

R	equirements included: All							
Ca	ategory	Requirement Name	Prime System	Priority	System Group Action Yea	r Action Date Finish Date	e Status Linked System	Requirement Cost
Life	fecycle	b.2. Building Exteriors (Soft) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	Exterior Enclosure 2022	Jun 30, 2022	Open b.2. Building Exteriors (Soft)	62,587
Life	fecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	3- Due within 5 Years of Inspection	Exterior Enclosure 2027	Jun 30, 2027	Open a.5. Roofing - Builit-up, Membrane, Ceda	r 48,133
							Lifecyc	e 110,720
							Storage Building 08 - Heintz (large)-E26275T170	0 110,720
C	opyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	Page	33 of 3	3

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 09 - Heintz (grounds)-E26148C1506

Reporting Currency : USD

Prime System :All Requirement Priority :

Requirement Category : All

Category	Requirement Name	Prime System F	Priority	System Group	Action Year	Action Date Finish	Date Status Linked System	Requirement Cost
Lifecycle	m.1. All Renewal - SMALL Renewal	F10 - Special Construction 3	3- Due within 5 Years of Inspection	Special Construction	2031	Jun 30, 2031	Open m.1. All Renewal - SMAL	L 47,938
							Lifecycl	e 47,938
						Storage Bu	ilding 09 - Heintz (grounds)-E26148C150	€ 47,938
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM		Page	34 of 38	3

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 10 - Youth Soccer-E26275T2008

Reporting Currency : USD Prime System :All

Requirement Priority : Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	b.2. Building Exteriors (Soft) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	n Exterior Enclosure	2028	Jun 30, 2028		Open b.2. Building Exteriors (Soft)	15,340
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	n Interior Construction and Conveyance	2023	Jun 30, 2023		Open I.2. Interior Finishes	959
								Lifecycle	16,299
							Storage Build	ling 10 - Youth Soccer-E26275T2008	16,299
Copyright	2021	VFA, Inc. All rights reserved	d. Nov 5, 202	1 10:49:30 AN	1	Page	35	i of 38	

3- Due within 5 Years of Inspection

2021

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 11 - Heintz (grounds)-E26275T1309

Reporting Currency: USD

Prime System :All Requirement Priority :

Requirement Category : All Requirements Included: All

No Data Available

Copyright

VFA, Inc. All rights reserved. Nov 5, 2021 10:49:30 AM

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 12 - Youth Fastpitch Softball-E26257T2218

Reporting Currency : USD Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

Requirements included. All							
Category	Requirement Name	Prime System	Priority	System Group Action Year	Action Date Finish D	ate Status Linked System	Requirement Cost
Lifecycle	e.1. HVAC - Gas Fired Renewal	D3050 - Terminal and Package Units	s 3- Due within 5 Years of Inspection	HVAC System 2031	Apr 27, 2031	Open e.1. HVAC - Gas Fir	red 73,898
						Lifecy	cle 73,898
					Storage Building 12 - Yo	outh Fastpitch Softball-E26257T2	218 73,898
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:49:30 AM	Page	37 of	38

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Student Services-E26148C1073

Reporting Currency : USD Prime System :All Requirement Priority :

Requirement Category :	All
Requirements Included:	ΑII

requirements included. All										
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Dat	e Status	Linke	d System	Requirement Cost
Lifecycle	j.1. Fire Detection Systems Renewal	D5037 - Fire Alarm Systems	3- Due within 5 Years of Inspection	n Electrical System	2031	Jun 30, 2031	Open	j.1. Fi	re Detection Systems	217,781
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	3- Due within 5 Years of Inspection	n Electrical System	2023	Jun 30, 2023	Open	f.1. El	lectrical Equipment	93,646
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	3- Due within 5 Years of Inspection	n Plumbing System	2023	Jun 30, 2023	Open	g.1. P	Plumbing Fixtures	239,559
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	3- Due within 5 Years of Inspection	n Exterior Enclosure	2023	Jun 30, 2023	Open	b.1. B	Building Exteriors (Hard)	522,674
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	3- Due within 5 Years of Inspection	n HVAC System	2028	Jun 30, 2028	Open	d.1. H	IVAC - Equipment	696,899
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	3- Due within 5 Years of Inspection	n Interior Construction and Convey	ance 2024	Jun 30, 2024	Open	I.2. In	terior Finishes	718,547
									Lifecycle	2,489,106
								Student	Services-E26148C1073	2,489,106
							Rochester Community	and Technical College - Facilities	50,837,164	
							Rochester C	Community and Technical College	50,837,164	
								Summary	50,837,164	
								·	,,	
Copyright	2021	VFA, Inc. All rights reserved	d. Nov 5, 202	1 10:49:3	0 AM	Page	38 of		38	

Current Backlog Report

By Category

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Art Hall-E26148C0972

Reporting Currency : USD

Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

Requirements included. All									
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	1- Due within 1 Year of Inspection	Plumbing System	2018	Jun 30, 2018		Open g.1. Plumbing Fixtures	25,274
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018		Open b.1. Building Exteriors (Hard)	110,287
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	1- Due within 1 Year of Inspection	Equipment and Furnishings	2018	Jun 30, 2018		Open k.1. Built-in Equipment	87,311
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018		Open d.1. HVAC - Equipment	124,992
								Lifecycle	347,864
								Art Hall-E26148C0972	347,864
Copyright	2021	VFA, Inc. All rights reserved	I. Nov 5, 202	10:52:21 AM	И	Page		1 of 38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Atrium-E26148C1593

Reporting Currency : USD

Prime System :All

Requirement Priority : Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	1- Due within 1 Year of Inspection	Exterior Enclosure	2019	Jun 30, 2019	Open a.5. Roofing - Builit-up, Membrane, Ce	dar 831,522
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentatio	on 1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018	Open d.2. HVAC - Controls	152,853
							Lifec	ycle 984,375
							Atrium-E26148C1	593 984,375
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	1 10:52:21 AM	l	Page	2 of	38

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Career and Technical Education Center-E26148C2016

Reporting Currency: USD

Prime System :All
Requirement Priority :
Requirement Category : All
Requirements Included: All

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page 3 of #

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Central Chiller Plant-E26148C2420

Reporting Currency: USD

Prime System :All

Requirement Priority: 1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page 4 of #

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Coffman Hall-E26148C0268

Reporting Currency : USD

Prime System :All

Requirement Priority :

1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
d.1. HVAC - Equipment Renewal	D30 - HVAC	1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018	Open d.1. HVAC - Equipment	94,234
e.1. HVAC - Distribution Renewal	D3040 - Distribution Systems	1- Due within 1 Year of Inspection	HVAC System	2019	Jun 30, 2019	Open e.1. HVAC - Distribution	609,120
k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	1- Due within 1 Year of Inspection	Equipment and Furnishings	2018	Jun 30, 2018	Open k.1. Built-in Equipment	170,195
I.2. Interior Finishes Renewal	C30 - Interior Finishes	1- Due within 1 Year of Inspection	Interior Construction and Conveyar	ce 2018	Jun 30, 2018	Open I.2. Interior Finishes	295,548
b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	214,983
g.2. Plumbing Rough-in Renewal	D2020 - Domestic Water Distribution	1- Due within 1 Year of Inspection	Plumbing System	2018	Jun 30, 2018	Open g.2. Plumbing Rough-in	257,980
a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open a.5. Roofing - Builit-up, Membrane, Cedar	973,808
d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018	Open d.2. HVAC - Controls	177,361
f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	28,888
						Lifecycle	2,822,117
						Coffman Hall-E26148C0268	2,822,117
2021	VFA, Inc. All rights reserved.	Nov 5, 202 ⁻	1 10:52:21	AM	Page	5 of 38	
	d.1. HVAC - Equipment Renewal e.1. HVAC - Distribution Renewal k.1. Built-in Equipment Renewal l.2. Interior Finishes Renewal b.1. Building Exteriors (Hard) Renewal g.2. Plumbing Rough-in Renewal a.5. Roofing - Builit-up, Membrane, Cedar Renewal d.2. HVAC - Controls Renewal f.1. Electrical Equipment Renewal	d.1. HVAC - Equipment Renewal e.1. HVAC - Distribution Renewal k.1. Built-in Equipment Renewal l.2. Interior Finishes Renewal b.1. Building Exteriors (Hard) Renewal g.2. Plumbing Rough-in Renewal a.5. Roofing - Builit-up, Membrane, Cedar Renewal b.2. HVAC - Controls Renewal b.3. Electrical Equipment Renewal b.4. Building Exteriors (Hard) Renewal b.5. Roofing - Builit-up, Membrane, Cedar Renewal building Exterior Enclosure building Exterior Enclos	d.1. HVAC - Equipment Renewal e.1. HVAC - Distribution Renewal b.1. Built-in Equipment Renewal b.2. Interior Finishes Renewal b.3. Builting Exteriors (Hard) Renewal b.4. Builting Exteriors (Hard) Renewal b.5. Roofing - Builit-up, Membrane, Cedar Renewal b.6. HVAC - Controls Renewal b.7. Electrical Equipment Renewal b.8. HVAC - Equipment Renewal b.9. Dave within 1 Year of Inspection b.1. Builting Exteriors (Hard) Renewal b.1. Builting Exteriors (Hard) Renewal b.2. Plumbing Rough-in Renewal b.3. Roofing - Builit-up, Membrane, Cedar Renewal b.4. HVAC - Controls Renewal b.5. Roofing - Builting Exteriors (Hard) Renewal b.6. Equipment and Furnishings 1- Due within 1 Year of Inspection	d.1. HVAC - Equipment Renewal e.1. HVAC - Distribution Renewal b.1. Built-in Equipment Renewal b.1. Built-in Equipment Renewal b.1. Built-in Equipment Renewal b.1. Built-in Equipment Renewal b.1. Building Exteriors (Hard) Renewal b.1. Building Exteriors (Hard) Renewal b.2. Plumbing Rough-in Renewal b.3. Roofing - Builit-up, Membrane, Cedar Renewal b.4. HVAC - Controls Renewal b.5. Roofing - Builit-up, Membrane Renewal b.6. HVAC System b.7. Due within 1 Year of Inspection b.8. Due within 1 Year of Inspection b.9. Due within 1 Year of Inspection controls and Instrumentation b.9. Electrical b.9. Due within 1 Year of Inspection controls and Instrumentation b.9. Electrical b.9. Due within 1 Year of Inspection controls and Instrumentation b.9. Due within 1 Year of Inspection controls and Instrumentation b.9. Electrical System controls and Instrumentation controls and Instrumentation b.9. Due within 1 Year of Inspection controls and Instrumentation controls and Inst	d.1. HVAC - Equipment Renewal e.1. HVAC - Distribution Renewal D30 - HVAC Distribution Systems D3040 - Distribution Systems D4040 - Dietribution System Syste	d.1. HVAC - Equipment Renewal e.1. HVAC - Distribution Renewal b.1. Built-in Equipment Renewal b.1. Due within 1 Year of Inspection b.1. Built-in Equipment Renewal b.1. Due within 1 Year of Inspection b.1. Built-in Equipment Renewal b.1. Due within 1 Year of Inspection b.1. Due within 1	d.1. HVAC - Equipment Renewal D30 - HVAC 1 - Due within 1 Year of Inspection k.1. Built-in Equipment Renewal E - Equipment and Furnishings 1 - Due within 1 Year of Inspection k.1. Built-in Equipment Renewal E - Equipment and Furnishings 1 - Due within 1 Year of Inspection k.1. Built-in Equipment Renewal E - Equipment and Furnishings 1 - Due within 1 Year of Inspection k.1. Built-in Equipment Renewal C30 - Interior Finishes D41 - Bue within 1 Year of Inspection b.1. Building Exteriors (Hard) Renewal B20 - Exterior Enclosure B20 - Domestic Water Distribution B30 - Roofing B30 - Roofing B30 - Controls and Instrumentation B30 - Controls and Instrumentation B30 - Electrical B30 - El

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: College Center-E26148C0872

Reporting Currency : USD

Prime System :All

Requirement Priority :

1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

Requirements included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	d.1. HVAC - Equipment - 1972 Air Handlers Renewal	D30 - HVAC	1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018	Open d.1. HVAC - Equipment - 1972 Air Handlers	806,005
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	1- Due within 1 Year of Inspection	Equipment and Furnishing	s 2018	Jun 30, 2018	Open k.1. Built-in Equipment	310,552
Lifecycle	g.1. Plumbing Fixtures - 1972 2nd Fl Renewal	D2010 - Plumbing Fixtures	1- Due within 1 Year of Inspection	Plumbing System	2018	Jun 30, 2018	Open g.1. Plumbing Fixtures - 1972 2nd Fl	55,062
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	490,345
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	43,927
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open a.5. Roofing - Builit-up, Membrane, Cedar	553,078
							Lifecycle	2,258,969
							College Center-E26148C0872	2,258,969
Copyright	2021	VFA, Inc. All rights reserved	Nov 5, 202	1 10:52:21 A	\	Dogo	6 of 38	.
Copyright	2021	VFA, Inc. All rights reserved	. NOV 5, 202	1 10.52.21 A	VI	Page	6 of 38)

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: East Hall-E26148C1386

Reporting Currency : USD Prime System :All

Requirement Priority :

1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

Requirements included: All Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	<u> </u>
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	1- Due within 1 Year of Inspection	Equipment and Furnishings	2018	Jun 30, 2018	Open k.1. Built-in Equipment	308,375
Lifecycle	c.1. Elevators Renewal	D10 - Conveying	1- Due within 1 Year of Inspection	Interior Construction and Conveyanc	e 2018	Jun 30, 2018	Open c.1. Elevators	146,072
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	34,895
							Lifecycle	e 878,869
							East Hall-E26148C1386	878,869
Copyright	2021	VFA, Inc. All rights reserved	. Nov 5, 202	1 10:52:21 A	M	Page	7 of 38	3

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Endicott Hall-E26148C0368

Reporting Currency : USD

Prime System :All

Requirement Priority : Requirement Category : All

Requirement Category:	ΑII
Requirements Included:	ΑI
Category	

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	158,961
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	221,806
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	1- Due within 1 Year of Inspection	Equipment and Furnishings	2018	Jun 30, 2018	Open k.1. Built-in Equipment	175,596
							Lifecycle	556,363
							Endicott Hall-E26148C0368	556,363
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	1 10:52:21 AM	1	Page	8 of 38	1
Сорупуп	2021	VFA, IIIC. All rights reserved.	1100 5, 202	10.52.21 Alv	1	rage	0 01 30	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Goddard Library-E26148C0168

Reporting Currency : USD

Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open a.5. Roofing - Builit-up, Membrane, Cedar	908,081
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	317,336
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	442,795
							Lifecycle	1,668,212
							Goddard Library-E26148C0168	1,668,212
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	1 10:52:21 AM		Page 9	9 of 38	

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Grounds Storage Garage-E26148C2119

Reporting Currency: USD

Prime System :All

Requirement Priority: 1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Health Science Hall-E26148C0570

Reporting Currency: USD

Prime System :All

Requirement Priority: 1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center 76 Rem. & Add. (H1100 Suite)-E26275T0276

Reporting Currency : USD Prime System :All

Requirement Priority : Requirement Category : All

Requirement Category : All Requirements Included: All

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date	Status Linked System	Requirement Cost
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018		Open f.1. Electrical Equipment	86,576
Lifecycle	d.1. HVAC - Equipment Renewal	D30 - HVAC	1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018		Open d.1. HVAC - Equipment	214,761
								Lifecycle	301,337
						Heintz C	enter 76 Rem. 8	& Add. (H1100 Suite)-E26275T0276	301,337
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	1 10:52:21 AM	1	Page	12	of 38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Diesel Truck. (H1100 Suite)-E26275T0379

Reporting Currency : USD Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

Requirements Included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish D	Date Status Linked System	Requirement Cost
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	9,526
Lifecycle	i.1. Fire Protection Systems Renewal	D40 - Fire Protection	1- Due within 1 Year of Inspection	Fire Protection	2019	Jun 30, 2019	Open i.1. Fire Protection Systems	11,908
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	95,262
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	on 1- Due within 1 Year of Inspection	HVAC System	2019	Jun 30, 2019	Open d.2. HVAC - Controls	31,754
							Lifecycle	148,450
						Heintz Cente	er Diesel Truck. (H1100 Suite)-E26275T0379	148,450
Copyright	2021	VFA, Inc. All rights reserved.	. Nov 5, 202	1 10:52:21 AN	1	Page	13 of 38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Horticulture (H1200 Suite)-E26275T1302

Reporting Currency : USD

Prime System :All Requirement Priority :

	•							
Red	quir	em	en	t C	ateg	gory	: 4	ΑI
Red	quir	em	en	ts	Incl	uded	ı:	Α

Requirements included: All Category	Requirement Name	Prime System	Priority	System Group Action	n Year Action Date	e Finish Date Status Linked System	Requirement Cost
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	1- Due within 1 Year of Inspection	Interior Construction and Conveyance 2018	Jun 30, 2018	8 Open I.2. Interior Finishes	313,168
						Lifecycle	313,168
					Heintz Ce	Center Horticulture (H1200 Suite)-E26275T1302	313,168
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	1 10:52:21 AM	Page	14 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Main Bldg (H1100 & H1400 Suites)-E26275T0169

Reporting Currency : USD Prime System :All Requirement Priority :

1- Due within 1 Year of Inspection

Requirement Priority:
Requirement Category: All
Requirements Included: All

Requirements included: All Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	483,796
Lifecycle	g.2. Plumbing Rough-in Renewal	D2020 - Domestic Water Distribution	1- Due within 1 Year of Inspection	Plumbing System	2019	Jun 30, 2019	Open g.2. Plumbing Rough-in	1,200,115
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	900,086
						Heintz Center Main Bldç	Lifecycle g (H1100 & H1400 Suites)-E26275T0169	
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	1 10:52:21 AI	М	Page 1	5 of 38	

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Phase I Add. (H1300 Suite)-E26275T0886

Reporting Currency : USD Prime System :All Requirement Priority : Requirement Category : All Requirements Included: All

Requirements included: All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Dat	e Status Linked System	Requirement Cost
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	n Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	805,354
Lifecycle	a.5. Roofing - Builit-up, Membrane, Cedar Renewal	B30 - Roofing	1- Due within 1 Year of Inspection	n Exterior Enclosure	2018	Jun 30, 2018	Open a.5. Roofing - Builit-up, Membrane, Cedar	44,965
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	n Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	577,170
Lifecycle	c.1. Elevators Renewal	D10 - Conveying	1- Due within 1 Year of Inspection	n Interior Construction and Convey	ance 2018	Jun 30, 2018	Open c.1. Elevators	302,008
							Lifecycle	e 1,729,497
						He	eintz Center Phase I Add. (H1300 Suite)-E26275T088	6 1,729,497
Copyright	2021	VFA, Inc. All rights reserved	. Nov 5, 202	21 10:52:2	1 AM	Page	16 of 38	3
						•		

1- Due within 1 Year of Inspection

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Heintz Center Workforce Add. (H1000 Suite)-E26148C1714

Reporting Currency : USD

Prime System :All Requirement Priority : Requirement Category : All

Requirements Included: All

No Data Available

Copyright 2021

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Hill Theater-E26148C1174

Reporting Currency : USD

Prime System :All

Requirement Priority :

1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	e Status Linked System	Requirement Cost
f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	39,715
I.2. Interior Finishes Renewal	C30 - Interior Finishes	1- Due within 1 Year of Inspection	Interior Construction and Conveyand	e 2018	Jun 30, 2018	Open I.2. Interior Finishes	30,474
g.1. Plumbing Fixtures Renewal	D2010 - Plumbing Fixtures	1- Due within 1 Year of Inspection	Plumbing System	2018	Jun 30, 2018	Open g.1. Plumbing Fixtures	101,598
d.1. HVAC - 1974 Air Handlers Renewal	D30 - HVAC	1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018	Open d.1. HVAC - 1974 Air Handle	ers 340,075
b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard	221,668
						Lifecyc	le 733,530
						Hill Theater-E26148C11	74 733,530
2021	VFA, Inc. All rights reserved.	Nov 5, 202	1 10:52:21 A	М	Page	18 of 3	8
	I.2. Interior Finishes Renewal g.1. Plumbing Fixtures Renewal d.1. HVAC - 1974 Air Handlers Renewal b.1. Building Exteriors (Hard) Renewal	f.1. Electrical Equipment Renewal 1.2. Interior Finishes Renewal g.1. Plumbing Fixtures Renewal d.1. HVAC - 1974 Air Handlers Renewal b.1. Building Exteriors (Hard) Renewal Exterior Enclosure	f.1. Electrical Equipment Renewal D50 - Electrical 1- Due within 1 Year of Inspection 1.2. Interior Finishes Renewal G30 - Interior Finishes 1- Due within 1 Year of Inspection g.1. Plumbing Fixtures Renewal D2010 - Plumbing Fixtures 1- Due within 1 Year of Inspection d.1. HVAC - 1974 Air Handlers Renewal D30 - HVAC 1- Due within 1 Year of Inspection b.1. Building Exteriors (Hard) Renewal B20 - Exterior Enclosure 1- Due within 1 Year of Inspection	f.1. Electrical Equipment Renewal 1.2. Interior Finishes Renewal 2.3. Plumbing Fixtures Renewal 3.1. Plumbing Fixtures Renewal 4.1. HVAC - 1974 Air Handlers Renewal 5.3. Building Exteriors (Hard) Renewal 6.4. Electrical 6.5 Electri	f.1. Electrical Equipment Renewal D50 - Electrical 1 - Due within 1 Year of Inspection 1.2. Interior Finishes Renewal G20 - Interior Finishes T- Due within 1 Year of Inspection D2010 - Plumbing Fixtures T- Due within 1 Year of Inspection D2010 - Plumbing Fixtures T- Due within 1 Year of Inspection D2010 - Plumbing Fixtures T- Due within 1 Year of Inspection D2010 - Plumbing Fixtures T- Due within 1 Year of Inspection D2010 - Plumbing Fixtures T- Due within 1 Year of Inspection D2010 - Plumbing Fixtures D30 - HVAC T- Due within 1 Year of Inspection D30 - HVAC System D30 - Exterior Enclosure D30 - Exterior Enclosure D30 - Exterior Enclosure D30 - Exterior Enclosure D30 - HVAC T- Due within 1 Year of Inspection Exterior Enclosure D30 - Electrical D48 D49 D40 D40 D40 D40 D40 D40 D40	f.1. Electrical Equipment Renewal D50 - Electrical 1 - Due within 1 Year of Inspection 1.2. Interior Finishes Renewal G20 - Interior Finishes 1 - Due within 1 Year of Inspection D2010 - Plumbing Fixtures D2010 - Plumbing Fixtures D30 - HVAC 1 - Due within 1 Year of Inspection D2010 - Plumbing Fixtures D30 - HVAC 1 - Due within 1 Year of Inspection D30 - HVAC 1 - Due within 1 Year of Inspection HVAC System D30 - HVAC System D30 - Electrical System D30 - Due within 1 Year of Inspection D30 - HVAC D30 - HVAC D30 - Electrical System D30 - Due within 1 Year of Inspection D30 - HVAC System D30 - HVAC System D30 - Electrical System D40 - Due within 1 Year of Inspection D40 - Electrical System D40 - Due within 1 Year of Inspection D40 - Due within 1 Year of Inspection D40 - Electrical System D40 - Due within 1 Year of Inspection D40 - Due w	f.1. Electrical Equipment Renewal D50 - Electrical 1 - Due within 1 Year of Inspection 1.2. Interior Finishes Renewal C30 - Interior Finishes 1 - Due within 1 Year of Inspection G.1. Plumbing Fixtures Renewal D2010 - Plumbing Fixtures D30 - HVAC 1 - Due within 1 Year of Inspection D30 - HVAC 1 - Due within 1 Year of Inspection D30 - HVAC 1 - Due within 1 Year of Inspection D30 - HVAC 1 - Due within 1 Year of Inspection D30 - HVAC 1 - Due within 1 Year of Inspection D30 - HVAC 1 - Due within 1 Year of Inspection D30 - HVAC D30 - Electrical System D40 - Plumbing System D50 - Electrical Equipment D50 - Electrical Equipment D50 - Electrical System D50 - Interior Construction and Conveyance Plumbing System D40 - Plumbing System D50 - Electrical Equipment D50 - Interior Construction and Conveyance D60 - Interior Construct

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Memorial Hall-E26148C2320

Reporting Currency: USD

Prime System :All

Requirement Priority: 1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

No Data Available

Copyright 2021 VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Sports Center-E26275T1202

Reporting Currency : USD Prime System :All Requirement Priority :

Requirement Category : All

Ket	quirements included. All										
Cate	egory	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date	Finish Date S	Status Lin	ked System	Requirement Cost
Lifed	cycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	1- Due within 1 Year of Inspection	Interior Construction and Conveyance	2018	Jun 30, 2018	C	Open I.2.	Interior Finishes	1,822,385
										Lifecycle	1,822,385
							Roche	ester Regional S	Sports Cen	ter-E26275T1202	1,822,385
Cop	pyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	1 10:52:21 AM		Page	20	of	38	

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Dome-E26275T1203

Reporting Currency: USD

Prime System :All Requirement Priority : Requirement Category : All

1- Due within 1 Year of Inspection

Requirements Included: AllNo Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Entry Building-E26148C1815

Reporting Currency : USD

Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

No Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page # of #

1- Due within 1 Year of Inspection

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Garage (air-lock)-E26275T2011

Reporting Currency : USD Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

No Data Available

Copyright 2021

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

1- Due within 1 Year of Inspection

2021

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Rochester Regional Stadium Support Building-E26148C1915

Reporting Currency : USD Prime System :All

Requirement Priority:

Requirement Category : All Requirements Included: All

No Data Available

Copyright

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Science & Technology Hall-E26148C1693

Reporting Currency: USD Prime System: All Requirement Priority: Requirement Category: All Requirements Included: All

Requirements included: All Category	Requirement Name	Prime System Priority	ty System Group Action Ye	ar Action Date	Finish Date Status Linked System	Requirement Cost
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation 1- Due	e within 1 Year of Inspection HVAC System 2018	Jun 30, 2018	Open d.2. HVAC - Controls	1,101,109
					Lifecycle	1,101,109
					Science & Technology Hall-E26148C1693	1,101,109
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021 10:52:21 AM	Page	25 of 38	

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Singley Hall-E26148C0468

Reporting Currency : USD Prime System :All

Requirement Priority :

Requirement Category:	ΑII
Requirements Included:	ΔΙ

Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Finish Date	Status Linked System	Requirement Cost
Lifecycle	k.1. Built-in Equipment Renewal	E - Equipment and Furnishings	1- Due within 1 Year of Inspection	Equipment and Furnishings	2018	Jun 30, 2018	Open k.1. Built-in Equipment	192,155
Lifecycle	I.2. Interior Finishes Renewal	C30 - Interior Finishes	1- Due within 1 Year of Inspection	Interior Construction and Conveyan	ce 2018	Jun 30, 2018	Open I.2. Interior Finishes	333,682
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	1- Due within 1 Year of Inspection	HVAC System	2018	Jun 30, 2018	Open d.2. HVAC - Controls	192,155
Lifecycle	g.2. Plumbing Rough-in Renewal	D2020 - Domestic Water Distribution	1- Due within 1 Year of Inspection	Plumbing System	2018	Jun 30, 2018	Open g.2. Plumbing Rough-in	323,629
Lifecycle	f.1. Electrical Equipment Renewal	D50 - Electrical	1- Due within 1 Year of Inspection	Electrical System	2018	Jun 30, 2018	Open f.1. Electrical Equipment	173,951
Lifecycle	b.1. Building Exteriors (Hard) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.1. Building Exteriors (Hard)	242,722
							Lifecycle	1,458,294
							Singley Hall-E26148C0468	1,458,294
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 2021	10:52:21	AM	Page 2	6 of 38	

1- Due within 1 Year of Inspection

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 01 - Main Campus East (south)-E26275T0101

Reporting Currency : USD

Prime System :All Requirement Priority :

Requirement Category : All Requirements Included: All

No Data Available

Copyright 2021

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 02 - Main Campus East (north)-E26275T0201

Reporting Currency : USD

Prime System :All Requirement Priority :

Requirement Category : All

Requirements Included: All

No Data Available

Copyright

2021

1- Due within 1 Year of Inspection

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 04 - Heintz (brown - south)-E26275T0782

Reporting Currency : USD Prime System :All

Requirement Priority :

Requirement Category : All Requirements Included: All

Requirements included. All									
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Fi	inish Date Status Linked	System	Requirement Cost
Lifecycle	b.2. Building Exteriors (Soft) Renewal	B20 - Exterior Enclosure	1- Due within 1 Year of Inspection	Exterior Enclosure	2018	Jun 30, 2018	Open b.2. Bui	ilding Exteriors (Soft)	15,340
								Lifecycle	15,340
						Storage Bu	uilding 04 - Heintz (brown - s	south)-E26275T0782	15,340
Copyright	2021	VFA, Inc. All rights reserved	. Nov 5, 202	1 10:52:21 AM	1	Page	29 of	38	

1- Due within 1 Year of Inspection

2021

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 05 - Heintz (brown - north)-E26275T0990

Reporting Currency : USD

Prime System :All Requirement Priority :

Requirement Category : All Requirements Included: All

No Data Available

Copyright

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 06 - Youth Baseball-E26275T1094

Reporting Currency : USD

Prime System :All

Requirement Priority :

1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

Requirements included. All								
Category	Requirement Name	Prime System	Priority	System Group	Action Year	Action Date Fire	nish Date Status Linked System	Requirement Cost
Lifecycle	m.1. All Renewal - SMALL Renewal	F10 - Special Construction	1- Due within 1 Year of Inspection	Special Construction	2019	Jun 30, 2019	Open m.1. All Renewal - S	SMALL 41,418
							Life	ecycle 41,418
						Lifecycle Storage Building 06 - Youth Baseball-E26275T1094		T1094 41,418
Copyright	2021	VFA, Inc. All rights reserved.	. Nov 5, 202	1 10:52:21 AN	1	Page	31 of	20
Copyright	2021	VEA, IIIC. All rights reserved.	. 1907 5, 202	1 10.32.21 AN	1	raye	31 01	30

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 07 - Youth Football-E26275T1195

Reporting Currency: USD

Prime System :All Requirement Priority : Requirement Category : All

1- Due within 1 Year of Inspection

Requirements Included: AllNo Data Available

Copyright VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM Page # of #

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 08 - Heintz (large)-E26275T1700

Reporting Currency: USD

Prime System :All Requirement Priority : Requirement Category : All

Requirements Included: All

1- Due within 1 Year of Inspection

No Data Available

Copyright 2021

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 09 - Heintz (grounds)-E26148C1506

Reporting Currency: USD

Prime System :All Requirement Priority : Requirement Category : All

1- Due within 1 Year of Inspection

Requirements Included: AllNo Data Available

 Copyright
 VFA, Inc. All rights reserved.
 Nov 5, 2021 10:52:21 AM
 Page # of #

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 10 - Youth Soccer-E26275T2008

Reporting Currency: USD

Prime System :All Requirement Priority : Requirement Category : All

1- Due within 1 Year of Inspection

Requirements Included: AllNo Data Available

Copyright 2021

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 11 - Heintz (grounds)-E26275T1309

Reporting Currency: USD

Prime System :All Requirement Priority :

Requirement Category : All

Requirements Included: All

No Data Available

1- Due within 1 Year of Inspection

2021

Colleges or Universities Name: Rochester Community and Technical College

Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Storage Building 12 - Youth Fastpitch Softball-E26257T2218

Reporting Currency : USD Prime System :All

Requirement Priority:

Requirement Category : All Requirements Included: All

No Data Available

Copyright

VFA, Inc. All rights reserved. Nov 5, 2021 10:52:21 AM

Colleges or Universities Name: Rochester Community and Technical College
Campus Name: Rochester Community and Technical College - Facilities

Facilities and Infrastructure Name: Student Services-E26148C1073

Reporting Currency : USD

Prime System :All

Requirement Priority: 1- Due within 1 Year of Inspection

Requirement Category : All Requirements Included: All

Requirements included: All								
Category	Requirement Name	Prime System	Priority	System Group Action Year	Action Date Finish Date	Status	Linked System	Requirement Cost
Lifecycle	d.2. HVAC - Controls Renewal	D3060 - Controls and Instrumentation	1 - Due within 1 Year of Inspection	HVAC System 2018	Jun 30, 2018	Open	d.2. HVAC - Controls	206,892
							Lifecycle	206,892
						Student	Services-E26148C1073	206,892
						Rochester Community and Technical College - Facilities	19,972,186	;
						Rochester Community and Technical College	19,972,186	;
						Summary	19,972,186	i
Copyright	2021	VFA, Inc. All rights reserved.	Nov 5, 202	1 10:52:21 AM	Page 3	8 of	38	

Higher Education Asset Preservation and Renewal (HEAPR) Manual

TKDA Project No. 15460.001 December 2020 Updated: March 2021

444 Cedar Street, Suite 1500 Saint Paul, MN 55101 651.292.4400 tkda.com

TABLE OF CONTENTS

TABLE OF CONTENTS	2
PART 1 – PROJECT SUMMARY	3
EXECUTIVE SUMMARY STATEMENT	
PROJECT SUMMARY LIST	4
PART 2 – INDIVIDUAL PROJECT SHEETS BY BUILDING	6
MAIN CAMPUS BUILDING	6
Main Campus Building Exterior Envelope Repairs	
Main Campus Building Exterior Window and Door Replacement	
Coffman Hall Roof Replacement	
Student Services Roof Replacement	
Goddard Library Roof Replacement	
College Center Roof Replacement	
Art Hall Roof Replacement	
Phase II Central Chiller Plant Upgrades and System Extension to Science and Technology Building	
Phase I and II Domestic Water Piping Replacement	
Phase III and IV Domestic Water Piping Replacement	
College Center Second Floor Toilet Room Renovations and Accessibility Upgrades	
Art Hall AHU Replacement and Heating System Conversion	
College Center AHU Replacement and Heating System Conversion	
East Hall Entrance Vestibule Remodel and Small Addition	
SPORTS FACILITIES	213
Rochester Regional Sports Center Water Heater Replacement	
Rochester Regional Sports Center Fieldhouse Floor Replacement	
Phase III Central Chilled Plant Upgrades and System Extension to Rochester Regional Sports Center	
HEINTZ CENTER	351
1976 Addtion Roof Replacement	
Exterior Envelope Repairs	
Lighting Upgrades	
APPENDIX	409
Full Facility Roof Reports and Campus Maps from System Office	

Note: See individual project sheets where roofing reports were superseded.

PART 1 - PROJECT SUMMARY

EXECUTIVE SUMMARY STATEMENT

This Higher Education Asset Preservation and Renewal (HEAPR) Manual provides a general overview of deferred maintenance initiatives and initial budget forecasting. The manual provides a general outline of work anticipated for the site parking, grounds and utilities; building envelope and interiors; building fire sprinkler, plumbing, HVAC, electrical, communications and life safety infrastructure. The HEAPR manual is not intended to be a detailed conditions assessment. The manual will be utilized to identify, track and prioritize HEAPR projects, and as a reference tool for future Studies, Master Planning Updates, Predesigns and Design Documents.

The following pages contain individual project sheets with the general classification of all work for each building and priority projects for the campus. Please note that the old Memorial Hall and Plaza Halls were undergoing a "rightsizing" initiative with major demolition and reconstruction occurring during the period this report was being prepared. Work in these areas is not included in this manual.

PROJECT SUMMARY LIST

PROJECT STATUS KEY

R/C - Report or **PD** - Predesign **SD** - Schematic **DD** - Design **CD** - Construction Conceptual Planning Design Development Documents

PRIORITY NO.	BUILDING or COMPLEX	PROJECT SCOPE	BUDGET ESTIMATE	PROJECT STATUS/COMMENTS
01	Main Campus Building	Science and Technology Hall and Atrium Roof Area Replacement	\$1,043,000	CD's completed. 2021 construction scheduled.
02	Main Campus Building	Main Campus Bldg. Exterior Envelope Repairs	\$1,378,000	PD completed. 2020 bonding request.
03	Main Campus Building	Main Campus Bldg. Exterior Window and Door Replacement	\$1,291,000	PD completed. 2020 bonding request.
04	Main Campus Building	Coffman Hall Roof Replacement	\$858,000	Updated cost estimate provided Nov. 2020 by Roofspec Inc.
05	Heintz Center	Roof Replacement, 1976 Addition (includes minor repairs to other areas)	\$1,433,600	PD completed 2011, Inspec Inc. Last inspection by Roofspec Inc. Dec. 2019. Add 27% cost escalation to mid-year 2020.
06	Heintz Center	Exterior Envelope Repairs	\$360,500	DD completed 2012, Kane & Johnson Architects Inc. Add 24% cost escalation to mid-year 2020.
07	Sports Facilities	Rochester Regional Sports Center Water Heater Replacement	\$225,000	TKDA cost estimate from 2014. Added 18% cost escalation to mid-year 2020.
08	Main Campus Building	Student Services Roof Replacement	\$859,000	SD Report completed Oct. 2020 by Roofspec Inc.
09	Main Campus Building	Goddard Library Roof Replacement	\$1,250,000	SD Report completed Oct. 2020 by Roofspec Inc.
10	Main Campus Building	College Center Roof Replacement	\$1,316,000	SD Report completed Oct. 2020 by Roofspec Inc.
11	Main Campus Building	Art Hall Roof Replacement	\$602,000	SD Report completed Oct. 2020 by Roofspec Inc.
12	Main Campus Building	Phase II Central Chiller Plant Upgrades and System Extension to Science and Technology Bldg.	\$1,392,500	R/C completed 2012, Stanley Consultants. Add 24% cost escalation to mid- year 2020.

PRIORITY NO.	BUILDING or COMPLEX	PROJECT SCOPE	BUDGET ESTIMATE	PROJECT STATUS/COMMENTS
13	Main Campus Building	Phase I and II Domestic Water Piping Replacement	\$837,800	TKDA cost estimate from 2014. Added 18% cost escalation to mid-year 2020.
14	Main Campus Building	Phase III and IV Domestic Water Piping Replacement	\$790,600	TKDA cost estimate from 2014. Added 18% cost escalation to mid-year 2020.
15	Main Campus Building	College Center Second Floor Toilet Room Renovations and Accessibility Upgrades	\$300,000	
16	Heintz Center	Lighting Upgrades	\$108,700	
17	Sports Facilities	Rochester Regional Sports Center Fieldhouse Floor Replacement	\$456,900	Updated Feb. 2018 cost estimate furnished by RCTC. Added 12% cost escalation to February 2021.
18	Main Campus Building	Art Hall AHU Replacement and Heating System Conversion	\$590,000	Air Handler & Controls est. @ \$120.0K. Conversion work est. @ \$470.0K
19	Main Campus Building	College Center AHU Replacement and Heating System Conversion	\$1,746,000	Air Handler & Controls est. @ \$365.8K. Conversion work est. @ \$1.382 MM.
20	Sports Facilities	Phase III Central Chilled Plant Upgrades and System Extension to Rochester Regional Sports Center	\$1,382,600	R/C completed 2012, Stanley Consultants. Add 24% cost escalation to mid- year 2020.
21	Main Campus Building	East Hall Entrance Vestibule Remodel and Small Addition	\$320,000	

PART 2 - INDIVIDUAL PROJECT SHEETS

MAIN CAMPUS BUILDING

HEAPR MANUAL Main Campus Building Exterior Envelope Repairs

Req. No.: 02

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classification of All Work: (Provide est. construction costs by "classification of work")								
\$1,378,000	Exterior Envelope	(exterior roof, walls, windows, exterior doors)						
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)						
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)						
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)						
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)						
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)						
\$	Life Safety and Security	(Fire alarm systems, public address, building security)						
\$1,378,000	Total							

General Description of Existing Conditions and All Work

Exterior Envelope: Exterior bricks are falling from the building, chips break off, faces of brick are spalled off, mortar is missing, control joins need to be resealed. PVC flashing was brittle and has disintegrated in critical locations. Interior walls may need fixing at leaks. Paint at walls being modified will require lead testing.

Project Title – Main Campus Building Exterior Envelope Repairs

<u>Priority Project(s) and General Work Description</u>: (Provide estimated <u>construction</u> costs for specific priority project with general description)

\$1,378,000 Main Campus Building Exterior Envelope Repairs

\$ \$

\$1,378,000 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Exterior structure damage, hazard to students, migration of water and moisture vapor cause substructure and interior water damage. Loss of flashing in particular causes water migration into walls, above windows and doors, and has potential to cause mold.

This project will reduce the Main Campus Building FCI from 0.09 to 0.08.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

- 1 Consultant Cost Estimate
- 2 Consultant Documents

HEAPR2020 Page 1 of 1

Project Construction Cost Estimate for:

Rochester Community & Technical College: 2012 Exterior Repairs @ UCR Main Campus Architect's #2012-204

Work Scope (MASONRY TUCKPOINT)

_	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Masonry Tuckpointing	4012	\$8 SF		12000	\$96,000.00	based on common running bond
TOTAL COST					\$96,000.00	

Work Scope (MASONRY RE-BUILD, TWF, WEEP SYSTEM and OTHER FLASHINGS)

_	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Selective Demolition	4910	\$11	VLF	1750	\$18,375.00	replace 5-brick for thru-wall
Debris Disposal	2200	\$70	TON	20	\$1,400.00	
4x2x8 Brick	4211	\$18	SF	9000	\$162,000.00	based on common running bond
Weep System	7600	\$9	LF	300	\$2,700.00	
Thru Wall Flashing	7600	\$90	LF	300	\$27,000.00	
TOTAL COST					\$211,480.00	1

Work Scope (CAULKING REPLACEMENT)

_	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Caulking Demolition	7900	\$2	LF	30000	\$63,000.00	
Caulking Replacement	7900	\$3 LF		30000	\$90,000.00	
TOTAL COST					\$153,000.00	

Work Scope (NEW METAL WINDOW SILL)

	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Debris Disposal	2200	\$70	TON	3	\$210.00	
Brick Demolition		\$4	SF	750	\$3,000.00	
Water Proofing		\$3	SF	750	\$1,875.00	
Flashing Repair		\$15	LF	160	\$2,400.00	
Window Repair		\$12	SF	200	\$2,400.00	
Metal Wall Panel and Girt Framing		\$25	SF	750_	\$18,750.00	<u>)</u>
TOTAL COST					\$28,635.00	ī

Work Scope (LINTEL REPLACEMENT)

_	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION	
Demolition		\$9	SF	800	\$6,800.00		
Shoring Support Systems		\$23	LF	800	\$18,400.00		
Replacement Lintels		\$15	LF	800	\$12,000.00		
TOTAL COST					\$37,200.00		

Work Scope (CONCRETE CRACK REPAIR)

•	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Surface Preparation		\$7	SF	600	\$4,200.00)
Epoxy Injection		\$25	LF	300	\$7,500.00)
Joint Routing and Soft Joint		\$9	LF	1200	\$10,800.00)
TOTAL COST					\$22,500.00	

1/22/2013

Work Scope (PAINTING)

_	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Surface Preparation		\$3	SF	1500	\$4,500.00	
Paint Steel Frames & Lintels		\$6	SF	1500	\$9,000.00	
TOTAL COST					\$13,500.00	

Total Work Scope Cost Basis

Masonry Tuckpoint	\$96,000.00
Masonry Rebuild - TWF,WS & F	\$211,480.00
Caulking Replacement	\$153,000.00
New Metal Window Sill	\$28,635.00
Lintel Replacement	\$37,200.00
Conctete Crack Repair	\$22,500.00
Painting	\$13,500.00
TOTAL COST	\$562,315.00

Contractor Cost Basis

Mobilization ON & OFF SITE General Project Conditions				\$28,115.75 Based on 5% of Scope Total \$28,115.75 Based on 5% of Scope Total
Overhead & Profit				\$56,231.50 Based on 10% of Scope Total
Insurance				\$8,434.73 Based on 1.5% of Scope Total
Bonding				\$8,434.73 Based on 1.5% of Scope Total
Equipment Rental		\$700 WEEK	32	\$22,400.00 Lift/Reach per 32-weeks
Scaffolding	1500	\$84 CSF	800	\$66,800.00 Rented installed/teardown
Swing Staging (24' section per month)	1540	\$1,350 EA	10	\$13,500.00 Rented installed/teardown
Fencing	1560	\$5 LF	1500	\$7,575.00 Rented installed/teardown, 6'
TOTAL COST				\$239,607.45

Total Cost This Project

Total Work Scope Cost Basis \$562,315.00
Contractor Cost Basis \$239,607.45
Architect/Engineer Cost Basis NIC
10% Contingency \$56,231.50
Escalation Factor (use 3% for prior year estimate)
Location Factor (use 12.2% for Minneapolis)

NIC

\$858,153.95

Issue Date: 4-17-2012

HEAPR MANUAL Main Campus Building Exterior Window and Door Replacement

Req. No.: 03

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classification of All Work: (Provide est. construction costs by "classification of work")			
\$1,291,000 Exterior Envelope	(exterior roof, walls, windows, exterior doors)		
\$ Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)		
\$ Fire Suppression	(sprinkler systems, components, piping, equipment)		
\$ Plumbing	(plumbing systems, components, piping, fixtures, equipment)		
\$ HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)		
\$ Electrical	(Electrical systems, power distribution, lighting, equipment)		
Life Safety and Security	(Fire alarm systems, public address, building security)		

\$1,291,000 Total

General Description of Existing Conditions and All Work

There are a number of failing conditions around the complex that require immediate attention and repair. Water and air intrusion into that building is beginning to cause mold. Stopping the cause of the mold issue is important because East Hall is interconnected with the entire Main Campus complex and the sooner this is addressed, the better the prevention of spreading of the mold to the larger complex.

Plaza and Memorial Halls omitted from workscope. Project Submitted for 2020 HEAPR bonding.

Project Title – Main Campus Building Exterior Window and Door Replacement

Priority Project(s) and General Work Description:

\$1,291,000 Main Campus - Exterior Window and Door Replacement

\$1,291,000 Total

Explain how the priority project above will reduce the backlog of Deferred Maintenance identified for your Campus:

Continued air infiltration leading to higher energy costs. Continued water infiltration that can lead to continued mold and potential water damage to building skin and interior finishes.

This project will reduce the Coffman Center Main Campus FCI from 0.09 to 0.07.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 Cost Estimates

HEAPR2020 Page 1 of 1

AREA #1 – SCIENCE & TECHNOLOGY HALL – PRIORITY ONE COST ESTIMATE:

NORTH ELEVATION:					
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
4	Replace broken hinges at Door 16	2	\$480	\$ 480	
EAST ELEVAT	EAST ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
5,8	Bio Lab Window Box Projection – investigation of leaks	4	\$20,000	\$ 20 ,000	
WEST ELEVA	TION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
8	Repair and reseal glazing gaskets at windows next to Door 24 along grade level window units	5	\$ 500	\$ 500	
10	Door 24 - Replace sweeps, weatherstrip doors	5	\$1,,000	\$ 1,000	
Area #1 Sub-Total:	Current Cost Index			\$ 21,980	

AREA #2 - HEALTH SCIENCES - PRIORITY ONE COST ESTIMATE:

NORTH ELEVATION:				
Repair Tag #	Description/Solution	Quantity	Unit Price	Total Price
5,7	Repair dissimilar metal corrosion, thresholds, and reseal at Doors 17A & 17B	3	\$1,100	\$ 1,100
Area #2 Sub-Total:	Current Cost Index			\$ 1,100

AREA #3 - SINGLEY HALL - PRIORITY ONE COST ESTIMATE: None.

AREA #4 - ENDICOTT HALL - PRIORITY ONE COST ESTIMATE:

NORTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
11	Replace broken window above Door 27	8	N/A	(Already addressed by Owner)
WEST ELEVA	TION:			
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
10	Door 26 A & B - Replace doors and sidelight (5'x7')	8	\$ 11,450	\$ 11,450
10	Door 27 - Replace door and sidelight	8	\$5,140	\$ 5,140
10	Door 28 - Replace door and sidelight	9	\$5,140	\$ 5,140
Area #4 Sub-Total:	Current Cost Index			\$ 21,730

AREA #5 – COFFMAN CENTER – PRIORITY ONE COST ESTIMATE:

SOUTH ELEV	SOUTH ELEVATION:			
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
8,13	Reglaze and reseal entire curtainwall systems at all horizontal curtainwall mullion lites and replace fogged glass lites at 4 locations	10 & 12	\$23,200	\$ 23,200
3	Door 29 Vestibule - Replace side windows and add sill curbs	11	\$19,200	\$ 19,200
ROOF SKYLIG	нт:			
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
1	Re-capseal glazing joints and reseal entire skylight base (400 lf)	Main Roof 2 & 3	\$2,000	\$ 2,000
Area #5 Sub-Total:	Current Cost Index			\$ 44,400

AREA #6 - GODDARD LIBRARY - PRIORITY ONE COST ESTIMATE:

ROOF:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
12	Door R5 - Clean, prep, and paint	Main Roof 3	\$ 1,000	\$ 1,000
Area #6 Sub-Total:	Current Cost Index			\$ 1,000

AREA #7 – ADMINISTRATION / STUDENT SERVICES – PRIORITY ONE COST ESTIMATE: None.

AREA #8 - COLLEGE CENTER - PRIORITY ONE COST ESTIMATE:

	7.11.27.11.0 COLLEGE CENTER 1 11.01.11 COLE CON ESTIMATE.				
WEST ELEVATION:					
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
10	Reglaze fogged lite at grade level by Door 33	14 & 15	\$2,100	\$ 2,100	
NORTH ELEV	ATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
10	Reglaze fogged lite at roof level, at link to Area #7		\$3,200	\$ 3,200	
SOUTH ELEVA	ATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
12	Refinish fixed window frames on each side of Door 43	25	\$ 2,000	\$ 2,000	
Area #8 Sub-Total:	Current Cost Index			\$ 7,300	

AREA #9 - ART HALL - PRIORITY ONE COST ESTIMATE:

NORTH ELEV	NORTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
10	Replace Door 34 and sidelights	15	\$10,000	\$ 10,000	
10	Replace Door 35 and sidelights	15	\$10,000	\$ 10,000	
12	Refinish and paint interior steel sill framing at link	24	\$ 1,500	\$ 1,500	
Area #9 Sub-Total:	Current Cost Index			\$ 21,500	

REMOVED FROM SCOPE

AREA #10 – PLAZA HALL – PRIORITY ONE COST ESTIMATE:

NORTH ELEVATION:					
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total I	Price
11	Replace fixed window at grade (8'x7') with triple glazing and new curtainwall framing	17	\$ 3,640	\$	3,640
12	Refinish and paint interior steel sill framing at both links windows to Art Hall and to Memorial Hall	18	\$ 3,600	\$	3,600
SOUTH ELEV	ATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total I	Price
12	Refinish and paint interior steel sill framing at both links windows to Art Hall and to Memorial Hall	18	\$ 3,600	\$	3,600
12	Refinish and paint exterior steel framing at South Elevation windows only	22	\$ 8,000	\$	8,000
Area #10 Sub-Total:	Current Cost Index			\$:	18,840

REMOVED FROM SCOPE

AREA #11 - MEMORIAL HALL - PRIORITY ONE COST ESTIMATE:

NORTH ELEVATION:					
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Pri	ce
11	Replace upper row of fixed windows (22'x4') with triple glazing in new curtainwall framing	21	\$ 11,440	\$ 11	L,440
10,11	Doors 37 & 38 and sidelights – Replace entirely with triple glazed sidelights (dual glazed door lites)	19	\$ 13,520	\$ 13	3,520
10,11	Door 39 and sidelight – Paint and refinish frames	19	\$ 80	\$	80
SOUTH ELEV	SOUTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Pri	ce
-	Description/Solution Door 42 and sidelights – Refinish and paint frames; new hinges and threshold		Unit Price \$ 3,300		ce 3,300
Tag #	Door 42 and sidelights – Refinish and paint frames; new hinges and threshold	Reference			
Tag # 4,12	Door 42 and sidelights – Refinish and paint frames; new hinges and threshold	Reference			3,300
Tag # 4,12 WEST ELEVAT	Door 42 and sidelights – Refinish and paint frames; new hinges and threshold	Reference 23 Report Page	\$ 3,300	\$ 3	3,300

AREA #12 - MEMORIAL LECTURE HALL - PRIORITY ONE COST ESTIMATE: None.

AREA #13 - EAST HALL - PRIORITY ONE COST ESTIMATE:

NORTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
11	Replace horizontal ribbon curtainwall glazing and perfect primary seals; replace similar fixed windows	27 & 28	\$ 45,500	\$ 45,500
SOUTH ELEVA	ATION:			
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
14	Replace Kalwall skylight entirely and install proper brick masonry thru-wall flashing above	26	\$ 52,500	\$ 42,400
11	Replace horizontal ribbon curtainwall glazing and perfect primary seals; replace similar fixed windows	27 & 28	\$ 15,600	\$ 15,600
EAST ELEVAT	ION:			
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
11	Replace horizontal ribbon curtainwall glazing and perfect primary seals; replace similar fixed windows	27 & 28	\$ 59,800	\$ 59,800
11	Brick masonry allowance over entire building to access curtainwall repairs	27 thru 29	\$ 75,000	\$ 75,000
12	Door #6 - Refurbish entry hardware hinges, screws, and bases of mullions for corrosion	28	\$ 15,000	\$ 15,000
Area #13 Sub-Total:	Current Cost Index			\$ 253,300

AREA #14 - HILL THEATER - PRIORITY ONE COST ESTIMATE:

EAST ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
11	Replace Door 8	30	\$ 5,000	\$ 5,000
11	Replace Overhead Door 10	30	\$15,000	\$ 15,000
Area #14 Sub-Total:	Current Cost Index			\$ 20,000

AREA #15 - ADMISSIONS / RECORDS / CASHIER (SS-1) - PRIORITY ONE COST ESTIMATE:

ROOF:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
1	Re-capseal all glazing joints, and reseal perimeter base (600 lf)	Main Roof 5	\$ 4,000	\$ 4,000
1	Special access scaffold over skylight on roof deck Main Roof 5 \$4,000		\$ 4,000	
Area #15 Sub-Total:	Current Cost Index			\$ 8,000

PRIORITY ONE TOTAL CONSTRUCTION COST ESTIMATE – MAIN CAMPUS

	I	
Area #1 -	\$	21,980
Area #2 -	\$	1,100
Area #3 -		0
Area #4 -	\$	21,730
Area #5 -	\$	44,400
Area #6 -	\$	1,000
Area #7 -		0
Area #8 -	\$	7,300
Area #9 -	\$	21,500
Area #10 -	\$	18,840
Area #11 -	\$	33,020
Area #12 -		0
Area #13 -	\$ 2	253,300
Area #14 -	\$	20,000
Area #15 -	\$	8,000
All Building Entities Sub-Total:	\$ 4	452,170
Demolition – General (10%):	\$	45,217
Access Labor Time for Small Project Scope Sizes (20%):	\$	99,477
Contingency (10%):	\$	59,686
Bond (0.6%):	\$	3,939
Builders Risk (1%):	\$	6,605
Building Permits (2%):	\$	13,342
Sub-Total:	\$ (680,436
Overhead & Profit (20%):	\$ 1	136,087
General Conditions (5%):	\$	40,826
2013 Estimated Construction Cost Estimate:	\$ 8	857,349

Note: Priority Two cost estimates are totalled in 2016 dollars with a 4% per year inflation factor included on the original base 2013 cost estimates. Because Priority Two estimates project out 3 to 10 years, any work considered after 2016 would have to have additional inflation factors applied.

AREA #1 - SCIENCE & TECHNOLOGY HALL - PRIORITY TWO COST ESTIMATE: None.

AREA #2 - HEALTH SCIENCES - PRIORITY TWO COST ESTIMATE:

NORTH ELEV	NORTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Pr	rice
5	Replace rusty screws at Doors 19 & 20	3 & 4	\$ 400	\$	400
Area #2 Sub-Total:	Current Cost Index			\$	400
Area #2 Sub-Total:	(With 4% per year applied to start in 2016 for the Priori	ity Two 3 to 10 y	ear period)	\$	450

AREA #3 – SINGLEY HALL – PRIORITY TWO COST ESTIMATE:

WEST ELEVA	WEST ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total	Price
5	oor 25 – Replace door and sidelight entirely 7 \$ 4,300			\$	4,300
Area #3 Sub-Total:	Current Cost Index \$		4,300		
Area #3 Sub-Total:	(With 4% per year applied to start in 2016 for the Priority Two 3 to 10 year period) \$ 4,6		4,837		

AREA #4 - ENDICOTT HALL - PRIORITY TWO COST ESTIMATE: None.

Priority Two Cost Estimate – Main Campus Page 1 of 7

AREA #5 - COFFMAN CENTER - PRIORITY TWO COST ESTIMATE:

ROOF:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
14	Replace Kalwall skylight entirely (28'x15')	Main Roof 2,3	\$ 33,280	\$ 33,280
Area #5 Sub-Total:	Current Cost Index			\$ 33,280
Area #5 Sub-Total:	(With 4% per year applied to start in 2016 for the Pric	ority Two 3 to 10	year period)	\$ 37,436

AREA #6 – GODDARD LIBRARY – PRIORITY TWO COST ESTIMATE:

ROOF:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
11	Replace pair of slotted windows entirely	Main Roof 4	\$ 4,375	\$ 4,375
	Install masonry sill curbs for pair of slotted windows	Main Roof 4	\$ 4,000	\$ 4,000
11	Replace single punched window entirely	Main Roof 4	\$ 2,400	\$ 2,400
	Install masonry sill curbs for single punched window Main Roof 4 \$ 2,000		\$ 2,000	
Area #6 Sub-Total:	Current Cost Index			\$ 12,775
Area #6 Sub-Total:	(With 4% per year applied to start in 2016 for the Pric	ority Two 3 to 10	year period)	\$ 14,370

AREA #7 – ADMINISTRATION / STUDENT SERVICES – PRIORITY TWO COST ESTIMATE:

SOUTH ELEV	SOUTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Pr	ice
10	Door 31 – Reseal perimeter framing	12	\$ 80	\$	80
Area #7 Sub-Total:	Current Cost Index			\$	80
Area #7 Sub-Total:	(With 4% per year applied to start in 2016 for the Pric	ority Two 3 to 10) year period)	\$	90

AREA #8 - COLLEGE CENTER - PRIORITY TWO COST ESTIMATE:

WEST ELEVA	WEST ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
10	Door 33 – Replace Doors A, B, C, D entirely	14	\$26,400	\$ 26,400	
SOUTH ELEV	ATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
10	Door 32 – Replace entirely	13	\$ 9,000	\$ 9,000	
Area #8 Sub-Total:	Current Cost Index			\$ 35,400	
Area #8 Sub-Total:	(With 4% per year applied to start in 2016 for the Pric	ority Two 3 to 10	year period)	\$ 39,820	

AREA #9 - ART HALL - PRIORITY TWO COST ESTIMATE:

SOUTH ELEV	SOUTH ELEVATION:			
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price
10	Replace curtainwall at link to College Center entirely	\$ 19,600		
Area #9 Sub-Total:	Current Cost Index \$ 19,		\$ 19,600	
Area #9 Sub-Total:	(NC) 40() 1: 1: 1: 2046 () 1		\$ 22,047	

AREA #10 - PLAZA HALL - PRIORITY TWO COST ESTIMATE: None.

REMOVED FROM SCOPE

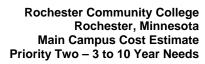
Rochester Community College Rochester, Minnesota Main Campus Cost Estimate Priority Two – 3 to 10 Year Needs

AREA #11 – MEMORIAL HALL – PRIORITY TWO COST ESTIMATE:

NORTH ELEV	NORTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
11	Replace entire elevation of fixed windows, and also provide precast sills at grade level fixed windows	20	\$ 65,000	\$ 65,000	
11	Replace sill masonry and provide precast sills at grade level fixed windows	20	\$ 15,000	\$ 15,000	
10	Doors 36A & 36B - Replace entire door system	18	\$ 7,600	\$ 7,600	
11	Replace fixed window between Doors 36A & 36B – 4 ea fixed lites (16'x7') total	18	\$ 11,200	\$ 11,200	
SOUTH ELEV	SOUTH ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
11	Replace entire elevation of fixed windows	21	\$ 70,000	\$ 70,000	
10	Replace entire roof access door and sidelight - \$ 4,300		\$ 4,300	\$ 4,300	
WEST ELEVA	WEST ELEVATION:				
Repair Tag #	Description/Solution	Report Page Reference	Unit Price	Total Price	
11	Replace fixed window at 3 RD Floor above Door R10 (8'x7')	20	\$ 3,600	\$ 3,600	
Area #11 Sub-Total:	Current Cost Index			\$ 176,700	
Area #11 Sub-Total:					

AREA #12 – MEMORIAL LECTURE HALL – PRIORITY TWO COST ESTIMATE: None.

AREA #13 – EAST HALL – PRIORITY TWO COST ESTIMATE: None.


AREA #14 - HILL THEATER - PRIORITY TWO COST ESTIMATE: None.

AREA #15 – ADMISSIONS / RECORDS / CASHIER (SS-1) – PRIORITY TWO COST ESTIMATE: None.

PRIORITY TWO TOTAL CONSTRUCTION COST ESTIMATE – MAIN CAMPUS

Area #1 -	0
Area #2 -	\$ 450
Area #3 -	\$ 4,837
Area #4 -	0
Area #5 -	\$ 37,436
Area #6 -	\$ 14,370
Area #7 -	\$ 90
Area #8 -	\$ 39,820
Area #9 -	\$ 22,047
Area #10 -	0
Area #11 -	\$ 198,764
Area #12 -	0
Area #13 -	0
Area #14 -	0
Area #15 -	0
All Building Entities Sub-Total:	\$ 317,814
Demolition – General (10%):	\$ 31,781
Access Labor Time for Small Project Scope Sizes (20%):	\$ 69,919
Contingency (10%):	\$ 41,951
Bond (0.6%):	\$ 2,769
Builders Risk (1%):	\$ 4,642
Building Permits (2%):	\$ 9,378
Sub-Total:	\$ 478,254
Overhead & Profit (20%):	\$ 95,651
General Conditions (5%):	\$ 28,695
2016 Estimated Construction Cost Estimate:	\$ 602,600

HEAPR MANUAL Coffman Hall Roof Replacement

Req. No.: 01

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classifica	tion of All Work: (Provide	e est. construction costs by "classification of work")
\$858,000	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Security	(Fire alarm systems, public address, building security)
\$858,000	Total	

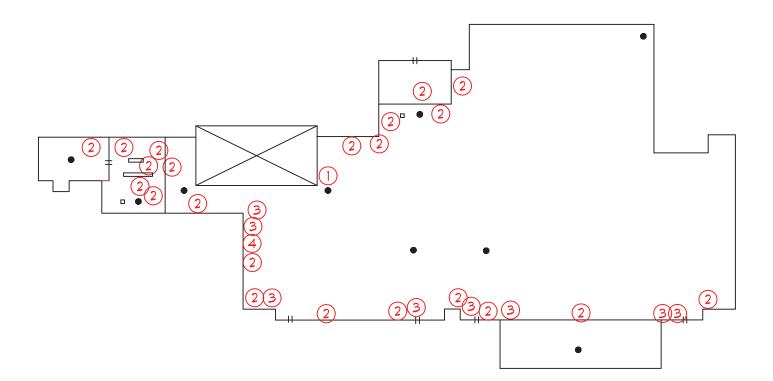
General Description of Existing Conditions and All Work

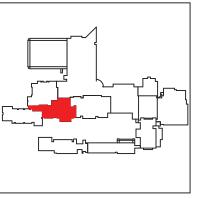
Roof is already past its useful life expectancy. Extensive leakage is causing class disruption and severe damage to infrastructure. Utility costs can be improved with better insulation. May need ceiling repair if not replaced.

- 1. The existing concrete deck has a structural slope of approximately 1/8 inch per foot; therefore, a fully-tapered insulation system will not be required.
- 2. The mechanical units and sleeper curbs will be raised to accommodate the necessary base flashing heights for the support curbs. All associated mechanical and electrical lines will require modification. This work will require the services of mechanical and electrical consultants.
- 3. The existing drains will be replaced with new, and new overflow drain will be provided. This work will require the services of a mechanical consultant.
- 4. A new OSHA-approved access ladder will be installed for access to the upper roof areas. This work will require the services of a structural consultant.
- 5. The existing recessed windows will be cut off in order to accommodate necessary base flashing height. This will require the services of a window consultant.
- 6. The brick on the wall at the east end of this roof is beginning to show signs of deterioration. Possible sources of moisture will be systematically eliminated to prevent further damage to the wall. The roof edge above on the north reroofing section will be evaluated and repaired, if necessary, as the first step. The brick face will be cleaned and monitored to see if the efflorescence returns. If repairing the upper roof edge does not eliminate the problem, the services of a masonry consultant will be required to address the wall problems.
- 7. MnState standards require the skylight be removed and deck replacement provided. Further discussions with MnState and the campus will be necessary if the campus wants to replace them with new. If the skylight is replaced, the walls will be covered with plywood, underlayments, and standing seam sheet metal panels. The skylights are only considered to have a 20-year life expectancy.
- 8. The existing sheet metal panels at the skylight penthouse walls will be removed, cut off, and reinstalled or replaced to provide the necessary base flashing heights.

HEAPR2020 Page 1 of 2

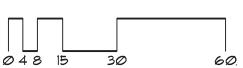
Project Title - Coffman Hall Roof Replacement				
<u>Priority Project(s) and General Work Description</u> : (Provide estimated <u>construction</u> costs for specific priority project with general description)				
\$858,000 Coffman Center Roof Replacement				
<u> </u>				
<u> </u>				
\$858,000 Total				
Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:				
Damaged classrooms, ceilings falling down, roof structures damaged. Ongoing expensive repairs. Excessive utility costs.				
This project will reduce Coffman Center FCI from 0.33 to 0.17.				


Supporting Materials (Master Plans, Reports, Design Documents as available from campus)


- 1 Roof Aerial Photo
- 2 Roof Plan
- 3 Roof Report Roof Spec, Inc.
- 4 Campus Roof Plan InSpec

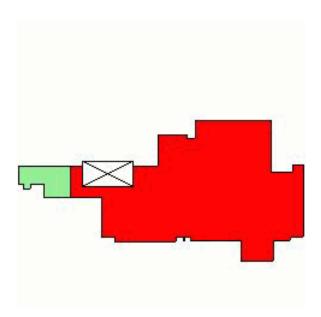
HEAPR2020 Page 2 of 2

COFFMAN CENTER CF



SYMBOLS KEY

- □ ROOF CURB
- ROOF DRAIN
- O VENT STACK
- # SCUPPER
- SKYLIGHT
- 1 DEFECT-REPAIR


Full Facility Roof Report

Prepared for:

CC-Coffman Center

Prepared by:

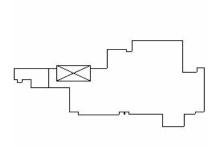
Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Coffman Center

Last Inspection Date: Sep 10, 2019

Facility: CC-Coffman Center

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 10, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
CF1	2020	Replacement	No	Capital	Moderate	\$787,000

Emergency repairs should be performed as needed to maintain a watertight condition until replacement takes place.

The budget cost is based on the 2011 predesign report. Recommend updating the predesign report.

\$787,000

Recommendation Summary						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
CF1	2020	Replacement	No	Capital	Moderate	\$787,000
						\$787,000

Roof Name: E26148C0268

Roof Size: 10,000 sq. ft.

Est. replacement Cost: \$787,000.00

Existing System Type: (EPDM-B) Ballasted Ethylene-Propylene-Diene-Monomer

Year Installed: 1988

Assessed Service Life Remaining (Years) :

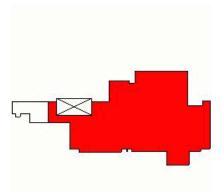
Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate

Currently Leaking? No


History of Leaking? No

Drainage and Leak The estimated replacement cost is based on the

Details: 2011 predesign report. Recommend updating the

predesign report.

Membrane Defects - Outstanding				
Defect Type Severity Quantity				
Defect #01	Monitor	20	Ea.	

ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Base flashing slippage, wrinkling, blistering or bridging

REPAIR: Monitor for repair need prior to reroofing

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Repair	6	Ea.

ID #2 OBSERVED: 9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Open flashing joint

REPAIR: Install new EPDM over open flashing joints.

COMMENTS:

Roof Name: E26148C0268

Roof Size: 550 sq. ft.

Est. replacement Cost: \$8,250.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

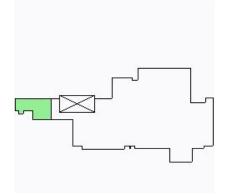
Year Installed: 2012

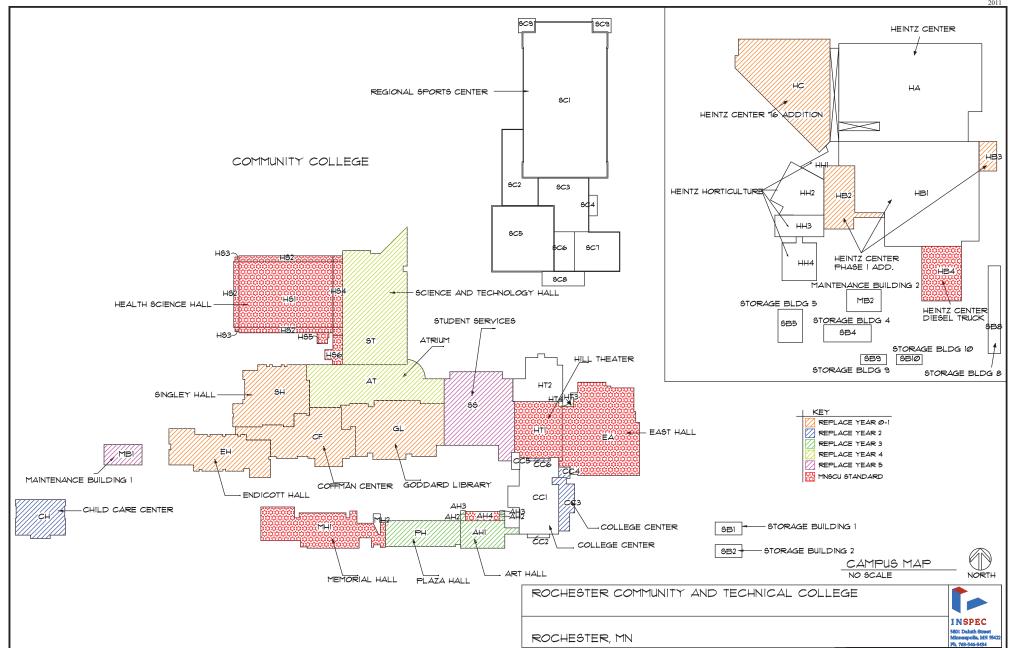
Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:


Drainage: Adequate


Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

HEAPR MANUAL Student Services Roof Replacement

Req. No.: 08

 Institution
 Rochester Community and Technical College
 Date: December 2020

 Campus/Building
 Main Campus Building

Project Location Rochester, MN

General Classification of All Work (Provide est. construction costs by "classification of work")					
\$859,000	Exterior Envelope	(exterior roof, walls, windows, exterior doors)			
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)			
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)			
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)			
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)			
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)			
\$	Life Safety and Security	(Fire alarm systems, public address, building security)			
\$859,000	Total				

General Description of Existing Conditions and All Work

Roofs replaced in 1992 are at their useful life expectancy. Leaks disrupt classes and lead to infrastructure damage. Utility costs can be improved with better insulation.

- 1. The existing concrete deck has little or no structural slope; therefore, a fully-tapered insulation system will be required.
- 2. The existing parapets and control joints will be raised to accommodate the necessary base flashings heights required to meet current MnState standards.
- 3. The walls appear to be cavity wall construction; therefore, new double through-wall flashing will be required to provide a weather-tight condition and accommodate the 12-inch minimum base flashing height as required to meet current MnState standards. This work will require the services of a masonry consultant.
- 4. MnState standards require that skylights be removed and deck replacement provided. Further discussions can be held between campus facility personnel and MnState regarding the option to maintain or replace the skylights with new. The skylights would only be considered to have a 20-year life expectancy. If the skylights are maintained or replaced, this work will require the services of a window consultant.
- The existing drains and leaders will be replaced with a larger size or additional drains added to meet current code requirements. Also, overflow drains and/or scuppers will be provided. This work will require the services of a mechanical consultant.
- 6. The existing mechanical curbs will be raised to accommodate the necessary base flashing height. All associated mechanical/electrical/gas modifications will be incorporated. Mechanical units will be relocated as necessary to provide a symmetrical and unobstructed drainage layout. This work will require the services of mechanical and electrical consultants.
- 7. The obsolete capped curbs, vent stacks, and sleeper curbs will be removed and deck replacement provided where necessary. This work will require the services of a structural consultant.
- 8. A new OSHA-approved access ladder will be installed in order to meet current code requirements. This work will require the services of a structural consultant.
- 9. This roof area is several stories above grade and has very limited access.

HEAPR2020 Page 1 of 2

Project Title - Student Services Roof Replacement					
<u>Priority Project(s) and General Work Description</u> : (Provide estimated <u>construction</u> costs for specific priority project with general description)					
\$859,000 Atrium and Student Services Roof Replacement.					
<u> </u>					
<u> </u>					
\$859,000 Total					
Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:					
Damaged classrooms, offices, interior finishes, roof structures. Ongoing expensive repairs. Excessive utility costs.					

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 SD Report - Roof Spec, Inc.

HEAPR2020 Page 2 of 2

2400 Prior Avenue North St. Paul, MN 55113 (651) 639-0644 (651) 639-1828 (fax) 800-494-4085 www.roofspec.com

PROJECT: Rochester Community and Technical College

Student Services Building

DATE: October 30, 2020

RSI PROJECT #: 20-13152-02

REPORTED TO: Rochester Community and Technical College

851 30th Avenue SE Rochester, MN 55904

Attn: Shayn Jensson, Facilities Project Manager

Justin Pliska, MN State System Office

FINAL SCHEMATIC DESIGN REPORT

Table of Contents:	<u>Page</u>
Title Page	1
Project Scope	2
Design Considerations	2 - 4
Opinion of Probable Construction Costs	5
Estimated Construction Schedule	5
Comments	5
Schematic Design Review Documents	Attached

Rochester Community and Technical College October 30, 2020 RSI Project #20-13152-02 – Final Schematic Design Report – Student Services Building Page 2

Project Scope

General:

The project scope consists of the roof replacement of approximately 11,908 sq. ft. of existing ballasted EPDM from all roof sections of the Student Services Building. It will also include the replacement of the existing drain bowls and raising/modifying the existing rooftop equipment to accommodate the new insulation thickness. The project will also include new OSHA approved safety railings at the perimeter, new OSHA approved access ladder for the penthouse, new through wall flashings at the masonry transitions and modifying the insulated wall panels at the penthouse transitions.

Existing Roof System:

The existing roof system for the main roof area consists of a ballasted EPDM membrane over tapered ridged insulation varying from 4"-6" over a concrete roof deck. The roof system for the penthouse consists of a ballasted EPDM membrane installed over tapered insulation ranging in thickness from 4"-6", ½" gypsum board and a metal roof deck.

New Roof System:

The new roof system for the main roof area will consist of completely removing the existing roof insulation to the surface of the concrete deck. The surface of the concrete deck will then be primed prior to installing a 2-ply asphalt vapor retarder. Three layers of 2" polyisocyanurate insulation will be installed over the structural sloped portions of the roof area prior to installing a 1" perlite insulation cover board and 4-ply gravel surface built-up roof system, all in hot asphalt. Additionally, ½" per ft. tapered insulation saddles will be installed between the roof drains. The existing roof drains will be replaced with new cast iron drains and strainers. The roof system will have a minimum R-value of 35 throughout the entire roof area.

The new roof system for the penthouse roof will consist of removing the existing roof system to the surface of the existing gypsum thermal barrier. The ½" perlite insulation will then be installed and mechanically attached through the existing gypsum to the steel deck. A new 2-ply vapor retarder will then be installed prior to installing 1/8" per ft. tapered insulation, a 1" perlite insulation cover board and 4-ply gravel surfaced built-up roof surface, all in hot asphalt. The existing roof drains will be replaced with cast iron drains and strainers and the new roof system will have a minimum R-value of 35.

Design Considerations

1. Staging for the project will take place in the parking lot adjacent to the northwestern corner of the roof section. Staging will be fenced in during construction and the contractor will protect all existing conditions. It may be necessary to close the main entrance during construction and/or provide a protected alternate entry. The proposed staging area locations are indicated on the attached Schematic Design drawings.

2. The existing roof drains are in poor condition and will be replaced. MN State Roof Design Standards require 4-way unobstructed slope to drain. To meet this requirement, it will be necessary to install 1/4" per ft. tapered insulation saddles between the existing roof drains. To meet this requirement, it will also be necessary to relocate and/or add

roof drains at the penthouse roof section.

- 3. Insufficient height is present at the support curbs for the various rooftop equipment. The curbs for the mechanical equipment located on the roof will be modified and extended to allow for a 12" minimum flashing height above the completed roof system.
- 4. RCTC will identify on the SD Roof Plan any obsolete roof penetrations or equipment that can be removed.
- 5. Insufficient flashing height is present at the base of the parapet due to the existing aluminum rail. Options were reviewed during design that include modifying/cutting the bottom portion of the aluminum rail and/or increasing the roof flashing height on the interior and sloping the coping to the exterior. It was determined that a prefinished metal cap will be installed that slopes to the exterior with a 2" exposure. (Refer to photograph #1).
- 6. Cavity wall construction is present at isolated roof-to-wall locations. The weeps for the through wall flashing are too low to allow for proper installation of the new roof system. At these locations, a MN State compliant through wall flashing will be installed. (Refer to photograph #2).
- 7. The roof is currently accessed via door at the eastern edge of the penthouse. This door is located in close proximity to the perimeter of the roof. Roof design will incorporate a new OSHA approved perimeter railing adjacent to the roof door. A new OSHA approved access ladder will be provided to access the penthouse roof. (Refer to photograph #3).

Photograph #1

Photograph #2

Photograph #3

RSI Project #20-13152-02 – Final Schematic Design Report – Student Services Building

Page 4

- 8. At the roof access door, it does not appear that sufficient flashing height is present to allow for the installation of the new roof system. This door will be modified and reinstalled and/or completely replaced as part of the roof replacement project. (Refer to photograph #4).
- 9. Insufficient flashing height is present at the roof-to-wall transition to the penthouse. It will be necessary to cut the existing metal panels to allow for the installation of the new roof system. (Refer to photograph #5).
- 10. The new roof system is based on the existing 1/8" per ft. structural slope to internal roof drains. The structural review of the existing building has confirmed that the structure is capable of supporting the new roof system and there are no issues with instability due to ponding in relation to the 1/8" per ft. drainage. Refer to the attached structural report provided by BKBM Engineers.

Photograph #4

Photograph 5

- 11. The roof was evaluated for the potential installation of future solar panels. There are portions of the roof that are relatively open and with minimal traffic that would be suitable to the installation of solar panels. However, while taking into consideration the existing design load for the building (30 lbs. per ft.) and any additional drift loads, minimal if any structural capacity is available for the installation of new solar panels.
- 12. Depending on the construction schedule, portions of the building may be occupied during construction. The primary disruptions for building occupants will be noise from the new roof installation and fumes from the asphalt. Asphalt fumes will be controlled during the project by using a fume recovery system at the tanker. Additionally, shutting down air intakes will be closely coordinated with the campus during construction.

Opinion of Probable Construction Costs

Roofing	\$550,000
Sheet Metal / Wall Panels	\$50,000
Mechanical, Electrical and Plumbing	\$50,000
Masonry	\$30,000
10% Contingency	\$74,000
Subtotal:	\$754,000
Design	\$45,000
Inspection Testing	\$60,000
Total:	\$859,000

Estimated Schedule

• To Be Determined

Comments

Attached please find the Schematic Design Drawings. Please review and provide comments at your earliest convenience. If you should have any questions or require further information, please contact our office. Thank you.

Respectfully, ROOF SPEC, INC.

Tim Pekron, RRC Senior Consultant

TP/jrn

HEAPR MANUAL Goddard Library Roof Replacement

Req. No.: 09

 Institution
 Rochester Community and Technical College
 Date: December 2020

 Campus/Building
 Main Campus Building

Project Location Rochester, MN

General Classificat	tion of All Work: (Pi	rovide est. construction costs by "classification of work")
\$1,250,000	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Secur	ity (Fire alarm systems, public address, building security)
\$1,250,000	Total	

General Description of Existing Conditions and All Work

Roof is already past its useful life expectancy and displays ponding. Extensive leakage is causing class disruption and severe damage to infrastructure. Utility costs can be improved with better insulation. May need ceiling repair if not replaced.

- 1. The existing concrete deck has little or no structural slope; therefore, a fully-tapered insulation system will be required.
- 2. The existing drains and leaders will be replaced with a larger size and/or additional drains added to meet current code requirements. Also, overflow drains and/or scuppers will be provided. This work will require the services of a mechanical consultant.
- 3. The existing mechanical curbs, heat stacks, sleeper curbs and vent stacks will be raised to accommodate the necessary base flashing height. All associated mechanical/electrical/gas modifications will be incorporated. Mechanical units will be relocated as necessary to provide a symmetrical and unobstructed drainage layout. This work will require the services of mechanical and electrical consultants.
- 4. All obsolete capped curbs, vent stacks, pipe penetrations, and sleeper curbs will be removed and deck replacement provided where necessary.
- 5. MnState standards require that skylights be removed and deck replacement provided. Further discussions can be held between campus facility personnel and MnState regarding the option to maintain or replace the skylights with new. The skylights would only be considered to have a 20-year life expectancy. If the skylights are maintained or replaced, this work will require the services of a window consultant. In addition, if skylights are maintained, skylight curbs will be raised to accommodate the necessary base flashing height.
- 6. The existing parapets and control joints will be raised to accommodate the necessary base flashing heights required to meet current MnState standards.
- 7. Louver and door sills will be raised to accommodate the necessary base flashing height required to meet current MnState standards. Existing louvers and door will be modified or new louvers and door installed to fit the new openings. This work will require the services of mechanical and door consultants.
- 8. New OSHA-approved roof ladders will be installed to provide access to adjoining upper and lower roof areas. These ladders will be designed and built to also meet current state and local codes. This work will require the services of a structural consultant.
- 9. Asbestos-containing materials may be present in the existing two-ply vapor retarder. During the final design phase for the reroofing project, samples of the vapor retarder will be submitted to a hazardous materials consultant. Should the results come back positive, the asbestos-containing materials will be abated by a hazardous materials contractor.
- 10. Existing satellite dishes/antennas (five large) are considered obsolete and will be removed.

HEAPR2020 Page 1 of 2

Project Title - Goddard Library Roof Replacement			
Priority Project(s) and General Work Description: (Provide estimated construction costs for specific priority project with general description)			
\$1,250,000 Goddard Library Roof Replacement			
<u> </u>			
<u>*</u>			
\$1,250,000 Total			
Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:			
Potential for damaged library rooms and contents stored within them, roof structures damaged. Ongoing expensive repairs. Excessive utility costs.			
Project will reduce Goddard Library FCI from 0.11 to 0.04.			

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 SD Report - Roof Spec, Inc.

HEAPR2020 Page 2 of 2

2400 Prior Avenue North St. Paul, MN 55113 (651) 639-0644 (651) 639-1828 (fax) 800-494-4085 www.roofspec.com

PROJECT: Rochester Community and Technical College

Goddard Library

DATE: October 30, 2020

RSI PROJECT #: 20-13152-02

REPORTED TO: Rochester Community and Technical College

851 30th Avenue SE Rochester, MN 55904

Attn: Shayn Jensson, Facilities Project Manager

Justin Pliska, MN State System Office

FINAL SCHEMATIC DESIGN REPORT

Table of Contents:	Page
Title Page	1
Project Scope	2
Design Considerations	2 - 4
Opinion of Probable Construction Costs	5
Estimated Construction Schedule	5
Comments	5
Schematic Design Review Documents	Attached

Rochester Community and Technical College October 30, 2020 RSI Project #20-13152-02 – Final Schematic Design Report – Goddard Library Page 2

Project Scope

General:

The project scope consists of the roof replacement of approximately 11,900 sq. ft. of existing ballasted EPDM from all roof sections of the Goddard Library. It will also include the replacement of the existing drain bowls and raising/modifying the existing rooftop equipment to accommodate the new insulation thickness. The project will also include replacement of the existing skylights, new through wall flashings at the masonry transitions and new roof access ladders.

Existing Roof System:

The existing roof system consists of a ballasted EPDM membrane over 1 ½" of extruded polystyrene insulation, 2 layers of 2" foam glass insulation mopped in place, an asphalt vapor retarder and a concrete roof deck. Drainage is accomplished via roof drains located in the center of each roof section. There is no secondary or overflow drainage present on the roof.

New Roof System:

The new roof system will consist of completely removing the existing roof membrane and insulation to the surface of the concrete deck. The concrete deck will then be primed prior to installing a new 2-ply asphalt vapor retarder. Tapered polyisocyanurate insulation will be installed prior to installing a 1" perlite insulation cover board and 4-ply gravel surface built-up roof, all in hot asphalt. The existing roof drains will be replaced with new cast iron drains and strainers. It will also be necessary to install new overflow scuppers and/or new overflow roof drains within each roof section. The roof system will have a minimum R-value of 35 throughout the entire roof area.

Design Considerations

- 1. Staging for the project is limited. Due to the recent courtyard renovations, there is no viable staging area along the southern edge of the roof. It will be necessary to stage the project adjacent to the main entry and construct a walkway over the Atrium Roof. Staging will be fenced in during construction. The contractor will protect all existing conditions. It may be necessary to close the main entrance during construction and/or provide a protected alternate entry. The proposed staging area locations are indicated on the attached Schematic Design Drawings.
- 2. The existing roof drains are in poor condition and will be replaced. New tapered insulation will be installed to meet the MN State requirement of four-way unobstructed slope to drain. No overflow drainage is currently present. Where possible, overflow scuppers will be installed adjacent to the primary roof drain, however, it will also be necessary to add new overflow roof drains.

- 3. Insufficient height is present at the support curbs for the rooftop equipment. The curbs for any mechanical equipment located on the roof will be modified and extended to allow for a 12" minimum flashing height above the completed roof system.
- 4. There are multiple large satellite dishes located on the roof area and penthouses. It was verified with RCTC that these antennas are obsolete and they will be removed as part of the roofing project. (Refer to photograph #1).
- 5. There is equipment and/or sensors mounted to the parapet of the penthouse roof. RCTC will verify if any of this is obsolete and this equipment will be removed as part of the roof replacement project. Any equipment to remain will be properly mounted to the exterior of the wall and not penetrate the new sheet metal coping. (Refer to photograph #2).
- 6. The roof is currently accessed via a roof access door through the penthouse. A new access ladder will be installed to provide roof access to the penthouse.

Photograph #1

Photograph #2

- 7. There are two wall mounted AC units adjacent to the penthouse access door. New support curbs will be provided for these units and a new safety railing installed adjacent to the perimeter. (Refer to photograph #3).
- 8. The roof access door through the penthouse is currently recessed into the wall. RCTC has stated that snow accumulates in this area in the winter making the door difficult to open. Further investigation will be performed as to the possibility of extending this door outward to be flush with the adjacent penthouse wall and enclosing this area. (Refer to photograph #4).

Photograph #3 Photograph #4

- 9. The concrete penthouse walls will be clad in new prefinished metal wall panels. Additionally, it will be necessary to remove and modify the existing louvers and duct work to allow for the installation of the new roof system. (Refer to photograph #5).
- 10. There are plastic dome skylights located in the center of the roof section. RCTC has stated that they value the natural light provided by the skylights and would like some form for skylight to remain. Design will include modifying the existing skylight curbing and reusing the skylight openings to allow for the installation of a MN State approved translucent skylight panel system. (Refer to photograph #6).

Photograph #5

Photograph #6

- 11. The roof was evaluated for potential installation of future solar panels. However, while taking into consideration the existing design load for the building and any additional drift loads, minimal if any additional structural capacity is available for the installation of new solar panels.
- 12. Depending on the construction schedule, a portion of the building may be occupied during construction. The primary disruption for building occupants will be noise from the new roof installation and fumes from the asphalt. Asphalt fumes will be controlled during the project by using a fume recover system at the tanker. Additionally shutting down air intakes will be closely coordinated with the campus during construction.
- 13. The existing roof system is based on installing 1/8" per ft. tapered insulation to provide slope to the internal roof drains. The structural review of the existing building has confirmed that the structure is capable of supporting a new roof system and that there are no issues with instability due to ponding in relation to the 1/8" per ft. drainage. Refer to the attached structural report provided by BKBM Engineers.

Opinion of Probable Construction Costs

Roofing	\$580,000
Sheet Metal / Wall Panels	\$50,000
Mechanical, Electrical and Plumbing	\$130,000
Masonry	\$40,000
Skylight	\$200,000
10% Contingency	\$100,000
Subtotal:	\$1,100,000
Design	\$70,000
Inspection Testing	\$80,000
Total:	\$1,250,000

Estimated Schedule

• To Be Determined

Comments

Attached please find the Schematic Design Drawings. Please review and provide comments at your earliest convenience. If you should have any questions or require further information, please contact our office. Thank you.

Respectfully, ROOF SPEC, INC.

Tim Pekron, RRC Senior Consultant

TP/jrn

HEAPR MANUAL College Center Roof Replacement

Req. No.: 10

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classifica	ation of All Work: (Pr	ovide est. construction costs by "classification of work")
\$1,316,000	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Secur	ity (Fire alarm systems, public address, building security)
\$1,316,000	Total	

General Description of Existing Conditions and All Work

Roof is already past its useful life expectancy and displays ponding. Extensive leakage is causing class disruption and severe damage to infrastructure. Utility costs can be improved with better insulation. May need ceiling repair if not replaced.

- 1. The existing concrete deck has little or no structural slope; therefore, a fully-tapered insulation system will be required.
- 2. The existing drains and leaders will be replaced with a larger size and/or additional drains added to meet current code requirements. Also, overflow drains and/or scuppers will be provided. This work will require the services of a mechanical consultant.
- 3. The existing mechanical curbs, heat stacks, sleeper curbs and vent stacks will be raised to accommodate the necessary base flashing height. All associated mechanical/electrical/gas modifications will be incorporated. Mechanical units will be relocated as necessary to provide a symmetrical and unobstructed drainage layout. This work will require the services of mechanical and electrical consultants.
- 4. All obsolete capped curbs, vent stacks, pipe penetrations, and sleeper curbs will be removed and deck replacement provided where necessary.
- 5. The existing parapets and control joints will be raised to accommodate the necessary base flashing heights required to meet current MnState standards.
- 6. Louver and door sills will be raised to accommodate the necessary base flashing height required to meet current MnState standards. Existing louvers and door will be modified or new louvers and door installed to fit the new openings. This work will require the services of mechanical and door consultants.
- 7. New OSHA-approved roof ladders will be installed to provide access to adjoining upper and lower roof areas. These ladders will be designed and built to also meet current state and local codes. This work will require the services of a structural consultant.
- 8. Asbestos-containing materials may be present in the existing two-ply vapor retarder. During the final design phase for the reroofing project, samples of the vapor retarder will be submitted to a hazardous materials consultant. Should the results come back positive, the asbestos-containing materials will be abated by a hazardous materials contractor.

HEAPR2020 Page 1 of 2

Project Title - College Center Roof Replacement

<u>Priority Project(s) and General Work Description</u>: (Provide estimated <u>construction</u> costs for specific priority project with general description)

\$1,316,000 College Center Roof Replacement

\$
\$

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Potential for damaged library rooms and contents stored within them, roof structures damaged. Ongoing expensive repairs. Excessive utility costs.

Project will reduce College Center FCI from 0.11 to 0.04.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 SD Report - Roof Spec, Inc.

\$1,316,000 Total

HEAPR2020 Page 2 of 2

2400 Prior Avenue North St. Paul, MN 55113 (651) 639-0644 (651) 639-1828 (fax) 800-494-4085 www.roofspec.com

PROJECT: Rochester Community and Technical College

College Center

DATE: October 30, 2020

RSI PROJECT #: 20-13152-02

REPORTED TO: Rochester Community and Technical College

851 30th Avenue SE Rochester, MN 55904

Attn: Shayn Jensson, Facilities Project Manager

Justin Pliska, MN State System Office

FINAL SCHEMATIC DESIGN REPORT

Table of Contents:	<u>Page</u>
Title Page	1
Project Scope	2
Design Considerations	2 - 5
Opinion of Probable Construction Costs	6
Estimated Construction Schedule	6
Comments	6
Schematic Design Review Documents	Attached

Rochester Community and Technical College October 30, 2020 RSI Project #20-13152-02 – Final Schematic Design Report – College Center Page 2

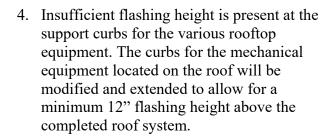
Project Scope

General:

The project scope consists of the replacement of approximately 12,000 sq. ft. of existing built-up, fully-adhered EPDM and standing seam sheet metal from all roof sections of the College Center Building. It will also include the replacement of the existing drain bowls and raising/modifying the existing rooftop equipment to accommodate the new insulation thickness. Any obsolete penetrations will be removed from the roof. The project will also include the installation of new access ladders and new through wall flashings at masonry transitions, window replacement and modifying and/or replacing existing roof access doors.

Existing Roof System:

The existing roof system for the main roof area (Areas A and B) consists of a gravel surface built-up roof over tapered ridged insulation varying from 5" to 8" in thickness and a concrete roof deck. With the exception of Roof Area M, the remaining roof areas consist of a fully-adhered EPDM membrane over 3 ½" of ridged insulation and a concrete roof deck. No slope was present in the EPDM roof areas. The standing seam metal roof system is present over Roof Area M. Drainage for all low slope roof areas is accomplished by internal roof drains with adjacent overflow scuppers.


New Roof System:

The new roof system for the low slope roof sections will consist of completely removing the existing roof and insulation to the surface of the concrete deck. The surface of the concrete deck will then be primed prior to installing a 2-ply asphalt vapor retarder. A 1/8" per ft. tapered insulation will then be installed prior to installing 1" perlite insulation cover board and a 4-ply gravel surface built-up roof system, all in hot asphalt. The existing roof drains will be replaced with new cast iron drains and strainers and relocated as necessary to provide 4-way unobstructed slope to drain. The new roof system will have a minimum R-value of 35 throughout the entire roof area. The existing standing seam metal will be completely removed to the surface of the concrete deck. A self-adhering vapor retarder will then be installed prior to installing 3 layers of 2" polyisocyanurate insulation and a prefinished metal panel system with a roll form seam. The standing seam metal roof area will also have a minimum R-value of 35.

Design Considerations

1. Staging for the project will take place in the parking lot adjacent to Roof Section I and in the landscaping on the southern perimeter of the building adjacent to Area L. Staging will be fenced in during construction and the contractor will protect all existing conditions. It will be necessary to repair and restore landscaping adjacent to the building upon completion of the project. The proposed staging area locations are indicated on the attached Schematic Design Drawings.

- 2. The existing roof drains are in poor condition and will be replaced. Additionally, the roof drains at several locations are embedded in the wall. It will be necessary to relocate these drains away from the wall to properly flash the roof drain. (Refer to photograph #1).
- 3. The existing roof drainage system is undersized to meet current Plumbing Code, the relocation of the through wall drains will necessitate the upgrading of the internal rain water system to meet current Plumbing Code.

5. The standing seam metal roof area at the northern perimeter of the building is in poor condition and will be replaced with new standing seam sheet metal. (Refer to photograph #2).

Photograph #1

Photograph #2

- 6. Multiple roof levels currently exist within the facility that do not have roof access. The current design includes adding roof access to most penthouse roof sections. Several of these roof sections are relatively small with minimal or no rooftop equipment. An additional review will be conducted with the facility and the possibility of a design variance to eliminate some of these ladders will be considered in the future.
- 7. Masonry cavity wall construction consists at multiple roof-to-wall transitions. Roof replacement will include the installation of a new MN State compliant through wall flashing at all roof-to-wall transitions.

8. At isolated locations, roof access doors and rooftop equipment is located within close proximity to the perimeter. Within these areas, new perimeter safety railings will be installed. Where minimal equipment is present, RCTC may also consider safety tie off points in lieu of railings. (Refer to photograph #3).

Photograph #3

- 9. There is minimal or no roof slope present in the current design. The new roof system is based on installing 1/8" per ft. tapered insulation sloped internal roof drains. The structural review of the existing building has confirmed that the structure is capable of supporting the new roof system and that there are no issued with instability due to ponding in relation to the 1/8" per ft. drainage. Refer to the attached structural report provided by BKBM Engineers.
- 10. The roof was evaluated for the potential installation of future solar panels. There is a section of the roof that is relatively open with minimal rooftop traffic that will be suitable to installing solar panels. However, taking into consideration the design load of the building minimal structural capacity is available for the installation of new solar panels.
- 11. Insufficient flashing height is present at the window adjacent to the roof access door R3. Additionally, the downspout draining from the upper roof area is routed around this window. As part of the design, this window will be replaced and the sill modified to provide MN State complaint flashing height. It may also be necessary to modify and/or replace the roof access door at this location. The downspout draining from the upper roof will be rerouted to the lower roof area. (Refer to photograph #4).

Photograph #4

12. At isolated locations there are antennas and equipment secured to the perimeter of the roof. It will be verified with RCTC whether this equipment is still in use and all obsolete equipment will be removed. (Refer to photograph #5).

Photograph #5

13. At Roof Section I, patio pavers were installed over the EPDM membrane. It will need to be evaluated with RCTC the amount of use this patio area receives and if intended for public use, a plaza type roof/waterproofing assembly may be designed. Insufficient flashing height is currently present at the existing window locations and these windows will need to be replaced/modified to provide sufficient height above the completed roof system. (Refer to photographs #6 and #7).

Photograph #6

Photograph 7

14. Depending on the construction schedule the portion of the building may be occupied during construction. The primary disruption for building occupants will be noise from the roof installation and fumes from the asphalt. Asphalt fumes will be controlled during the project by using a fume recovery system at the tanker. Additionally, shutting down of air intakes will be closely coordinated with the campus during construction.

Opinion of Probable Construction Costs

Roofing / Waterproofing	\$600,000
Sheet Metal / Wall Panels	\$50,000
Roof Access Ladders/Railing	\$60,000
Mechanical, Electrical and Plumbing	\$220,000
Masonry	\$40,000
Windows	\$100,000
10% Contingency	\$106,000
Subtotal:	\$1,176,000
Design	\$60,000
Inspection Testing	\$80,000
Total:	\$1,316,000

Estimated Schedule

• To Be Determined

Comments

Attached please find the Schematic Design Drawings. Please review and provide comments at your earliest convenience. If you should have any questions or require further information, please contact our office. Thank you.

Respectfully, ROOF SPEC, INC.

Tim Pekron, RRC Senior Consultant

TP/jrn

HEAPR MANUAL Art Hall Roof Replacement

Req. No.: 11

 Institution
 Rochester Community and Technical College
 Date: December 2020

 Campus/Building
 Main Campus Building

General Classifica	ation of All Work: (Pro	vide est. construction costs by "classification of work")
\$602,000	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Securi	ty (Fire alarm systems, public address, building security)
\$602,000	Total	

General Description of Existing Conditions and All Work

Rochester, MN

Project Location

Roof is already past its useful life expectancy and displays ponding. Extensive leakage is causing class disruption and severe damage to infrastructure. Utility costs can be improved with better insulation. May need ceiling repair if not replaced.

- 1. The existing concrete deck has little or no structural slope; therefore, a fully-tapered insulation system will be required.
- 2. The existing drains and leaders will be replaced with a larger size and/or additional drains added to meet current code requirements. Also, overflow drains and/or scuppers will be provided. This work will require the services of a mechanical consultant.
- 3. The existing mechanical curbs, heat stacks, sleeper curbs and vent stacks will be raised to accommodate the necessary base flashing height. All associated mechanical/electrical/gas modifications will be incorporated. Mechanical units will be relocated as necessary to provide a symmetrical and unobstructed drainage layout. This work will require the services of mechanical and electrical consultants.
- 4. All obsolete capped curbs, vent stacks, pipe penetrations, and sleeper curbs will be removed and deck replacement provided where necessary.
- 5. The existing parapets and control joints will be raised to accommodate the necessary base flashing heights required to meet current MnState standards.
- 6. The two small standing metal seam portions of the roof are in poor condition and should be replaced with new.
- 7. Asbestos-containing materials may be present in the existing two-ply vapor retarder. During the final design phase for the reroofing project, samples of the vapor retarder will be submitted to a hazardous materials consultant. Should the results come back positive, the asbestos-containing materials will be abated by a hazardous materials contractor.

Project Title – Art Hall Roof Replacement Priority Project(s) and General Work Description: (Provide estimated construction costs for specific priority project with general description) \$602,000 Art Hall Roof Replacement \$602,000 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

HEAPR2020 Page 1 of 2

Potential for damaged library rooms and contents stored within them, roof structures damaged. Ongoing expensive repairs. Excessive utility costs.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 SD Report - Roof Spec, Inc.

HEAPR2020 Page 2 of 2

2400 Prior Avenue North St. Paul, MN 55113 (651) 639-0644 (651) 639-1828 (fax) 800-494-4085 www.roofspec.com

PROJECT: Rochester Community and Technical College

Art Hall

DATE: October 30, 2020

RSI PROJECT #: 20-13152-02

REPORTED TO: Rochester Community and Technical College

851 30th Avenue SE Rochester, MN 55904

Attn: Shayn Jensson, Facilities Project Manager

Justin Pliska, MN State System Office

FINAL SCHEMATIC DESIGN REPORT

Table of Contents:	<u>Page</u>
Title Page	1
Project Scope	2
Design Considerations	2 - 4
Opinion of Probable Construction Costs	4
Estimated Construction Schedule	4
Comments	5
Schematic Design Review Documents	Attached

Rochester Community and Technical College October 30, 2020 RSI Project #20-13152-02 – Final Schematic Design Report – Art Hall Page 2

Project Scope

General:

The project scope consists of the replacement of approximately 3,650 sq. ft. of existing ballasted EPDM roof sections of the Art Hall. It will also include the replacement of the existing drain bowls and raising/modifying the existing rooftop equipment to accommodate the new insulation thickness. Two small standing seam sheet metal roofs located along the northern perimeter of the building will also be replaced with new standing seam sheet metal.

Existing Roof System:

The existing roof system consists of a ballasted EPDM membrane over 1½" of wood fiber insulation, 2½" isocyanurate insulation and an asphalt vapor retarder mopped to the surface of the concrete deck. Drainage is accomplished via internal roof drains and/or perimeter scuppers and downspouts. Secondary drainage is provided via overflow scuppers adjacent to the primary drains.

New Roof System:

The new roof system will consist of completely removing the existing roof membrane and insulation to the surface of the concrete deck. The concrete deck will then be primed prior to installing a 2-ply asphalt vapor retarder. A 1/8" per ft. tapered polyisocyanurate insulation system will be installed prior to installing a 1" perlite insulation cover board and 4-ply gravel surface built-up roof system all in hot asphalt. The existing roof drains will be replaced with new cast iron drains and strainers and relocated as necessary to facilitate proper drainage. The roof system will have a minimum R-value of 35 throughout the entire roof area.

At the standing seam roof areas, the existing standing seam metal will be completely removed to the surface of the concert deck. A self-adhering vapor retarder will then be installed prior to installing 3 layers of 2" polyisocyanurate insulation and a prefinished metal panel system with a roll formed seamed. The standing seam metal roof areas will also have a minimum R-value of 35.

Design Considerations

1. Staging for the project will take place on the landscaping adjacent to the southern perimeter of the roof section. Staging will be fenced in during construction and the contractor will protect all existing conditions. It will be necessary to repair and restore the landscaping adjacent to the building upon completion of the project. The proposed staging area location is indicated on the attached Schematic Design Drawings.

- 2. The existing roof drains are in poor condition and will be replaced. Additionally the roof drains over the main roof area are embedded in the wall. It will be necessary to relocate these drains away from the wall to properly flash the roof drain. (Refer to photograph #1).
- 3. The existing roof drainage is undersized to meet current plumbing code. The relocation of the through wall drains will necessitate the upgrading of the internal rain water leader system to meet current plumbing code.

Photograph #1

- 4. Insufficient height is present at the support curbs for the rooftop equipment. The curbs for the mechanical equipment located on the roof will be modified and extended to allow a minimum of 12" flashing height above the completed roof system. (Refer to photograph #2).
- 5. The standing seam metal roof areas at the northern perimeter of the building are in poor condition and will be replaced with new standing seam sheet metal. (Refer to photograph #3).

Photograph #2

6. The roof top is currently accessed through the penthouse door on the adjacent College Center Roof Section. Multiple ladders are then required over the connecting link to access the Art Hall Roof Area. These ladders will be replaced with new access ladders and new safety railing provided at the perimeter of the Link Roof Section. (Refer to photograph #4).

Photograph #3

Photograph #4

- 7. There is no roof slope present in the current design. The new roof system is based on installing 1/8" per ft. slope to the internal roof drains. The structural review of the existing building has confirmed that the structure is capable of supporting the new roof system and that there are no issues with instability due to ponding in relation to the 1/8" per ft. drainage. Refer to the attached structural report provided by BKBM Engineers.
- 8. The roof was evaluated for the potential installation of future solar panels. There is a section of the roof that is relatively open with minimal rooftop traffic that would be suitable to installing solar panels. Based on the structural review provided by BKBM there is some structural capacity available for potential future solar panel installation.
- 9. Depending on the construction schedule a portion of the building may be occupied during construction. The primary disruption for building occupants with be noise from the roof installation and fumes from the asphalt. Asphalt fumes will be controlled during the project by using a fume recover system at the tanker. Additionally, shutting down of air intakes will be closely coordinated with the campus during construction.

Opinion of Probable Construction Costs

Roofing	\$250,000
Sheet Metal / Wall Panels	\$80,000
Mechanical, Electrical and Plumbing	\$100,000
Railings/Ladders	\$40,000
10% Contingency	<u>\$47,000</u>
Subtotal:	\$517,000
Design	\$45,000
Inspection Testing	\$40,000
Total:	\$602,000

Estimated Schedule

• To Be Determined

Rochester Community and Technical College October 30, 2020 RSI Project #20-13152-02 – Final Schematic Design Report – Art Hall Page 5

Comments

Attached please find the Schematic Design Drawings. Please review and provide comments at your earliest convenience. If you should have any questions or require further information, please contact our office. Thank you.

Respectfully, ROOF SPEC, INC.

Tim Pekron, RRC Senior Consultant

TP/jrn

HEAPR MANUAL

Phase II Central Chiller Plant Upgrades & System Extension to Science & Technology Building

Req. No.: 12

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Sports Facilities

Project Location Rochester, MN

General Classification of All Work (Provide est. construction costs by "classification of work")		
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$1,392,500	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Security	(Fire alarm systems, public address, building security)
\$1,392,500	Total	
General Description of Existing Conditions and All Work		

Phase II of the project includes expansion of the Central Chiller Plant system capacity. Work includes a new 500 ton chiller and cooling tower; pumps; and buried distribution legs to the Science and Technology Building and related interior piping work.

Original 2012 Study estimate for Phase 2 increased 24% to mid-year 2020.

Project Title - Phase II Central Chiller Plant Upgrades & System Extension to Science & Technology Building

<u>Priority Project(s) and General Work Description</u>: (Provide estimated <u>construction</u> costs for specific priority project with general description)

\$1,392,500 \$ \$

\$1,392,500 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Will reduce the Campus FCI from 0.09 to 0.03.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

- 1 2012 Draft Chilled Water Study Stanley Consultants, Inc.
- 2 Cost Information | Appendix D of Study Stanley Consultants, Inc.

HEAPR2020 Page 1 of 1

Chilled Water Study

Rochester Community and Technical College

Rochester, Minnesota

Draft

December 17, 2012

A Stanley Group Company Engineering, Environmental and Construction Services - Worldwide

Chilled Water Study

Rochester Community and Technical College Rochester, Minnesota

Draft

December 17, 2012

I hereby certify that this plan, specification, or report was prepared by me or under my direct personal supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.		
Signature:	Typed or Printed Name:	
Date:	Reg. No.:	

	Executive Summary
WILL BE PROVIDED WITH FINAL SUBMITTAL	
24482 RCTC Chilled Water Study i	Stanley Consultants

Table of Contents

Section 1	
Introduction	1-1
Introduction	1-1
Existing Conditions	1-1
Main Building – West	1-1
Main Building – East	1-2
Hill Theater	1-2
East Hall (Winona State University Addition)	1-2
Singley Hall	1-2
Science and Technology	
Sports Complex	1-3
Health Sciences	
Electrical	1-3
Load Analysis	1-4
Existing Loads	1-4
Future Loads	
Distribution System Temperature Difference (ΔT)	1-4
Section 2	
Chilled Water System Considerations	2-1
General	
Available Chiller Technologies	
Absorption Chillers	
Centrifugal Chillers	
Magnetic Bearing Centrifugal Chillers.	
Additional Plant Enhancements	
Thermal Storage	2-3
Sensible Change Systems	
Phase Change Systems	
Free Cooling	2-5

Heat Transfer Fluid	2-5
Treated Water	
Glycol Solution	2-5
Energy Savings	2-6
Climate Commitment	2-6
Section 3	
Study Options	3-1
General	3-1
Planning Criteria	3-1
Chilled Water Plant Options	
Option 1 – Constant Speed Centrifugal Chiller	
Option 2 – Magnetic Bearing Variable Speed Centrifugal Chiller	
Option 3 – Double Effect Steam Absorption Chiller	
Distribution System Options	
Option A – Interior Distribution System	
Option B – Exterior Distribution System	
Electrical Service to the New Chiller Plant	3-4
Section 4	
Cost Estimates and Life Cycle Cost Analysis	
Opinions of Probable Construction Cost Estimate	
Electrical Rebates	
Life Cycle Cost Analysis	
Energy Costs	
Present Value Analysis	4-3
Section 5	
Conclusions and Recommendations	5-1
Conclusions	5-1
Recommendations	5-2
TABLES	
Γable 1-1 Existing Chilled Water Loads	1-4
Γable 4-1 Summary of Opinion of Probable Costs Central Plant	
Γable 4-2 Summary of Opinion of Probable Costs Distribution System	
Γable 4-3 Summary of Chiller Rebates	
Table 4-4 Total 25-Year Present Value Cost Comparison 4% Discount Rate	4-3
Table 4-5 Total 25-Year Present Value Cost Comparison 8% Discount Rate	4-3

FIGURES

Figure 3-1 – Typical RPU Junction Cabinet	3-4
Figure 3-2 – Typical RPU Transformer	3-5
Figure 3-3 – Typical Building Switchboard	3-5
Figure A-1 – Existing Chiller in CF133	A-2
Figure A-2 – Existing Chiller in CF133	A-2
Figure A-3 – Existing Chillers in Mechanical Room ST006	A-3
Figure A-4 – Distance from Main Campus to Sports Complex and Location for Underground Pipe	A- 3
Figure A-5 – View from Parking Lot to Proposed Southeast Chiller Plant Location	A-4
APPENDICES	
Appendix A Photos and Existing Equipment Information	A -1
Appendix B Data Sheets for Proposed Equipment	B-1
Appendix C Utility Information	C-1
Appendix D Opinion of Probable Cost InformationI	D-1
Appendix E Life Cycle Cost AnalysisI	E-1
Appendix F Drawings	F-1

Introduction

Introduction

Rochester Community and Technical College (RCTC) has requested Stanley Consultants, Inc. to perform a study of the chilled water systems at the main campus. Some of these systems are nearing the end of their useful life and will need to be replaced soon. The following is a list of the existing chillers serving the main campus that would be consolidated into a central chilled water plant. The list is also summarized in the appendices with the model numbers and GPMs.

Existing Conditions

The existing conditions of the chilled water systems were documented during site visits to the college in 2008 and 2012. The existing chillers range in age from 1967 to 2006. A summary of the existing chillers is included in Appendix A.

Main Building - West

The West portion of the main building (Coffman Hall, Endicott Hall, Singley Hall Goddard Library, and Memorial Hall) is served by a 200- ton Trane water cooled Centrifugal chiller located in Room CF 133. This unit cools the majority of the spaces on the west side of the main campus. These spaces include classrooms, labs, and admin spaces. The pumps are constant volume and all the valves in the system are 3-way valves. The chiller is rated at 0.862 kW/Ton with a 56 degree F entering water temperature and a 44 degree F leaving water temperature. The chiller was installed in 1967 and uses R-11 refrigerant. The cooling tower is located outside on grade to the southwest of the building. The cooling tower is a Marley Model # AV 245132 A1. Per the 2011 ASHRAE Handbook HVAC Applications Chapter 37 Table 4 (Included in Appendix A) The estimated service life for a centrifugal chiller is approximately 25 years, and the estimated service life of a cooling tower is approximately 20 years. Based on these values this chiller and cooling tower have exceeded their recommended service life.

Main Building – East

The East portion of the main building (College Center, Student Services, Art Hall, and Plaza Hall) is served by a 125-ton Carrier water cooled Centrifugal chiller located in Room CC 105. This unit cools the majority of the spaces on the east side of the main campus including classrooms, labs, and admin spaces. The pumps are constant volume and all the valves in the system are 3-way valves. The cooling tower is located to the southeast of the building. The cooling tower is a Baltimore Aircoil Company Model # 15227. The chiller was installed in 1970 and uses R-11 refrigerant. Based on the estimated service life values from ASHRAE this chiller and cooling tower have exceeded their recommended service life.

Hill Theater

Hill Theater is served by three direct expansion (DX) Carrier air-cooled units. These units were installed in 1971, total 82.5 tons, and use R-22 refrigerant. These units are located on the north side of the building, are enclosed by a fence, and serve the theater area and supporting offices. Per Table 4 of 2011 ASHRAE Handbook HVAC Applications Chapter 37 the estimated service life for air cooled condensing units is approximately 20 years. Based on this value these units have passed their expected service life. These units could be retrofitted with chilled water coils and added to the proposed chilled water system.

East Hall (Winona State University Addition)

East Hall is served by a 93-ton McQuay air-cooled chiller located outside of the east side of the main building. This unit cools classrooms, labs, and admin spaces. This chiller was installed in 1986 and uses R-22 refrigerant. The chiller is rated at 1.25 KW/ton. It has constant speed distribution pumps and the system has all 3-way valves. Per Table 4 of 2011 ASHRAE Handbook HVAC Applications Chapter 37 the estimated service life for air cooled condensing units (Similar to an air cooled chiller) is approximately 20 years. Based on the estimated service life values from ASHRAE this chiller has exceeded its recommended service life.

Singley Hall

The second floor of Coffman Hall (CF) is served by a 20-ton McQuay air-cooled chiller located on the roof of Singley Hall. This unit cools classrooms and offices. This chiller was installed in 1989 and uses R-22 refrigerant. Per Table 4 of 2011 ASHRAE Handbook HVAC Applications Chapter 37 the estimated service life for air cooled condensing units (Similar to an air cooled chiller) is approximately 20 years. Based on the estimated service life values from ASHRAE this chiller has exceeded its recommended service life.

Science and Technology

Science and Technology is served by two York water cooled screw chillers located in Mechanical Room ST 006. These units are 206 tons each and serve the ITV, classroom, offices, and computer labs in this building. The cooling towers are located on the roof. The distribution pumps are 20 HP with 80 feet of head, constant volume and there are 3-way valves in the system. These chillers were installed in 1992 and are using R-22 refrigerant. These chillers have not yet meet their expected service life, but will need to be replaced in the near future. Although these units do not need to be replaced at this time, their capacity will

be included in the size of the proposed chiller plant so the loads they serve can be connected in the future when replacement is needed.

Sports Complex

Two Carrier air-cooled chillers are located outside of the Sports Complex. These units were installed in 2000. Each unit is 240 tons and both units serve the entire Sports Complex consisting of a gym, workout areas, and offices. These units have an entering water temperature of 54 degrees F and a leaving water temperature of 44 degrees F. There are two pumps that each are 25 HP with 60 feet of head and have a variable frequency drive (VFD) and there are 2-way and 3-way valves in the system. Based on ASHRAE Data These chillers will pass their expected service life in 2026. Although the chillers have 14 years of expected service and are a great distance from the main campus, they will be included in the proposed chilled water plant, due to current and ongoing compressor failures.

Health Sciences

There is a York water cooled screw chiller located in Mechanical Room ST 006. This unit is 34 tons and serves the entire Heath Science addition, including office, classroom, and lab space. The cooling tower is located on the roof and the pump has a VFD with 2-way and 3-way valves in the system. This chiller was installed in 2006 and uses R-22 refrigerant. This chiller will pass its expected service life in 2029. Although this chiller should perform adequately and will not need to be replaced, it will be included in the overall size of the central chilled water plant to allow for this area of campus to be connected in the future.

Electrical

The College currently has a project that is funded and currently under contract to redo the existing campus medium voltage distribution. This study will be prepared as if this work is complete. The work is expected to be complete in June of 2013.

The main campus is served by Rochester Public Utilities (RPU) via an overhead 13.8kV line routed along the south side of the main campus building. The overhead RPU line has two 13.8kV electrical service connections. One is located outside of College Center and the second is located outside of Coffman Hall directly next to Memorial Hall. The medium voltage service is looped between these two electrical utility connections with specific building services coming from this loop. See Drawing E1 in Appendix F for the existing 13.8kV distribution one-line drawing.

The existing chillers throughout the UCR are service locally by the nearest building service. Chillers are currently served by the Coffman electrical service, College Center electrical service, Science & Technology electrical service in the main building. The chillers at the Sports Center are served by its electrical service.

Load Analysis

Existing Loads

Existing drawings and site data was reviewed to determine the existing building loads that would be served by the proposed chilled water system. The chiller located in Coffman hall serves what is considered the Main-Building West (Coffman hall, Endicott Hall, Singley Hall Goddard Library, and Memorial Hall). The chiller located in College Center basement serves what is considered the Main building East (College Center, Student Services, Art Hall, and Plaza Hall) Table 1-1 summaries the chilled water loads by each area of the building.

Table 1-1 Existing Chilled Water Loads

Area	Tons
Main Building -West	200
Main Building -East	125
Hill Theater	83
East Hall (WSU)	93
Coffman Hall (2nd Floor)	20
Science and Technology	412
Sports complex	480
Health Sciences	34
Total	1447

Source: Stanley Consultants

Future Loads

The Master plan for the college includes planning in the long term for additional academic spaces. The present master plan indicates these buildings would be located between the UCR and the Regional Sports Center. There are also plans for renovations of some of the existing spaces in the UCR. At the time of this study the requirements for these remodels and additions have not been finalized and will not be included in the loads for the initial plant sizing. Provisions will be made in sizing of piping and equipment to allow for future expansion of the central plant to accommodate these additions.

Distribution System Temperature Difference (ΔT)

The existing chillers operate at a ΔT of between 10°F and 15°F with an average of around 12°F. Most of the systems appear to be sized for 42–44°F chilled water temperature. The proposed chilled water plant will be based on a design condition of 42°F chilled water supply temperature and a 12°F ΔT .

Chilled Water System Considerations

General

This section describes some of the available technologies and strategies that could be used as part of the central plant. It also discusses common items to all of the study options.

Available Chiller Technologies

Several different types of chiller technologies are reviewed in this study. The following section gives a brief description of each type of technology and lists pros and cons for each.

Absorption Chillers

Absorption chillers utilize an absorber and generator in place of a compressor to produce chilled water. In the absorber high temperature, low pressure saturated refrigerant (usually water) combines with a liquid absorbent (typically a lithium bromide solution). This liquid mixture is then pumped to a generator where thermal energy (steam in this case) is used to heat the mixture and vaporize the refrigerant. The refrigerant vapor is than directed to the condenser where is cooled and condensed. Once cooled, the refrigerant vapor is passed through an orifice to reduce the pressure. This pressure reduction flashes some of the refrigerant and cools the remaining refrigerant to the temperature corresponding to the evaporator pressure. In the evaporator, the liquid refrigerant is boiled off by the chilled water return and becomes a gas. The refrigerant gas is directed to the absorber and the process begins again.

Absorption chillers can be either single effect or double effect. Double effect machines utilize two generators and are typically more efficient, but require a higher pressure steam than single effect machines. Efficiency for absorption chillers is listed as coefficient of performance (COP). Coefficient of performance is defined as the cooling load in BTU/hr

divided by the energy input In BTU/Hr. Efficiency for an absorption chiller is relatively constant regardless of load or condenser water temperature.

In addition to the steam required to generate cooling, the electrical requirements for the condenser pumps and cooling towers is higher for absorption chillers as the condenser water flow is higher. This cost does not include the cost of treatment chemicals and make up water in generating steam.

• Pros:

- Can utilize steam as energy source.
- Low noise levels.
- Fewer rotating parts within chiller.

• Cons:

- Leaving water temperature limited to 42 F.
- Larger physical size than other types of chillers.
- Lower efficiency than Centrifugal machines.
- Higher capital cost.
- Higher operating cost.
- Larger cooling tower required.
- More maintenance required to ensure proper cooling fluid chemistry in system.

Centrifugal Chillers

Centrifugal chillers utilize a centrifugal compressor driven by an electric motor to produce chilled water. The compressor compresses refrigerant vapor and directs it to the condenser where it is cooled and condensed into a liquid. A metering device reduces the pressure of the refrigerant and in the process reduces the temperature. The Refrigerant is converted from a liquid to a gas in the evaporator and the process begins again. Efficiency for centrifugal chillers is typically listed in kw/ton. The efficiency changes based on load and condenser water temperature.

• Pros:

- Lower operating cost.
- Lower capital cost.
- Can provide chilled water down to 39 F leaving water temperature.
- Potentially lower maintenance costs.
- May have smaller footprint.
- Smaller cooling tower.
- Smaller condenser pumps.

Cons:

- Does not use steam as energy source.
- High noise levels.

Magnetic Bearing Centrifugal Chillers.

Magnetic bearing centrifugal chillers are similar to traditional centrifugal chillers with two main differences. The first difference is the unit does not use traditional bearings, but uses magnetic levitation technology for the compressor rotating components. This improves chiller efficiency slightly. The second difference is the unit includes a variable frequency drive for the compressor. This enables the much better efficiency at part loads compared to a traditional chiller. The full load efficiency is roughly the same as for a traditional centrifugal chiller.

• Pros:

- Better part load efficiency than other types of chillers.
- Less noise than traditional centrifugal.
- Small footprint.
- Potentially lower maintenance costs.
- Lower operating costs.
- Can provide chilled water down to 39 F leaving water temperature.
- Small cooling tower.

• Cons:

- Does not use steam as energy source.
- Higher capital cost than traditional centrifugal.
- Electrical power quality important.

Additional Plant Enhancements

Central plant performance can be enhanced by addition of thermal storage and free cooling systems. These systems are described in detail below.

Thermal Storage

Thermal storage is the storage of chilled water or ice to act as a chiller. The main goal of thermal storage is to offset either demand energy costs or potentially capital costs for a new chiller. Thermal storage is operated in three basic modes; Load leveling, and load shifting.

In Load leveling operation the storage tank acts as a chiller during the peak portion of the day to offset the capital cost of installing chillers. To accomplish this chillers typically operate at full capacity all day. When load exceeds chiller capacity thermal energy system discharges,

when the load is below the chiller capacity the thermal energy system is recharged. This mode of operation minimizes chiller capacity and thermal system size.

In load shifting the entire on peak cooling load is handled by the thermal storage system. Chillers operate at off peak conditions to charge the system. This mode of operation has the highest chiller costs and thermal storage costs.

In demand limiting operation the thermal storage system is used to reduce the demand energy costs of operating chillers during the peak chilled water load. To accomplish this chillers are operated at off peak times to charge the thermal storage tank and then during the on-peak times the chillers are operated at reduced load and the thermal storage tank is discharged. Demand savings and equipment costs are higher than load leveling, and lower than load shifting.

Two types of systems exist: sensible change systems and phase change systems. Sensible change systems utilize water as the storage fluid, where phase change systems storage energy in ice.

Sensible Change Systems. Sensible change systems are classified as into two types of systems. Stratified chilled water storage systems and density depressed chilled water storage systems. Both systems consist of a large tank to store water. The stratified system uses only chilled water and relies a thermocline between the hot chilled water return and cool chilled water supply of the hot and cold liquid to separate the water available for the cooling load from the water that needs to be cooled. Density depressed systems are similar but use an additive to the chilled water to allow the water to be stored below the freezing point.

• Pros:

- Uses standard chillers.
- Efficient operation of chillers.
- Economical for most system especially larger systems.
- Reliable and simple.

• Cons:

- Low energy density.
- Potential space constraints.
- Most economical (smaller tank size) at high system temperature difference.

Phase Change Systems. Phase change systems use ice as the thermal storage medium. Ice storage systems require chillers to operate using glycol as the chilled water temperature needed to produce ice is below the freezing point of water. Different types of ice systems are available both all the systems have similar operation and efficiencies

• Pros:

- Capable of high discharge rate.
- Separate production and storage.
- Allows for cold air distribution.

• Cons:

- Complex system.
- High chiller cost.
- Chiller efficiency is reduced to create cooler charging temperature.
- Requires glycol in chilled water loop or dedicated chiller.

Free Cooling

Free cooling is the use of a heat exchanger on the chilled water system to make cooled water directly from condenser water without the use of mechanical refrigeration. Typically used in cold weather climates where internal cooling loads exist year round. This allows for relative low cost production of chilled water when the cooling tower can produce low temperature water. If installed in series with the chillers can be used to precool the chilled water and reduce the load on the chiller.

Heat Transfer Fluid

The heat transfer fluid for central chilled water plants is the fluid that is distributed throughout the distribution system to the end users. Typically, this fluid consists of either treated water or a glycol solution.

Treated Water. Treated water, consisting of water from the local water utility with rust, microbial, and scale inhibitors is commonly used as the heat transfer medium in central plants. Treated water is less costly than glycol systems and has a specific heat of 1 btu/lb-°F. The disadvantage of treated water is the freezing point of water is above the ambient temperatures expected to be seen during the winter months. To protect coils from freezing, additional controls (face and bypass dampers, coil pump, heat exchanger to glycol fluid, etc.) are required. Freezing is typically not an issue in the distribution system or the chiller at the central plant.

Glycol Solution. Glycol solutions consisting of either a 40–50% glycol and water mixture is used as the heat transfer medium in central plants. Glycol solutions are more costly than treated water. The specific heat of glycol solutions range from 0.80 btu/lb-°F–0.93 btu/lb-°F. This lower specific heat requires larger heat transfer areas at coils and at chillers. Glycol solutions typically do not need any special controls or provisions to prevent freezing as the percentages are selected to prevent freezing. Glycol solutions have freezing points ranging from -8°F to -29°F.

Energy Savings

There are multiple ways that energy will be saved by the implementation of the proposed chilled water plant. One will be from the installation of higher efficiency equipment versus the lower efficiency older equipment currently is use. Another will be from the optimization of the chillers. This will occur because the chiller use will be able to better match the current load; and therefore, will get a better difference in supply and return chilled water temperature. There will also be less energy used by the pumps because they will have VFDs and there will be 2-way valves in the system. This will reduce the amount of required pumping power during non-peak time periods.

Climate Commitment

Through our work with other higher education clients, we have become familiar with the American College and University Presidents Climate Commitment. We understand RCTC's President, Donald Supalla, has signed on to this commitment. This commitment means that RCTC will be developing short-term and long-term action items in an effort to make the campus more climate neutral. Therefore, the motivation to act on a project such as a central chilled water plant has probably never been greater. A central chilled water plant will reduce RCTC's greenhouse gas emissions on several levels: reduction in the type and quantity of refrigerants on campus (prevent/minimize leakages); elimination of ozone depleting HCFC refrigerants on campus (R-11 has been phased out and R-22 also will be phased out of production by 2030); and a significant reduction in electrical energy usage (purchased power from RPU's primarily coal-fired plant).

Study Options

General

The majority of the chilled water system equipment serving the Main Campus building has surpassed the expected service life. Other equipment is nearing the end or the service life or is experiencing maintenance issue. In the near future RCTC will be required to replace components of four chilled water systems and three DX systems. This study investigates adding a single central plant to campus in lieu of replacing individual equipment.

Planning Criteria

To develop the study options several items were discussed with RCTC staff and the following planning criteria were identified.

- Sufficient chilled water capacity shall be provided to serve the entire UCR building and the Sports Complex. Total plant capacity after completion will be 1500 tons.
- The plant will be completed in three phases. Each phase will install a nominal 500-ton chiller and associated equipment. The phases are based on age of installed equipment and replacing the oldest equipment as part of phase 1. The phase 1 chiller may operate above its rated conditions for short periods of time as the chillers identified in phase 1 total 546 tons. The phases will include the following:
 - Phase 1 will replace the chillers located in Main Hall East, Main Hall West, East Hall, and Singley Hall. Hill Theater DX equipment will be replaced as part of phase 1 and connected to the chilled water system. This phase will include the chiller building and chiller building piping and valves for phase 2 and phase3.
 - Phase 2 will replace the chillers located in Science and Technology
 - Phase 3 will replace the chillers at the Sports Complex.

- The plant location will be to the southeast of the UCR building. In the spot presently occupied by the storage garages
- Plant will include space for storage for campus building maintenance and work area for maintenance staff.
- The existing DX equipment serving Hill Theater will be replaced with chilled water systems. Costs for this replacement are included in the distribution system costs.
- At locations of existing chillers and pumps existing pump will be replaced and a decoupler loop added to install a primary secondary chilled water system. Coils served by new building pumps will have 3-way valves replaced with 2-way valves. Secondary chilled water pumps serving building coils will be provided with VFDs.

Chilled Water Plant Options

Option 1 – Constant Speed Centrifugal Chiller

Option 1 consists of creating a new chilled water plant to serve the UCR, and Sports Center. This plant will utilize traditional constant speed, water-cooled, centrifugal compressor, electric chillers with primary pumps located at the central plant. Cooling towers will be on grade adjacent to the plant building.

- Phase 1 will include installation of a 500-ton chiller and installation of distribution systems to Main Building East, Main Building West, East Hall, Singley Hall, and Hill Theater. A 60 horsepower (Hp) distribution pump, 30 Hp condenser water pump and 40 Hp cooling tower will be added. In addition this phase will include the construction of the central plant building and electrical and piping infrastructure for the full plant build-out.
- Phase 2 will include installation of a 500-ton chiller and installation of distribution systems to Science and Technology and Health Science. A 60 horsepower (Hp) distribution pump, 30 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase
- Phase 3 will include installation of a 500-ton chiller and installation of distribution systems to the sports complex. A 60 horsepower (Hp) distribution pump, 30 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase.

Option 2 – Magnetic Bearing Variable Speed Centrifugal Chiller

Option 2 is the same as option 1, but utilizes magnetic bearing centrifugal compressor, electrical chillers with variable speed drives.

• Phase 1 will include installation of a 500-ton chiller and installation of distribution systems to Main Building East, Main Building West, East Hall, Singley Hall, and Hill Theater. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 40 Hp cooling tower will be added. In addition this phase will include the construction of the central plant building and electrical and piping infrastructure for the full plant build-out.

- Phase 2 will include installation of a 500-ton chiller and installation of distribution systems to Science and Technology and Health Science. A 60 horsepower(Hp) distribution pump, 40 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase
- Phase 3 will include installation of a 500-ton chiller and installation of distribution systems to the sports complex. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase.

Option 3 – Double Effect Steam Absorption Chiller

Option 3 consists of a single chilled water plant to serve the UCR and Sports Center. This plant will utilize absorption chillers with primary pumps located in the central plant. Steam from the "Green Pipes" project will be utilized as an energy source for the absorption chillers. Cooling towers will be on grade adjacent to the plant building.

- Phase 1 will include installation of a 500-ton chiller and installation of distribution systems to Main Building East, Main Building West, East Hall, Singley Hall, and Hill Theater. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 50 Hp cooling tower will be added. In addition this phase will include the construction of the central plant building and electrical and piping infrastructure for the full plant build-out.
- Phase 2 will include installation of a 500-ton chiller and installation of distribution systems to Science and Technology and Health Science. A 60 horsepower(Hp) distribution pump, 40 Hp condenser water pump and 50 Hp cooling tower will be added as part of this phase
- Phase 3 will include installation of a 500-ton chiller and installation of distribution systems to the sports complex. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 50 Hp cooling tower will be added as part of this phase.

Distribution System Options

Two options are available for connecting the proposed chilled water plant to the existing loads. Options are evaluated on a capital cost basis only and are not included in the economic analysis for the proposed central plant.

Option A – Interior Distribution System

This option routes the majority of the distribution system through the existing building. Piping will be routed from the proposed central plant to the College Center Mechanical room (CC105) via direct buried piping. From this point the distribution system will be routed throughout the building to connect to the existing loads. To serve the sports complex direct buried piping will be routed from the Science and Technology Addition.

Option B – Exterior Distribution System

This option routes the majority of the distribution system outside the building in a direct buried piping system.

Costs are included in both options to upgrade control valves (replace 3 way valves with 2 way valves) replace building pumps, and to replace the existing DX equipment serving the Hill Theater.

Electrical Service to the New Chiller Plant

Regardless of the Option above, the new chiller plant will require a separate RPU electrical service transformer and service meter. Because RCTC has gone forward with changing the campus electrical distribution system to a 'loop' arrangement, the new chiller plant can be added to the existing distribution loop without any power disruption to other facilities.

The nearest RPU owned junction cabinet does not have a spare circuit connection available and therefore a new junction cabinet will be required to serve the new chiller plant transformer. During construction, the College will be required to install all medium voltage conduits, transformer pad, and prepare the junction cabinet base. RPU typically provides the medium voltage conductors, terminations, junction cabinet, and transformer.

The transformer will be an outdoor, pad-mount, oil-filled transformer provided by RPU. The expected transformer size will likely be between 1000kVA and 1500kVA and should be determined based on the actual design loads once this project progresses to that stage. If the absorber chiller option is chosen, the transformer and service size will be much smaller. See Drawing E2 in Appendix F for electrical service connection to the new chiller plant. The photos below represent a typical RPU junction cabinet and transformer that will be located outside the chiller plant.

Typical RPU Junction Cabinet Figure 3-1

Typical RPU Transformer Figure 3-2

The RPU transformer will serve a new building switchboard. The switchboard will contain a main service breaker along with breakers for each chiller and building panelboards. The main electrical gear will be located along dedicated wall space in the chiller equipment room for the purposes of this study. All proposed new chiller plant equipment, including chillers, cooling towers, thermal storage, and the garage spaces will be served from this new service. The existing switchboard should be provided with an electrical power meter that has a communication protocol to speak with the building automation system. The switchboard should also have a transient voltage surge protection device. The photo below represents a typical building electrical service switchboard that would be located in the chiller plant.

Typical Building Switchboard Figure 3-3

Cost Estimates and Life Cycle Cost Analysis

Opinions of Probable Construction Cost Estimate

Probable construction cost estimates were developed for a conceptual level with equipment vendor quotes used for chillers and cooling towers and industry data used for other costs. As these estimates are conceptual in nature 30% was added to each cost for undeveloped design details. Contractor overhead was included as 15% and Contractor Profit were included as 10%. The costs also include 15% to cover administration and engineering costs.

The costs estimates are based on Current costs at the time of the study. The cost estimates are conceptual in nature and based on the information available at the time of the estimate without a complete detailed design and equipment selections. The final costs will depend on actual labor and material costs, actual site conditions, productivity, competitive market conditions, final project scope, project schedule and other variable factors. Therefore the final project costs may vary somewhat from the estimates presented.

Table 4-1 shows the summary of opinion of probable construction costs for the three central plant options included in this study. Copies of the opinion of probable cost estimates are included in Appendix D. This table shows the costs associated for each option. Each option is divided into three phases and shows costs for each phase and the total for all three phases. All costs are based on 2012 dollars.

Table 4-1 Summary of Opinion of Probable Costs Central Plant

Option	Phase 1	Phase 2	Phase 3	Total
Option 1 – Constant Speed Centrifugal Chillers	\$6,810,000	\$600,000	\$600,000	\$8,010,000
Option 2 – Magnetic Bearing Centrifugal Chillers	\$6,920,000	\$710,000	\$71,000	\$8,340,000
Option 3 – Double Effect Steam Absorption Chillers	\$7,800,000	\$1,030,000	\$1,030,000	\$9,860,000

Source: Stanley Consultants 2012

Table 4-2 shows the summary of opinion of probable construction costs for the two distribution options that are included in this study.

Table 4-2 Summary of Opinion of Probable Costs Distribution System

Option	Phase 1	Phase 2	Phase3	Total
Option A – Interior Distribution System	\$1,178,000	\$365,000	\$365,000	\$1,751,000
Option B – Exterior Distribution System	\$584,000	\$48,000	\$48,000	\$829,000

Source: Stanley Consultants 2012

Electrical Rebates

The electrical utility, Rochester Public Utilities (RPU), offers for efficiency improvements on water chillers. Based on the information provided by the manufacturers, the chillers would qualify for rebates as outlined in Table 4-3.

Table 4-3 Summary of Chiller Rebates

Option	Chiller Rebate
Option 1 – Constant Speed Centrifugal Chillers	\$34,575
Option 2 – Magnetic Bearing Centrifugal Chillers	\$120,675

Additional rebates for motors and VFD for pumps may be available, but since these are the same for all three options have not been included in the analysis.

Life Cycle Cost Analysis

For each of the central plant options detailed in Section 3 of this study, capital costs, electrical costs, and steam costs are compared. These items are the major cost drivers of the central plant. The difference in operational and maintenance costs between the three options is a small percentage of the Energy costs and has not been included in this analysis.

Energy Costs

The energy costs for each option were calculated using the Peak anticipated load and Bin weather data for Minneapolis, Minnesota. A computer program was used to determine the operating costs for each option. The electrical costs are based on RPU Large General Service Rate Schedule. This rate schedule is included in Appendix C. Steam costs are based on rates from the Olmstead Waste-to-Energy Facility. The present steam rate is \$17.64 per 1,000 pounds of steam.

Present Value Analysis

The present Value analysis has been performed using a discount rate of 4% and a discount rate of 8%. Costs were discounted to 2012 dollars and the total 25-year present value was compared for three options.

The following table summarizes the present value costs with a 4% discount rate.

Table 4-4 Total 25-Year Present Value Cost Comparison 4% Discount Rate

Option	Total 25-Year Present Value
Option 1 Constant Speed Centrifugal Chillers	\$16,829,609
Option 2 Magnetic Bearing Centrifugal Chillers	\$16,573,690
Option 3 Double Effect Steam Absorption Chillers	\$23,886,953

The following table summarizes the present value costs with a 8% discount rate.

Table 4-5 Total 25-Year Present Value Cost Comparison 8% Discount Rate

Option	Total 25-Year Present Value
Option 1 Constant Speed Centrifugal Chillers	\$13,997,290
Option 2 Magnetic Bearing Centrifugal Chillers	\$13,917,772
Option 3 Double Effect Steam Absorption Chillers	\$16,751,456

Conclusions and Recommendations

Conclusions

Based on the review of existing data and life cycle cost analysis the following conclusions are provided

- Free cooling at central plant will provide low cost chilled water for areas with year round cooling.
- The present utility rate does not allow for an on-peak and off peak energy rate and does not provide any benefit for a thermal storage system utilized for load shifting or demand limiting.
- Thermal storage could be used to offset capital costs for installation of a chiller at the central plant.
- Distribution system efficiency could be improved if existing chilled water coils are replaced with new coils sized for higher system ΔT and design chilled water temperature.
- Capital costs for Option 3 (absorption chillers) are the highest.
- Capital costs for Option 1 (Constant Speed Centrifugal Chillers) are the lowest.
- Energy costs for Option 3 (Absorption chillers) are the highest.
- Energy costs for Option 2 (Magnetic Bearing Centrifugal Chillers) are the lowest.
- Life cycle costs are lowest for Option 2 at both discount rates when utility rebate for chillers is included.
- The difference in life cycle costs at an 8% discount rate between Option 1 and Option 2 is negligible.

Recommendations

Based on the life cycle costs, capital costs and other factors addressed in this study the following recommendations are offered for replacing the existing chillers serving the RCTC campus:

- Design replacement cooling system for system temperature difference (DT) of 14°F or higher. (May required coils in air handling units to be designed for a higher DT than fan coil units or other terminal devices on the chilled water system.)
- Use treated water in chilled water distribution system. Where freeze protection is required, install small glycol system or other freeze protection controls.
- Provide free cooling as part of the central plant.
- Route the Distribution system as shown in Option B –Exterior Distribution System.
- Replace chillers as they exceed the useful life. As noted in the study, Coffman Hall, chiller, College Center chiller, East Hall, and Singley Hall chiller have all exceeded their useful life. Additionally, chillers serving the Science and Technology area will exceed their useful life within the next five years. Chillers serving the sports complex are expected to reach the end of their useful life in the next five to ten years.
- Replace existing chillers in phases as outlined in Option 2 Magnetic Bearing Centrifugal Chillers.

Appendix A

Photos and Existing Equipment Information

Existing Chiller in CF133 Figure A-1

Existing Chiller in CF133 Figure A-2

Existing Chillers in Mechanical Room ST006 Figure A-3

Distance from Main Campus to Sports Complex and Location for Underground Pipe Figure A-4

View from Parking Lot to Proposed Southeast Chiller Plant Location Figure A-5

	Existing Chillers									
Building	Rm #	Tons	Manuf	Model #	Date Installed	GPM	Pipe Size	GPM/ton	Series#	Notes
CF	133	225	Trane	PCV-2C-C1-D2	1967	450	6"	2.00	8589	
CC	105	125	Carrier	19DH2142CD	1970	312.5		2.50		
Theater	Outside	13	Carrier	38AD014600	1971	31.25		2.50	499360	
Theater	Outside	30	Carrier	38AD034600	1971	75		2.50	J496679	
Theater	Outside	40	Carrier	38AD044600	1971	100		2.50	J495501	
wsu	Outside	93	McQuay	ALR145C	1986	232.5	4"	2.50	5RJ0705200	
SH	Roof	20	McQuay	ALP032C	1989	50		2.50	STL0506700	
ST	Room 006	200	York	YCCH163L0110YB	1992	320	10"	1.60		Chiller #1
ST	Room 006	200	York	YCCH163L0124YB	1992	320	10"	1.60		Chiller #2
sc	Outside	240	Carrier	30GTR255B—620AH	2000	520	8"	2.17	0301F57383	Chiller #2
sc	Outside	240	Carrier	30GTR255B—620AH	2000	520	8"	2.17	0301F57399	Chiller #1
ST	Room 006	34	York	YCWS0120SC46ZAADB	2006	85		2.50	RNRM017050	Chiller #3
	Total	1459.5				3016.25		2.07		

If not connecting Sports Complex Ton of cooling 980

*.*1 INVOICE BATE BILL OF LABING NO. THE TRANE COMPANY. T3-0847 HD, MINORES, CONTROL ERMS-30 DATE HET | F. D. R. HEAT TRANSFER EQUIPMENT LAX FRT. ALLD. NET 30 Mark Packages P.O. 2497 ROCHESTER JUNIOR COLLEGE COLLEGT PREPAI PREPAID SHIP VIA Customers Aterest No. CUBIOMICES OFFER NO. ORDEH WATE TRUCK CALL TRAFFIC FOR ROUTHING 73-44-4825-8 2447 KIRCKOF PLUMBING AND HEATING KIRCKOF PLUMBING AND HEATING ğ C/O NEW ROCHESTER JUNIOR COLLEGE P.O. BOX 198 ROCHESTER, MINNESOTA 8589 ROCHESTER, MINNESULA PROGUET COOK CT# 47 CENTRAVAC 04513-7102 Approval Dag WATER CHILLER JOB AND PLACE NEW ROCHESTER STATE JUNIOR COLLEGE , ROCHESTER MEMBERING NO. MEM QUAN. MODEL 29.5 4,36 PCV-2C A Comp Mean Day E4513-2019 Dent Des 045 14-500 44 LAT. COMP. OWG. CYT. EVAP. OWG. ZXT. CONO. OWO. C-1 0-EXT. IMPELLER (PCV ONLTI EKT. WATER CONN. IPCV ONLY 70550281 AMP 480 leds and APM LA(POLX 54590) 257 COMPRESSOR 70558008 HARP TEO INDO 1000 RPM CENT. E48YT OIL PUMP 1/4 HP 1153601 1800 RPH 225 TONS REQUIREME..... MURILIARY CHILLED WATER REQUIREMENT GPM эмче Дмоо PRESSURE OROP CHIERING LH 2 PA\$5 ,0005 16FT. 450 44°F 58 °P EVAP. LH 2 PA\$5; .0005 85 °r 12 FT 675 9426 ACCESSORIES & SPECIAL FEATURES MCDONNELL-MILLER E-2 FLOW SWITCH 13840034 B CONTROL TRANSFORMER, 2 KVA, 488 PRIMARY, 128 13085400 C 1 SECONDARY JOHNSON SERVICE T-900 TEMPERATURE CONTROLLER D DIRECT ACTING, GRADUAL ACTION, STYLE B NO. 4 BULB 15 FOOT CAPILLARY, DIAL RANGE, -- 10 F., TO 13171800 125 F WITH WELL 13080014 PPD, TRAHB SPECS. OX D HOLD FOR APPROVAL SHIPMENT WANTED PAPERMORK ENTERES G OR SOONER PRINTS REQUIRED I NOT BEFORE 180 O APPROVAL HOT REQ! U HOLD UNTIL DATE CONFIRMED SALES ONDER HUMBER AMBUNT DAR OR PERMIT REMEE TANK BING NEWLESSEL GIVINES

24482 | RCTC Chilled Water Study

FIRE SALES

SILLING

The set they

20.552 -{ 166)

ROCHESTER 65%

STONE

THIN CITIES 35%

O"BRIEN

1 3 6 8 JUN 30 1967

7 3- 0 8 4 7

13- SPECIMENTIONS 2275

SHEET_LOF2 __

Appendix B

Data Sheets for Proposed Equipment

YK MAXE CHILLER PERFORMANCE SPECIFICATION

Unit Tag	Qty	Model No.	Net Capacity (tons)	Power	Refrigerant
Plant 2 - Case					
2-CS	3	YKECEQQ7-EPGS	500	460/3/60	R-134A

Unit Data	Evaporator	Condenser
EWT (°F):	56.00	85.00
LWT (°F):	42.00	94.29
Flow Rate (gpm):	854	1500
Pressure Drop (ft):	15.0	22.6
Fluid Type (%):	WATER	WATER
Circuit No. of Passes:	2	2
Fouling Factor (ft² °F hr / Btu):	0.00010	0.00025
Tube No. / Description:	373 - 0.035" Turbo-ESP Copper (3/4")	262 - 0.035" CSL Enhanced Copper
Design Working Pressure (psig):	150	150
Entering Water Nozzle @ Location:	2	12
Leaving Water Nozzle @ Location:	3	13
Water Box Weight, ea (lb)(2):	429	391
Cover Plate Weight, ea (lb):	500	349
Return Head Weight (lb):	176	144
Water Weight (lb):	1340	1264
Water Volume(gal):	161	152

Performa	nce Data	Electrical Data	ì	Other	
KW:	295	FLA:	420	Operating Wt. (lb):	23757
KW/Ton:	0.590	LRA:	3111	Per Isolator (lb):	5939
NPLV (1):	0.507	Inrush Amps:	1399	Refrigerant Wt. (lb):	1033
Gear Code:	WU	Min Circuit Amp. (Amps):	525	Oil Charge (gal):	10
Shaft HP:	378	Max Fuse/Breaker:	800	Motor Wt. (lb):	1881
OptiSound Cntrl:	YES	Oil Pump Volts:	460/3/60	Compressor Wt. (lb):	3500
Isolation Valves:	YES	Oil Pump FLA:	3.60	Starter Wt. (lb):	200
Oil Cooler Type:	Standard			Ship Wt (lb):	21153
Condenser Inlet:	Standard				
		Type Starter: Solid State Star	ter		

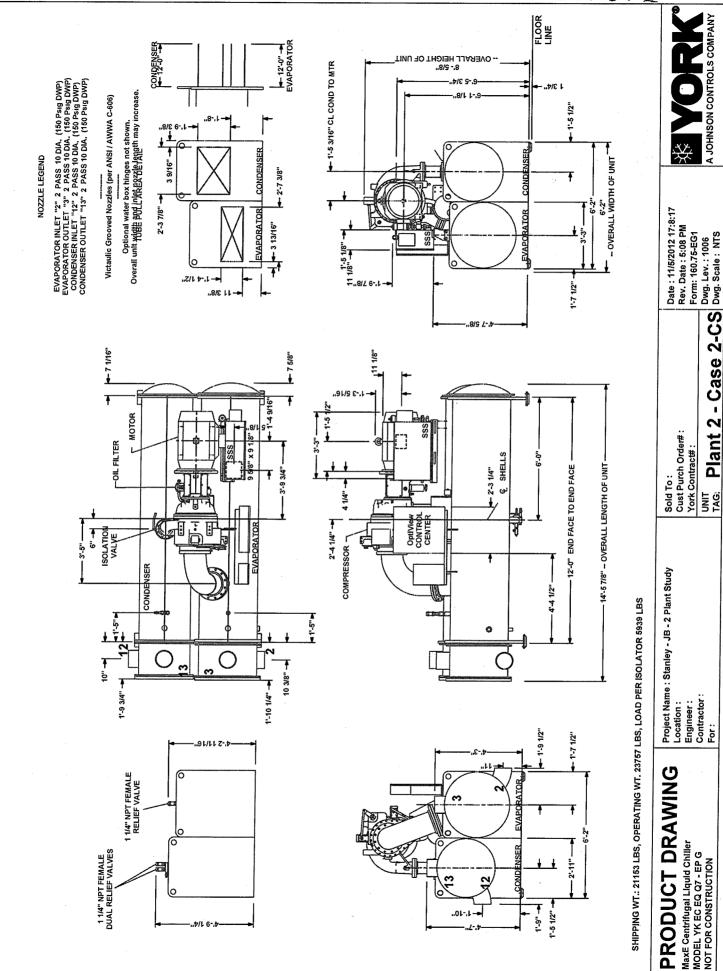
Notes:	

Project Name: Stanley - JB - 2 Plant Study

Printed: 11/5/2012 at 17:08 Unit Folder: PLANT-2C 24482 | RCTC Chilled Water Study

 $v1_126.idd$

B-2


Plant 2 - Case 2-CS Performance

York Contract No.:

⁽¹⁾ Chiller NPLV value calculated to AHRI Standard 550/590 equation.

⁽²⁾ Not including cover plate on marine water boxes.

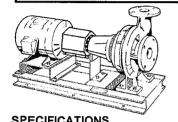
OPTION 1

SUBMITTAL

B-229.3F

JOB: RCTC CHILLER STUDY

REPRESENTATIVE:


OPTION 1

CHILLED WATER PUMP

UNIT TAG:
ENGINEER:
SUBMITTED BY:
APPROVED BY:

DATE: 12/13/2012

DATE:
DATE:
DATE:

5G Series 1510

Centrifugal Pumps - Base Mounted

SECI	FICATIONS		
FLOW _	1000	HEAD	130
HP	50 00	RPM	1750
VOLTS		460	
CYCLE	60	PHASE	3
ENCLOS	SURE	ODP	
APPROX	WEIGHT _	11	35
SPECIA	LS		

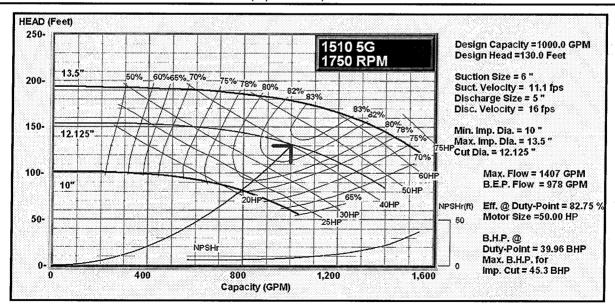
Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

FEATURES

- ANSI/OSHA Coupling Guard
- Center Drop Out Spacer Coupling

☐ BRONZE FITTED ☐ ALL IRON

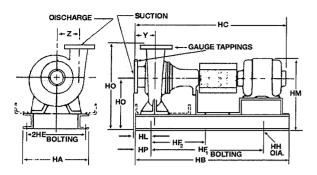

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P w/125# ANSI flange drilling
- 250 psi (17 bar) W.P. w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic)
- Requires external water source

 1510 -PF Stuffing Box Construction w/
 - (Graphite Impregnated Teflon)



ESPONLINE 3 0 © COPYRIGHT 2012 Xylem Inc

Bell & Gossett

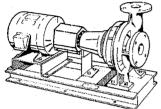
Series 1510 5G Centrifugal Pump Submittal

B-229.3F

FLANGE DIMENSIONS IN INCHES (MM)							
	SIZE	THICKNESS	O.D.				
Discharg e	5" (127)	1-3/8 (35)	10-3/4 (273)				
Suction	6" (152)	1-7/16 (37)	12-1/8 (308)				

FLANGES ARE: 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENS	IONS - Ir	iches (mn	1)		s	TANDARI	SEAL 15	510, 1510)-F					
MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	HP	Υ	Z
FRAME	"L" !	FRAME			_									
254T	24 (610)	56 (1422)	47-1/8 (1197)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
256T	24 (610)	56 (1422)	48-7/8 (1241)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
284T	24	56	49-7/8	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1267)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
286T	24 (610)	56 (1422)	51-3/8 (1305)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
324T	24	56	53-3/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1356)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
326T	24	56	54-7/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1394)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	57-1/8	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1451)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24 (610)	56 (1422)	58-1/8 (1476)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
					STUFF	ING BOX	1510-PF,	1510-S, 1	1510-D					
MOTOR	НА	НВ	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	HP	Υ	Z
FRAME	"L" F	RAME			•					'		•		·
254T	24	56	49-1/2	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1257)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
256T	24	56	51-1/4	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1302)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
284T	24	56	52-1/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1327)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
286T	24	56	53-3/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1365)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
324T	24	56	55-3/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1416)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
326T	24	56	57-1/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1454)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	59-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1511)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24	56	60-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1537)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)


Dimensions are subject to change. Not to be used for construction purposes unless certified.

SUBMITTAL

B-225.7D

JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 1		
CONDENSER WATER PUMP		
UNIT TAG:	ORDER NO.	DATE: 11/8/2012
ENGINEER:	SUBMITTED BY:	DATE:
CONTRACTOR:	APPROVED BY:	DATE:
· ·		

1500

6BC Series 1510

Centrifugal Pumps - Base Mounted

CDEC		A T		
SPEC	ırıc	A 1:	ICJN	

FLOW _	1500	HEAD	50
HP	30.00	RPM	1770
VOLTS		460	
CYCLE	60	_ PHASE _	3
ENCLOS	URE	ODP	
APPROX	WEIGHT	8	55
SPECIAL	.s		

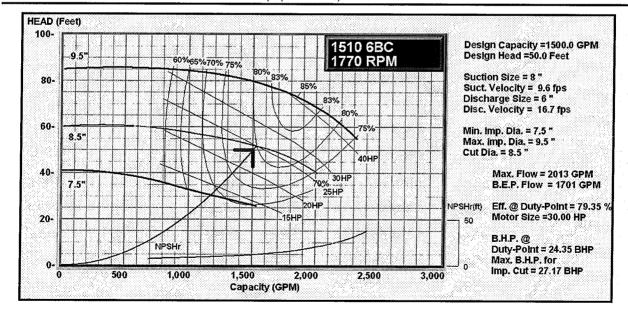
Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

☐ BRONZE FITTED ☐ ALL IRON

FEATURES

- □ Center Drop Out Spacer Coupling
- □ Fabricated Heavy Duty Baseplate

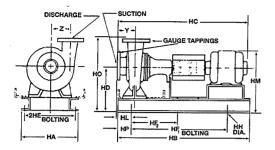

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P. w/125# ANSI flange drilling
- 250 psi (17 bar) W.P. w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- ☐ 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic)
- Requires external water source

 1510 -PF Stuffing Box Construction w/
- Packing (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc

Bell & Gossett

Series 1510 6BC Centrifugal Pump Submittal

B-225.7D

FLANGE DIMENSIONS IN INCHES (MM)							
	SIZE	THICKNESS	O.D.				
Discharg e	6" (152)	1-7/16" (37))	12- 1/8" (308)				
Suction	8" (203)	1-5/8" (41)	14- 3/4" (375)				

FLANGES ARE 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENSIONS - Inches (mm)

STANDARD SEAL 1510, 1510-F

			-7		_		OLAL ID	.,	-,					
MOTOR	1	НВ	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	НР	Y	Z
FRAME	" <u>L</u> "	FRAME			•	•						1		
254T	16	46-1/2	50-5/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1286)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
256T	16	46-1/2	52-3/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1330)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
284T	16	51-3/4	53-1/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1349)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	54-5/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1387)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	56-7/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1445)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	58-3/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1483)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

STUFFING BOX 1510-PF, 1510-S, 1510-D

MOTOR	HA	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	нм мах	но	HP	Y	Z
FRAME		"L" F	RAME				l		•	· · · · · · · · · · · · · · · · · · ·			1	
254T	16	51-3/4	53	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1346)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
256T	16	51-3/4	54-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1391)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
284T	16	51-3/4	55-1/2	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1410)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	57	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1448)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	59-1/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1505)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	60-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1543)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

Dimensions are subject to change. Not to be used for construction purposes unless certified.

UPDATE™ Version 4.14.9

Product Data: 5/31/2012 (Current)

© 2012 SPX Cooling Technologies, Inc. 11/8/2012 10:05:12 AM

Job Information -

Stanley Consultants 1 cell 1500 GPM 95-85-78

Selected By

DPT Mechanical Jason Beeghly 10202 Douglas Avenue Tel 515-471-1902 Urbandale, IA 50322 Fax 515-727-0778 ibeeqhly@dptmechanical.com

Cooling Tower Definition -

Manufacturer	Marley	Fan Motor Speed	1800 rpm
Product	NC Steel	Fan Motor Capacity per cell	40.00 BHp
Model	NC8405TAN1	Fan Motor Output per cell	40.00 BHp
Cells	1	Fan Motor Output total	40.00 BHp
CTI Certified	Yes	Air Flow per cell	137600 cfm
Fan	9.000 ft, 6 Blades	Air Flow total	137600 cfm
Fan Speed	433 rpm, 12243 fpm	Static Lift	12.338 ft
Fans per cell	1	Distribution Head Loss	0.000 ft
•		ASHRAE 90.1 Performance	46.9 gpm/Hp

Model Group

Standard Low Sound (A)

Sound Pressure Level 77 dBA (Single Cell), 40.000 ft from Air Inlet Face. See sound report for details.

Conditions

Conditions ———			
Tower Water Flow	1500 gpm	Air Density In	0.07094 lb/ft ³
Hot Water Temperature	95.00 °F	Air Density Out	0.07093 lb/ft ³
Range	10.00 °F	Humidity Ratio In	0.01712
Cold Water Temperature	85.00°F	Humidity Ratio Out	0.03071
Approach	7.00 °F	Wet-Bulb Temp. Out	89.54 ° F
Wet-Bulb Temperature	78.00 °F	Estimated Evaporation	15 gpm
Relative Humidity	50.0%	Total Heat Rejection	7473700 Btu/h
Capacity	103.0%	•	

· This selection satisfies your design conditions.

Weights & Dimensions -

_	Per Cell	Total
Shipping Weight	8640 l b	8640 lb
Heaviest Section	8640 l b	
Max Operating Weight	20650 l b	20650 lb
Width	19.920 ft	19.920 ft
Length	9.900 ft	9.900 ft
Height	11.996 ft	

Minimum Enclosure Clearance -

Clearance required on air inlet sides of tower without altering performance. Assumes no air from below tower.

552 ft
908 ft

Weights and dimensions do not include options; refer to sales drawings. For CAD layouts refer to file 8405_ALN.dxf

Cold Weather Operation -

Heater Sizing (to prevent freezing in the collection basin during periods of shutdown)

Heater kW/Cell 7.5 18.0 15.0 12.0 9.0 6.0 4.5 Ambient Temperature °F 3.22 13.39 18.47 23.56 28.64 -17.12 -6.95

Job Name: Date:

Version:

MN Project 10/30/2012 08.02

Submitted By:

Jake J Vorac

Unit Description:

McQuay Model Number:

WME0500SSM2R/E3012-CE-2**/C2612-DNYY-2****/R134-BAAAPAB

Approval:

ETL Listed / ETL Listed to Canadian Safety Standards (ETL Label) ETLc Label)

Chiller Data:

Unit:

Compressor Type / Quantity - Size: Centrifugal / 1 - 0500 496.2

Capacity (ton):

Capacity Control:

VFD / Inlet guide vanes R134a

Refrigerant: Refrigerant Charge (lb): Oil Cooler Type:

1,067 None

857.1

42.0

2

ASHRAE 90.1 Compliancy: LEED EA Credit 4:

'04, '07 & '10 Pass

Evaporator:

Flow (gpm): LWT (°F): Number of Passes: Fouling Factor (°F.ft2.h/Btu): Tube Material:

0.00010 Cu Tube Wall Thickness (in): 0.025 Percentage of Water: 100 Minimum Flow (gpm): (see note 3) 268.1 Flow (gpm): 1,500.0

Condenser:

EWT (°F): 85..0 Number of Passes: Fouling Factor (°F.ft2.h/Btu): 0 00025 Tube Material: Cu Tube Wall Thickness (in): 0.028 Percentage of Water: 100

Motor/Starter:

Starter Type: VFD/UM Unit Voltage (V/Hz/Ph): 460/60/3 Approval Listing: ETL, ETLc

RLA per Compressor (A): (see note 4) 402 LRA per Compressor (A): 442

Enclosure Type: NEMA 1 gasketed Starter Location: Unit mounted Control Circuit Transformer: Included Power Connection: Single point Power Factor: 0.91 MCA (A) / MOCP (A): (see note 4) 505/706 Motor Protection: Standard Line Reactors: Yes

Ground Fault: None Short Circuit Current Rating: 35 kA EMI Filter: None

Circuit Breaker: 35 KAIC with door mounted handle Harmonic Distortion: Standard Transformer Type: N/A Power Meter: None

Design I	Design Performance rated at AHRI Condenser Relief:										
								Evapo	rator	Cond	enser
Capacity	Input	Performance	RLA	NPLV	75% Load	50% Load	25 % Load	PD	EWT	· PD	LWT
(ton)	(kW)	(kW/ton)	(A)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(ft H₂O)	(°F)	(ft H₂O)	(°F)
496.2	291.2	0.587	402	0.343	0.429	0.290	0.327	17.8	55.9	33.0	94.3

Performance Points rated at AHRI Condenser Relief:

Unit Tag: 500T

Page 1 of 2

DAIKIN MCQUAY

© McQuay International 2012, www.daikinmcquay.com

CENTRIFUGAL CHILLER TECHNICAL DATA SHEET

							Evaporator				Cond	lenser	
Point #	%Load Request	Capacity (ton)	Input Power (kW)	Performance (kW/ton)	RLA (A)	Flow (gpm)	EWT (°F)	LWT (°F)	PD (ft H₂O)	Flow (gpm)	EWT (°F)	LWT (°F)	PD (ft H₂O)
1	100.0	496.2	291.2	0.587	402	857.1	55.9	42.0	17.8	1,500.0	85.0	94.3	33.0
2	90.0	446.6	232.3	0.520	329	857.1	54.5	42.0	17.9	1,500.0	81.0	89.2	33 6
3	80.0	397.0	182.2	0.459	262	857.1	53.1	42.0	17.9	1,500.0	77.0	84.2	34.1
4	70.0	347.3	137.9	0.397	207	857.1	51.7	42.0	17.9	1,500.0	73.0	79.2	34.7
5	60₊0	297.7	101.7	0.342	160	857.1	50.3	42.0	18.0	1,500.0	69.0	74.3	35.3
6	50.0	248.1	71.9	0.290	116	857.1	48.9	42 0	18.0	1,500.0	65 ₋ 0	69.3	35 9
7	40.0	198.5	58.6	0.295	96	857.1	47.6	42.0	18.1	1,500.0	65.0	68.5	36.0
8	30.0	148.9	46.6	0.313	77	857.1	46.2	42.0	18.1	1,500.0	65.0	67.6	36.1
9	20.0	99.2	40.6	0.409	69	857.1	44.8	42.0	18.1	1,500.0	65.0	66.8	36.1
10	10.0	49.6	27.9	0.563	49	857.1	43.4	42.0	18.2	1,500.0	65.0	66.0	36.2

Sound Pres	sure:	· · · · · · · · · · · · · · · · · · ·						
63Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz	Overall (dBA)
41.0	59.0	68.0	73.0	74.0	72.0	84.0	72.0	86.3
							75% Load	80.6
							50% Load	79.6
							25% Load	81.4
Sound Pressu	ire (with Sound	Insulation) (dE	3) measured in	accordance wi	th ANSI/AHRI S	Standard 575-2	008 (A-weighte	ed)

	*****************************					Evaporator			Condenser		
Point #	Refrig Charge (lb)	LRAD (A)	PD Capacity (lb)	Superheat (Δ °F)	Subcooling (Δ°F)	Temp (°F)	Pressure (psig)	Velocity (ft/s)	Temp (°F)	Pressure (psig)	Velocity (ft/s)
1	1,067	442	1,869	1.0	8.7	40.7	35.8	6.7	96.5	117.0	9.9
2	1,067	442	1,869	1.0	7.9	40.8	35.9	6.7	91.2	106.7	9.9
3	1,067	442	1,869	1.0	7.1	41.0	36.0	6.7	86.0	97.1	9.9
4	1,067	442	1,869	1.0	6.3	41.1	36.1	6.7	80.8	88.1	9.9
5	1,067	442	1,869	1.0	5.6	41.2	36.2	6.7	75.7	79.8	9.9
6	1,067	442	1,869	1.0	4.7	41.3	36.4	: 6.7	70.5	71.9	9.9
7	1,067	442	1,869	1.0	3.9	41.5	36.5	6.7	69.5	70.3	9.9
8	1,067	442	1,869	1.0	3.1	41.6	36.6	6.7	68.4	68.8	9.9
9	1,067	442	1,869	1.0	2.2	41.7	36.8	6.7	67.3	67.3	9.9
10	1,067	442	1,869	1.0	1.2	41.9	36.9	6.7	66.2	65.7	9.9

Certification:

Notes:

1. Above RLA, MCA and MOCP values are per Compressor and are for input amps.

2. Performance kW values are total kW, unless noted otherwise.

3. Minimum flow is based upon standard condenser water relief and not increased lift due to constant condenser water temperature.

4. The field wiring must be sized in accordance with the MCA and not the RLA as some selections may be below the minimum required protection.

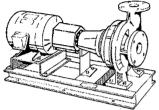
5 Motor overload settings determined by motor amps. Refer to unit nameplate for proper settings.

6. The USGBC bases it's LEED EA credit 4 calculations for Enhanced Refrigerant Management on the default values for a water cooled centrifugal chiller with a 25-year life, 10% end of life loss and 2% annual leak rate. The gross ARI cooling capacity for the unit is at least 343 tons, and the refrigerant charge is 1067 lbs

7. The LEED result above considers the chiller only. When applying this information for credit or prerequisite compliance the entire building must be considered.

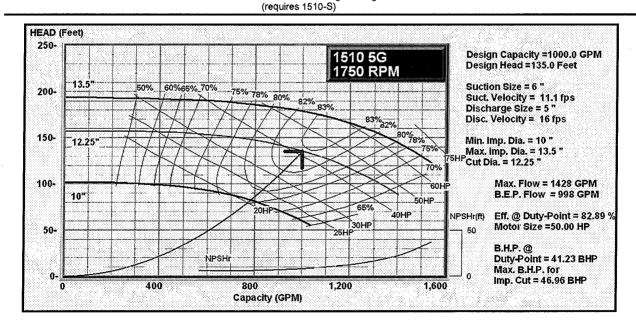
Unit Tag: 500T
© McQuay International 2012,
www.daikinmcquay.com

Page 2 of 2


DAIKIN McQUAY

SUBMITTAL

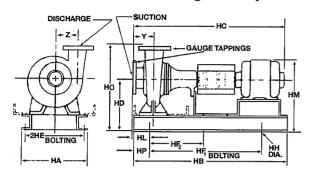
B-229.3F


JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 2		
CHILLED WATER PUMP		
UNIT TAG:	ORDER NO.	DATE: 12/13/2012
ENGINEER:	SUBMITTED BY:	DATE:
CONTRACTOR:	APPROVED BY:	DATE:

5G Series **1510**

Centrifugal Pumps - Base Mounted

SPECIFICATIONS	MATERIALS OF CONSTRUCTION	TYPE OF SEAL
FLOW1000 HEAD135	☐ BRONZE FITTED ☐ ALL IRON	☐ 1510 Standard Seal (Buna-Carbon/Ceramic)
HP50 00	FEATURES	1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
CYCLE 60 PHASE 3 ENCLOSURE ODP		☐ 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
APPROX WEIGHT 1135		☐ 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal
SPECIALS	MAXIMUM WORKING PRESSURE 175 psi (12 bar) W.P.	(EPR-Carbon/Ceramic) Requires external water source
Note: Equipped with NEOPRENE coupling	w/125# ANSI flange drilling 250 psi (17 bar) W.P. w/250# ANSI flange drilling	1510 -PF Stuffing Box Construction w/ Packing (Graphite Impregnated Teflon)



ESPONLINE 3 0 © COPYRIGHT 2012 Xylem Inc

Bell & Gossett

Series 1510 5G Centrifugal Pump Submittal

B-229.3F

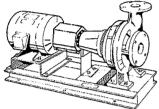
FLANGE DIMENSIONS IN INCHES (MM)								
	SIZE	THICKNESS	O.D.					
Di s charge	5" (127)	1-3/8 (35)	10-3/4 (273)					
Suction	6" (152)	1-7/16 (37)	12-1/8 (308)					

FLANGES ARE: 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMEN	SIONS	- Incl	hes (mm)		S	TANDARE	SEAL 15	10, 1510	-F					•
MOTO		\	нв	нс мах	HD	2HE	HF ₁	HF ₂	НН	HL	нм мах	. но	НР	Y	Z
FRAN	IE .,	L" FR	AME		·										
2547	- 24 (610		56 (1422)	47-1/8 (1197)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
2567	24 (610		56 (1422)	48-7/8 (1241)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
2847	- 24 (610		56 (1422)	49-7/8 (1267)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
2861	- 24 (610))	56 (1422)	51-3/8 (1305)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
3241	- 24 (610		56 (1422)	53-3/8 (1356)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	25-5/8 (651)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
7 326T	. 24 (610))	56 (1422)	54-7/8 (1394)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	25-5/8 (651)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
364T	. 24 (610)) (56 (1422)	57-1/8 (1451)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
365T	. 24 (610)) (56 (1422)	58-1/8 (1476)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)

STUFFING BOX 1510-PF, 1510-S, 1510-D

MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	НО	HP	Y	Z
FRAME	"L"	FRAME					·····				I			
254T	24	56	49-1/2	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1257)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
256T	24	56	51-1/4	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1 <i>[</i> 2	6	6	9
	(610)	(1422)	(1302)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
284T	24	56	52-1/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1327)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
286T	24	56	53-3/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1365)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
324T	24	56	55-3/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6.	6	9
	(610)	(1422)	(1416)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
326T	24	56	57-1/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1454)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	59-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1511)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24	56	60-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1537)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)


Dimensions are subject to change. Not to be used for construction purposes unless certified.

SUBMITTAL

B-225.7D

JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 2		
CONDENSER WATER PUMP		
UNIT TAG:	ORDER NO.	DATE: 11/8/2012
ENGINEER:	SUBMITTED BY:	DATE:
CONTRACTOR:	APPROVED BY:	DATE:

6BC Series 1510

Centrifugal Pumps - Base Mounted

SP	ECI	FI	CΔ	TI	OI	26
JГ		г.	-		u	Y.O

FLOW _	1500	HEAD	60	_
HP	40.00	RPM	1770	_
VOLTS		460		
CYCLE	60	_ PHASE _	3	_
ENCLOS	URE	ODP		
APPROX	WEIGHT	9:	95	_
SPECIAL	s			

Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

П	BRONZE	FITTED		IDON
1	DRUNZE	FILED	II ALL	. IKUN

FEATURES

- ANSI/OSHA Coupling Guard
- □ Center Drop Out Spacer Coupling
- ☐ Fabricated Heavy Duty Baseplate

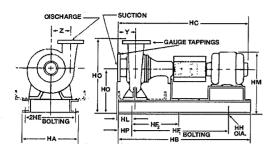

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P w/125# ANSI flange drilling
- 250 psi (17 bar) W.P w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic)
- Requires external water source

 1510 -PF Stuffing Box Construction w/
 Packing
 - (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc.

Bell & Gossett

Series 1510 6BC Centrifugal Pump Submittal

B-225.7D

FLANGE DIMENSIONS IN INCHES (MM)									
	SIZE	THICKNESS	O.D.						
Discharge	6" (152)	1-7/16" (37))	12- 1/8" (308)						
Suction	8" (203)	1-5/8" (41)	14- 3/4" (375)						

FLANGES ARE 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENSIONS - Inches (mm)

STANDARD SEAL 1510, 1510-F

MOTOR	НА	HB	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	HP	Y	Z
FRAME	"L" I	RAME	•										·	
254T	16	46-1/2	50-5/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1286)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
256T	16	46-1/2	52-3/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1330)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
284T	16	51-3/4	53-1/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1349)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	54-5/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1387)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
' 324T	16	51-3/4	56-7/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1445)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	58-3/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1483)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

STUFFING BOX 1510-PF, 1510-S, 1510-D

MOTOR	HA	НВ	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	HM MAX	но	HP	Y	Z
FRAME		"L" FRAME												
254T	16	51-3/4	53	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(13 4 6)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
256T	16	51-3/4	54-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1391)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
284T	16	51-3/4	55-1/2	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1410)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	57	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1448)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	59-1/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1505)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	60-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1543)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

Dimensions are subject to change. Not to be used for construction purposes unless certified.

UPDATE™ Version 4.14.9

Product Data: 5/31/2012 (Current)

© 2012 SPX Cooling Technologies, Inc. 11/8/2012 10:05:12 AM

Job Information -

Stanley Consultants 1 cell 1500 GPM 95-85-78

Selected By-

DPT Mechanical 10202 Douglas Avenue Urbandale, IA 50322 jbeeghly@dptmechanical.com Jason Beeghly Tel 515-471-1902 Fax 515-727-0778

Cooling Tower Definition -

Manufacturer	Marley	Fan Motor Speed	1800 rpm
Product	NC Steel	Fan Motor Capacity per cell	40.00 BHp
Model	NC8405TAN1	Fan Motor Output per cell	40.00 BHp
Cells	1	Fan Motor Output total	40.00 BHp
CTI Certified	Yes	Air Flow per cell	137600 cfm
Fan	9.000 ft, 6 Blades	Air Flow total	137600 cfm
Fan Speed	433 rpm, 12243 fpm	Static Lift	12.338 ft
Fans per cell	1	Distribution Head Loss	0.000 ft
		ASHRAE 90.1 Performance	46.9 gpm/Hp

Model Group

Standard Low Sound (A)

Sound Pressure Level 77 dBA (Single Cell), 40.000 ft from Air Inlet Face. See sound report for details.

Conditions -

Oonardons			
Tower Water Flow	1500 gpm	Air Density In	0.07094 lb/ft ³
Hot Water Temperature	95.00 °F	Air Density Out	0.07093 lb/ft ³
Range	10.00 °F	Humidity Ratio In	0.01712
Cold Water Temperature	85.00 °F	Humidity Ratio Out	0.03071
Approach	7.00 °F	Wet-Bulb Temp. Out	89.54 °F
Wet-Bulb Temperature	78.00 ° F	Estimated Evaporation	15 gpm
Relative Humidity	50.0%	Total Heat Rejection	7473700 Btu/h
Capacity	103.0%		

• This selection satisfies your design conditions.

Weights & Dimensions -

_	Per Cell	Total
Shipping Weight	8640 lb	8640 lb
Heaviest Section	8640 lb	
Max Operating Weight	20650 lb	20650 lb
Width	19.920 ft	19.920 ft
Length	9.900 ft	9.900 ft
Height	11.996 ft	

Minimum Enclosure Clearance -

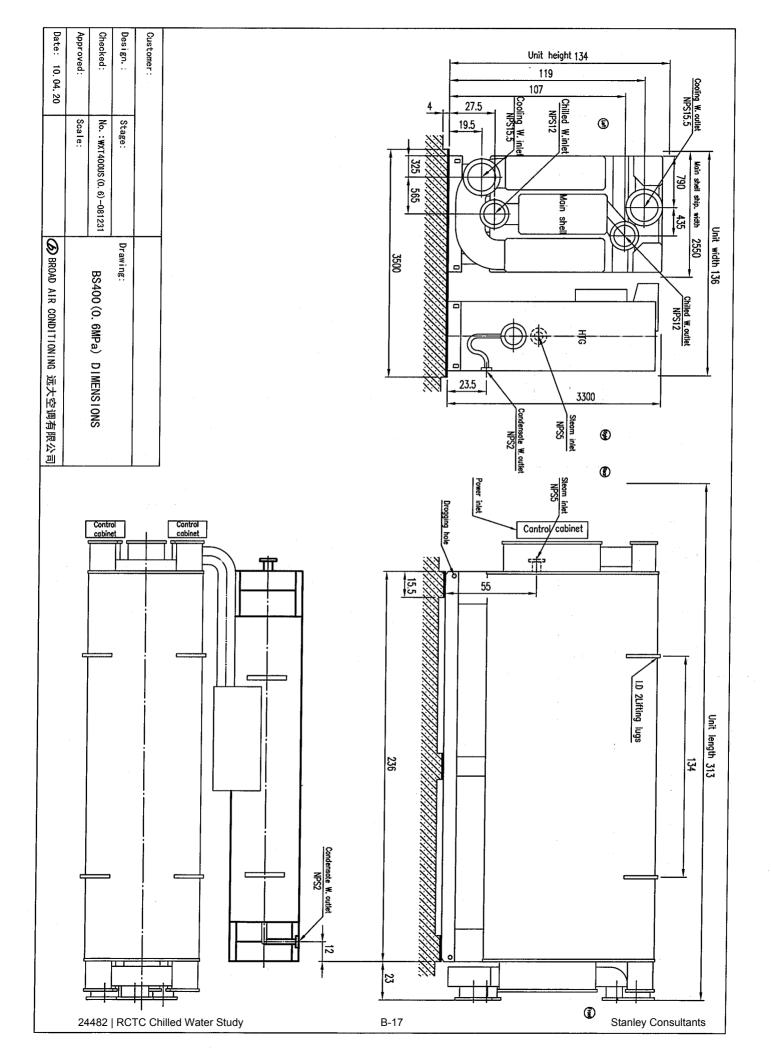
Clearance required on air inlet sides of tower without altering performance. Assumes no air from below tower.

Solid Wall 7.552 ft 50 % Open Wall 5.908 ft

Weights and dimensions do not include options; refer to sales drawings. For CAD layouts refer to file 8405_ALN.dxf

Cold Weather Operation -

Heater Sizing (to prevent freezing in the collection basin during periods of shutdown)

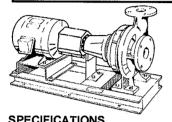

Heater kW/Cell 18.0 15.0 12.0 9.0 7.5 6.0 4.5 Ambient Temperature °F -17.12 -6.95 3.22 13.39 18.47 23.56 28.64

Chiller Performance Data

Our Reference No.: Date: Nov. 2nd. 2012 Project Name: Chiller Model: BS400

Date: Nov. 2nd, 2012	Chiller Model: BS400						
		Customer's Request	BROAD Proposition				
Model			B\$151X0.34-37.8/29.4-5.6/13.3-B3-400				
Quantity			1				
Cooling capacity	RT	500	500				
Cooling capacity	kW		1759				
Cooling capacity	10⁴kcal/h		151				
Chilled water			A STATE OF THE STA				
Chilled W. outlet temp.	°F	42	42				
Chilled W. inlet temp.	°F	56	56				
Flowrate	GPM		863				
Working pressure	psig		116				
Pressure drop	ftH2O		25				
Fouling factor	hr ft2 °F/Btu		0.0001				
Cooling water							
Cooling W. outlet temp.	۴	85	85				
Cooling W. inlet temp.	°F	100	100				
Flowrate	GPM		1409				
Working pressure	psig		116				
Pressure drop	ftH2O		35				
Fouling factor	hr ft2 °F/Btu		0.00025				
Steam source							
Steam pressure	psig	50	50				
Flowrate	lb/s		4,063				
Others							
Power			460V/60Hz/3P/4wire				
Chiller Power Consumption	kW		13.2				
Rated COP For Exhaust Heat Source	COP		1.28				
Unit ship. Wt.	klbs		49				
Operation wt.	klbs		105				

This selection is based on information provided by inquirer, reference only, product specifications subject to change



SUBMITTAL

B-229.3F

JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 3		
CHILLED WATER PUMP		
UNIT TAG: ENGINEER: CONTRACTOR:	ORDER NO. SUBMITTED BY: APPROVED BY:	DATE: 12/13/2012 DATE: DATE:

5G Series 1510

Centrifugal Pumps - Base Mounted

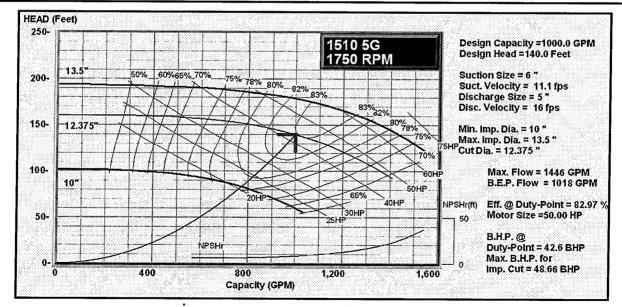
FLOW	1000	HEAD	140			
HP	50.00	RPM	1750			
VOLTS		460				
CYCLE	60	PHASE	3			
ENCLOS	URE	ODP				
APPROX	WEIGHT	1135				
SPECIAL	.s					

Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

FEATURES

☒ ANSI/OSHA Coupling Guard☒ Center Drop Out Spacer Coupling

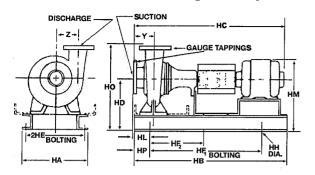

☐ BRONZE FITTED ☐ ALL IRON

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P. w/125# ANSI flange drilling
- 250 psi (17 bar) W.P. w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic) Requires external water source
- ☐ 1510 -PF Stuffing Box Construction w/ Packing (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc.

Bell & Gossett

Series 1510 5G Centrifugal Pump Submittal

B-229.3F

FLANGE DIMENSIONS IN INCHES (MM)								
	SIZE	THICKNESS	O.D.					
Dis c harge	5" (127)	1-3/8 (35)	10-3/4 (273)					
Suction	6" (152)	1-7/16 (37)	12-1/8 (308)					

FLANGES ARE:

125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENS	IONS - Ir	ches (mn	1)	•	s	TANDARI	SEAL 15	10, 1510	-F					
MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	HM MAX	но	HP	Y	Z
FRAME	"L"	FRAME		•	·•-·				•				,	
254T	24	56	47-1/8	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1197)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
256T	24	56	48-7/8	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1241)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
284T	24 (610)	56 (1422)	49-7/8 (1267)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
286T	24	56	51-3/8	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6.	6	9
	(610)	(1422)	(1305)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
324T	24	56	53-3/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1356)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
, 326T	24	56	54-7/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1394)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	57-1/8	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1451)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24	56	58-1/8	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1476)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
					STUFF	ING BOX	1510-PF,	1510-S, 1	I510-D					
MOTOR	НА	НВ	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	HM MAX	но	HP	Y	Z

FRAME "L" FRAME 49-1/2 16-1/2 21-1/2 44 5-7/16 23-3/8 29-1/2 254T (610)(1422)(1257)(419)(546)(1118)(559)(25)(594) (152)(152)(229)(138)(749)24 51-1/4 16-1/2 44 56 21-1/2 5-7/16 23-3/8 29-1/2 256T (610)(1422)(1302)(419)(546)(1118)(559)(25)(138)(594)(749)(152)(152)(229)21-1/2 24 56 52-1/4 16-1/2 44 22 5-7/16 24-1/2 29-1/2 284T (610)(1422)(1118)(559)(25)(1327)(419)(546)(138)(622)(749)(152)(152)(229)24 56 53-3/4 16-1/2 21-1/2 44 5-7/16 22 24-1/2 29-1/2 286T (610)(1422)(1365)(1118)(559) (25) (152)(152)(229)(419)(546)(622)(749)(138)24 56 55-3/4 16-1/2 21-1/2 44 22 5-7/16 25-5/8 29-1/2 6 6 324T (610)(1422)(1416)(419)(546)(1118)(559) (25)(138)(651)(749)(152)(152)(229)56 57-1/4 16-1/2 21-1/2 22 24 44 1 5-7/16 25-5/8 29-1/2 6 6 326T (229)(610)(1422)(1454)(419)(546)(1118)(559)(25)(152)(138)(651)(749)(152)56 59-1/2 16-1/2 21-1/2 44 5-7/16 24 22 1 26-3/4 29-1/2 6 6 9 364T (610)(1422)(1511)(419)(546)(1118)(559)(25)(138)(679)(749)(152)(152)(229)

22

5-7/16

1

26-3/4

(679)

29-1/2

(749)

6

(152)

6

(152)

(229)

(610)(1422)(1537)(1118) (559)(25)(419)(546)(138)Dimensions are subject to change. Not to be used for construction purposes unless certified.

21-1/2

44

16-1/2

56

24

365T

60-1/2

SUBMITTAL

B-225.7D

JOB: RCTC CHILLER STUDY

REPRESENTATIVE:

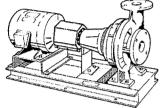
OPTION 3

CONDENSER WATER PUMP

UNIT TAG:

ENGINEER:

SUBMITTED BY:


APPROVED BY:

REPRESENTATIVE:

DATE: 11/8/2012

DATE: 11/8/2012

DATE: DATE:

6BC Series 1510

Centrifugal Pumps - Base Mounted

S	P	Ε	C	IF	IC	Α	T	10	NS	
---	---	---	---	----	----	---	---	----	----	--

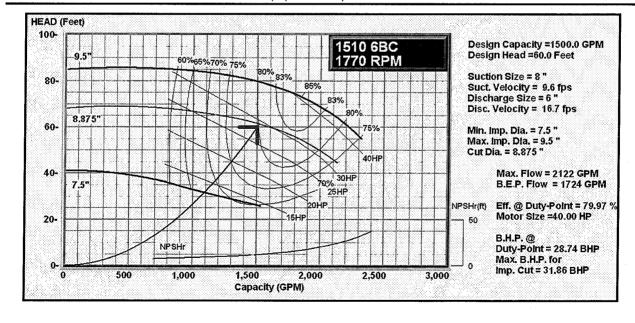
FLOW _	1500	_ HEAD _	60				
HP	40.00	RPM	1770				
VOLTS		460					
CYCLE	60	PHASE _	3				
ENCLOS	URE	ODP	ODP				
APPROX	WEIGHT	9	95				
SPECIAL	.s						

Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

□ BRONZE FITTED □ AL	LIRON
----------------------	-------

FEATURES

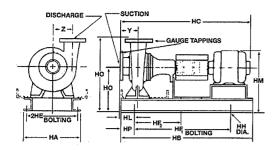

- ANSI/OSHA Coupling Guard
- □ Center Drop Out Spacer Coupling
- ☐ Fabricated Heavy Duty Baseplate

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P. w/125# ANSI flange drilling
- 250 psi (17 bar) W P w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic) Requires external water source
- 1510 -PF Stuffing Box Construction w/ Packing (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc.

Bell & Gossett

Series 1510 6BC Centrifugal Pump Submittal

B-225.7D

FLANGE DIMENSIONS IN INCHES (MM)							
	SIZE	THICKNESS	O.D.				
Discharge	6" (152)	1-7/16" (37))	12- 1/8" (308)				
Suction	8" (203)	1-5/8" (41)	14- 3/4" (375)				

FLANGES ARE 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENS	IONS -	Inches	(mm)

STAND	ADD	 1540	4 E 4 A E

DIMETIO	O.10 III		-,		_	.,	OLAL IS	10, 1010						
MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	HM MAX	но	HP	Υ	Z
FRAME	"L" !	FRAME								************				•
254T	16	46-1/2	50-5/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1286)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
256T	16	46-1/2	52-3/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1330)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
284T	16	51-3/4	53-1/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1349)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	54-5/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1387)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
→ 324T	16	51-3/4	56-7/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1445)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	58-3/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1483)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

STUFFING BOX 1510-PF, 1510-S, 1510-D

MOTOR	HA	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	НР	Y	z
FRAME		"L" F	RAME	•	•	•	•		•			•		
254T	16	51-3/4	53	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1346)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
256T	16	51-3/4	54-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1391)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
284T	16	51-3/4	55-1/2	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(4 06)	(1314)	(1410)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	57	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1 44 8)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	59-1/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1505)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	60-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1543)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

Dimensions are subject to change. Not to be used for construction purposes unless certified.

UPDATE™ Version 4.14.9

Product Data: 5/31/2012 (Current)

© 2012 SPX Cooling Technologies, Inc. 11/8/2012 2:43:54 PM

Job Information -

Selected By

Bovenkamp Jon

225 Iowa Ave.

Tel (563) 264-6490

Muscatine, IA 52761

bovenkampjon@stanleygroup.com

SPX Cooling Technologies Contact -

The RS Stover

3809 S. Center St.

Tel 641-753-5557

Marshalltown, Iowa 50158

Fax 641-752-7977

dan.hampton@rsstover.com

Cooling Tower Definition -

	, , , , , , , , , , , , , , , , , , , ,		
Manufacturer	Marley	Fan Motor Speed	1800 rpm
Product	NC Steel	Fan Motor Capacity per cell	50.00 BHp
Model	NC8409UAN1	Fan Motor Output per cell	49.62 BHp
Cells	1	Fan Motor Output total	49.62 BHp
CTI Certified	Yes	Air Flow per cell	196600 cfm
Fan	12.00 ft, 6 Blades	Air Flow total	196600 cfm
Fan Speed	273 rpm, 10292 fpm	Static Lift	12.34 ft
Fans per cell	1	Distribution Head Loss	0.00 ft
		ASHRAE 90.1 Performance	52.5 gpm/Hp

Model Group Sound Pressure Level Standard Low Sound (A)

81 dBA (Single Cell), 5.00 ft from Air Inlet Face. See sound report for details.

Conditions

Conditions —			
Tower Water Flow	1500 gpm	Air Density In	0.07094 lb/ft ³
Hot Water Temperature	100.00 °F	Air Density Out	0.07085 lb/ft ³
Range	15.00 °F	Humidity Ratio In	0.01712
Cold Water Temperature	85.00 °F	Humidity Ratio Out	0.03124
Approach	7.00 °F	Wet-Bulb Temp. Out	90.06 °F
Wet-Bulb Temperature	78.00 °F	Estimated Evaporation	23 gpm
Relative Humidity	50.0%	Total Heat Rejection	11205000 Btu/h
Capacity	116.5 %		

• This selection satisfies your design conditions.

Weights & Dimensions -

	Per Cell	Total
Shipping Weight	13120 lb	13120 lb
Heaviest Section	13120 lb	
Max Operating Weight	32010 lb	32010 lb
Width	22.42 ft	22.42 ft
Length	13.90 ft	13.90 ft
Height	12.02 ft	

Minimum Enclosure Clearance -

Clearance required on air inlet sides of tower without altering performance. Assumes no air from below tower.

Solid Wall	8.40 ft
50 % Open Wall	6.37 ft

Weights and dimensions do not include options; refer to sales drawings. For CAD layouts refer to file 8409_ALN.dxf

Cold Weather Operation -

Heater Sizing (to prevent freezing in the collection basin during periods of shutdown)

Heater KW/Cell	30.0	24.0	18.0	15.0	12.0	9.0	7.5
Ambient Temperature °F	-21.50	-8.40	4.71	11.26	17.81	24.36	27.64

Appendix C

Utility Information

ROCHESTER PUBLIC UTILITIES (RPU)

RATE SCHEDULE LGS SHEET 1 OF 2

LARGE GENERAL SERVICE

AVAILABILITY:

At all locations for loads where the measured demand is at least 1,000 kW or more for three or more billing periods in a given calendar year, but less than 10,000 kW, and where facilities of adequate capacity and suitable voltage are adjacent to the premises to be served. For loads where the service desired by the customer is not adjacent to the premises to be served, additional contract arrangements may be required prior to service being furnished.

APPLICATION:

To commercial, industrial, and governmental customers with all service taken at one point and measured through one meter. Also applicable to temporary service in accordance with RPU's published Electric Service Rules and Regulations. Not applicable to standby service.

CHARACTER OF SERVICE:

Three phase, 60 Hertz, alternating current at any one of the standard secondary service voltages as described in RPU's published Electric Service Rules and Regulations.

RATE:

Demand Charge:

\$16.463 per kW

Energy Charge:

5.261¢ per kWh

POWER SUPPLY ADJUSTMENT:

Bills computed under this rate schedule are subject to adjustment in accordance with the Power Supply Adjustment (PSA).

POWER FACTOR ADJUSTMENT:

The customer agrees to maintain an average power factor of 0.95 or greater for the billing period and to prevent a leading power factor. If the customer's average power factor is less than 0.95 for the billing period, the billing demand will be determined by multiplying the measured demand by 0.95 and dividing the results by the customer's average power factor. The average power factor is defined to be the quotient obtained by dividing the kWh used during the month by the square root of the sum of the squares of the kWh used and the lagging reactive kilovoltampere-hours supplied during the same period. The customer's average power factor will be determined by means of permanently installed meters.

PRIMARY METER DISCOUNT:

Customers approved for metering at 13.8 kV will receive a discount of 1.25% on base rate charges for measured demand and energy.

TRANSFORMER OWNERSHIP CREDIT:

Customers owning transformers will receive a credit of \$.20 per kW on each month's measured demand.

ROCHESTER PUBLIC UTILITIES (RPU)

RATE SCHEDULE LGS SHEET 2 OF 2

LARGE GENERAL SERVICE (Cont.)

DETERMINATION OF DEMAND:

Measured demand is defined as the maximum rate at which energy is used for any period of fifteen consecutive minutes during the billing period. The billing demand shall be the greater of the measured demand for the billing period adjusted for power factor, or 75% of the maximum measured demand for the most current June - September billing periods adjusted for power factor. Billing periods may not coincide with calendar months.

MINIMUM BILL:

The minimum bill shall not be less than the billing demand, as provided above, whether or not energy is used.

PAYMENT:

Payments are due on or before the due date.

CONDITIONS OF DELIVERY:

- 1. Service furnished under this rate schedule is subject to applicable provisions of RPU's published Electric Service Rules and Regulations.
- 2. Unless authorized by separate written agreement, standby electric generating equipment installed by the customer shall not be interconnected or operated in parallel with the RPU system. Customer shall own, install, operate, and maintain electrical interlocking equipment, which will prevent parallel operation, and such equipment shall be approved by RPU prior to installation.
- 3. RPU shall not be liable for any damage or loss sustained by customer resulting from interruptions, deficiencies, or imperfections of service provided under this rate.
- 4. Energy furnished under this rate shall not be resold.
- 5. A separate electric service agreement may be required for service under this rate schedule.

Approved by Rochester Public Utility Board: Effective Date:

December 12, 2008 January 1, 2009

COMMERCIAL COOLING EQUIPMENT REBATE APPLICATION

1. CUSTOM	ER INFORMA	TION (please p	rint)		100		
Account Name				Doing Bus	siness As (if differer	t from Acco	unt Name)
nstallation Addres	s			City		State	Zip Code
lailing Address (if	different from abo	ve)(rebate check will	be mailed here)	City		State	Zip Code
ccount Number				— ☐ Send (ıs a rebate check.	☐ Apply	rebate to our account
ype of Business:	ChurchMulti-family	☐ Government☐ Office	☐ Grocery ☐ Restaurant	☐ Health ☐ Retail	☐ Industrial☐ School	☐ Lo ☐ Ot	
ow did you hear a Retailer/Vendor		k SAVE°? ☐ Billboa ty Mailing ☐ Utility	_	Commerce 🛄 lity Representati		wspaper Site 🔲 Oti	Radio
. contact	INFORMATI	ON (please print)/CUSTOMER	SIGNATUR	RE :		
HENTION	YOUR FULI	Y-COMPLETED	AND SIGNED A	PECIFICATION	OR APPLICAT	ION WIL	NCLUDED WITH LL BE RETURNED
ontact Name (reb	ate check will be m	ailed to contact)	1.		Daytime Phone	Number	
the Terms and C	onditions on the ba	ack of this application	g any associated wo n booklet. I understa received, the propos	nd that if anv eq	uipment in coniunct	ion with thi	e. I have read and agre s application is ordere
ıstomer's Signatu	ıre				Date		
Check here if yo	ou DO NOT give us	permission to use yo	our business name in	advertising our	CONSERVE & SAVE	® programs.	
. CONTRAC	TOR/VENDO	OR INFORMAT	TON (please prin	nt)			
ompany Name					:		
dress				City	()	State	Zip Code
ntact Name					Daytime Phone	Number	
nail							
EAMING U	P TO SAVE	YOU MONE	OFFICE	USE ONLY	Date Received		
LUSTIA		'PU	Pre-Inspect	ed? 🖸 YES	NO Date		Initials
WINES &	WATONNA WE	pledge, we deliver	Post-Inspec	ted? 🗆 YES	☑ NO Date_		Initials
CANCI	BDW6B	r Gawi	TOTAL REB	ATE AMOUNT	\$		

4. REBATE INFORMATION – ROOFTOP, PACKAGED, AND CONDENSING A/C UNITS

☐ NEW CONSTRUCTION

☐ RETROFIT

Project Type:

Q R Bonus Bon	99 99 99 99
B A T E	
Eligible Bonus S. Ton (J) (Table 1)	
Eligible Bonus (/ - //)	
ш	
Sisse Sisse	9 69
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9 69
Equipment Cost	
K L Cob. Amual E Cob. Amual E Coperation Coperation S S S S S S S S S)
	O SEER
Minimum Minimum Minimum (Table 1) 9 (Table 1)	
STEM HINDER Minimum Actual AHRI Minimum Actual A	
S Y C G G G G G G G G G G G G G G G G G G	
I Worker Number	
Manufacturer Name	
Unit Code (Table 1)	
(if applicable) A B C Unit Existing 00. Size SEER* Trons. or EER* 1.	
(if app (if ap	9

Of ING HOURS	Estimated Hor	632	700	204	828	222	90.7	1,408	1 103	00767	902	287	500
TABLE 2 - GUIDELINES FOR COOLING HOLIPS	Business Type	Education - Community College	Education - Secondary School	DOLOG COCOLOGICA STATE OF THE PROPERTY OF THE	Education - University	Health /Medical - Olinic		Health/Medical - Hospital	Lodeine	00	OFFICE	Retail	
	Base Rebate Efficiency Bonus Rebate**	11011/C	\$5	\$5	-4	S \$	\$5		S\$	\$5	- 7	ဌာ	
	Base Rebate	1101/6	\$75	\$75	111	Ω •	\$75	111	G/\$	\$75	417	3/4	
ILE	Minimum	Linciency	14.0 SEER*	10.8 EER*	40.7 550*	10.1 EEK*	10.2 EER*	*0.0	9.0 EERT	10.8 EER*	40.0 77.0 4	TO'O EEK"	
TABLE 1 – QUALIFYING EFFICIENCIES AND REBATE SCHEDULE	.Qualifying Equipment	Little COO TO at louise to work 200	Less urait of equal to 65,000 B10/hour	65,001 - 134,999 BTU/hour	135,000 - 239 999 BTH /boll/	בפליפס בפליפס	240,000 - 759,999 BTU/hour	760 000 BTII /hour and greater	י בלוכם בום/ וומון מומ פובמופו	Packaged Terminal A/C Units (all sizes)	Packaged Terminal Heat Dumn Units (all sizes)	i acresca remina near i amp omrs (an sizes)	and a second of the control of the c
TABLE 1 -	Unit Code	III_7	115	UT-2	UT-3		UT-4	UT-5		PTAC	PTHP		*In Column

43

TOTAL

*In Columns B and J, please enter Existing and Actual SEER or EER value, respectively, and then check SEER or EER. SEER=Seasonal Energy Efficiency Rating, EER=Energy Efficiency Rating

**Efficiency Bonus Rebate provides an additional incentive for each .1 SEER/EER above the Minimum Efficiency.

Qualifying unitary A/C units must have been rated in accordance with the most recent version of AHRI Standard 210/240 if under 65,000 BTU/hour and AHRI 340/360 if above 65,000 BTU/hour, and have nameplate data stamped with the SEER/EER. If equipment is larger than the AHRI Standard certification process, it must be listed as a standard combination in manufacturer's literature.

A copy of the manufacturer's applicable unit rating must accompany this application. The AHRI directory and standards are located at www.ahridirectory.org. Note:

5. REBATE INFORMATION -- CENTRAL CHILLERS

☐ NEW CONSTRUCTION

- RETROFIT

Project Type:

	V	↔	₩	₩,	€9	₩	49
	P Q R S T U V Base Base Eligible Bonus Water Cooled Air Cooled Total Rebate Rebate Efficiency Rebate Bonus Rebate Bonus Rebate Rebate S/Ton (H × M × P) Bonus S/Ton (R × S) x (R × S) x (Q+T) Table 3 (H × M) × 100 (H × M) × 100 (Q+U)	₩	₩		€	₩	49
ATE	T Water Cooled Sonus Rebate (R x S) x H x M) x 100						
REBATE	e* Boy	↔	↔	↔	₩	↔	€9
	S Bonus Rebate* \$/Ton (Table 3)	€9	\$	6 9	↔	↔	€9
	R Eligible Efficiency Bonus (K-L)						
	P Q Base Base Rebate Rebate \$\sum{5.\text{Ton}}{(\text{H} \times M \times P)}	↔	⇔	\	₩	₩	₩
		⇔	↔	₩.	↔	₩	↔
	Gost	↔	↔	\$	€\$	₩.	₩
	Annual E						
	∑ġ						
	Rated IPLV						
	F. E. Table 3						
	A K Rated IPLV Full Eff.						
SYSTEM	Full F Load Eff. 1						
SYS	S) LC						
NEX	H Size (Tons)						
~	G Model Number						
	<u>\$</u>						
	Manufactures Name		į				
	E Unit Code (Table 3)						
EM	ΔŞ̈́						
EXISTING SYST (if applicable)	A B C D Unit Unit Existing Qty. Code Size kW/Ton (Table 3) (Tons)						
TING appli	Unit Size (Tons)						
	A Unit Code (Table 3)	17	73	ကံ	4.	ດ້	ە C-6
2448	2 RCTC Chilled V	Vater Stu	ıdy				C-6

اء اء

8 – QUALIFYING EFFICIENCIES AND REBATE SCHEDULE					101
Qualifying Equipment (Water or Air Cooled)	Full-Load Efficiency	IPLV Efficiency	Base Rebate \$/Ton	Efficiency Bonus* Rebate (\$/Tonl)	
Water-Cooled Screw/Scroll Chiller - Less than 150 Tons	0.74 kW per Ton	0.63 kW per Ton	\$15	\$3.50/IPLV	
Water-Cooled Screw/Scroll Chiller - 150 to 299 Tons	0.67 kW per Ton	0.58 kW per Ton	\$15	\$3,50/IPLV	TABLE 4 - GUIDELINES FOR COOL
Water-Cooled Screw/Scroll Chiller - 300 Tons and Greater	0.59 kW per Ton	0.52 kW per Ton	\$15	\$3.50/IPLV	Business Type
Water-Cooled Centrifugal Chiller – Less than 150 Tons	0.69 kW per Ton	0.65 kW per Ton	\$15	\$3.50/IPLV	Education – Community College
Water-Cooled Centrifugal Chiller – 150 to 299 Tons	0.62 kW per Ton	0.58 kW per Ton	\$15	\$3 50 /IPI V	Education – Secondary School
Water-Cooled Centrifugal Chiller – 300 Tons and Greater	0.56 kW per Ton	0.53 kW per Ton	2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\$3.50/II LV	Education – University
Air-Cooled Chiller (all types)	9.7 EER	12.0 EER	8\$	\$2.25/IPLV	Health/Medical - Clinic
ney Bonus Rebate provides additional incentive for each .01 kW per Ton below the Minimum IPLV Efficiency (water-cooled chillers)	W per Ton below the N	dinimum IPLV Efficie	ncv (water-coole	d chillers)	Health/Medical - Hospital
each 0.1 EER above the minimum IPLV efficiency (air-cooled chillers).	llers).			"()	Lodging

5

۲<u>.</u> 6 ဗ 94 | | 9-0

TABLE 3 - QUALIFYING

Code Cait

IPLV - Integrated Part Load Value; EER - Energy Efficiency Rating

Qualifying chillers must meet both full load and IPLV minimum efficiency requirements shown in Table 3 above to be eligible and have kW per Ton ratings stamped on the nameplate. **Documentation is required.** This can be a printout from the AHRI directory (www.ahridirectory.org) or if the chiller has not been tested by AHRI, manufacturer documentation must show the rated capacity (tons), and the IPLV efficiency and full-load efficiency at AHRI standard 550/590 rating conditions. Note:

The motors and/or variable speed drives in chiller units <u>are not</u> independently eligible for additional rebates offered under the Commercial Motor and Variable Speed Drive Rebate Program.

Estimated Hours JLING HOURS 1,408 1,193 632 384 756 902 828 Office

43

IAL

867

Retail

6. TERMS AND CONDITIONS

1. ELIGIBILITY

Rebates are available to non-residential electric customers of Austin Utilities, Owatonna Public Utilities, and Rochester Public Utilities (herein referred to as The Utility). All products must be in use in facilities in The Utility service territory.

2. APPLICATION

Program is offered January 1 through December 31 of the respective calendar year. Due to limited funding, this rebate offer can be changed or withdrawn at any time without notice and is available on a first-come, first-serve basis. The entire rebate application must be read and filled out completely or application will be returned.

3. INSPECTION AND VERIFICATION

The Utility reserves the right to inspect the customer's facility through on-site visits before and after new equipment installation to verify rebate eligibility.

4. INSTALLATION AND REBATE AMOUNTS

Qualifying energy-efficient equipment installed and operational within six (6) months of the date of purchase are eligible for rebate. Additional time may be granted subject to The Utility's pre-approval. In no case will the rebate paid by The Utility exceed the purchase price of the equipment. The maximum rebate amount is \$100,000 per customer location per technology per year. The Utility can, at its sole discretion, increase rebate amounts.

5. INVOICE AND PAYMENT

Following inspection and verification (see #3) and completed installation, the customer must notify The Utility and submit original invoices specifying the quantity and price of all materials purchased, the date ordered, installation costs, and applicable taxes. Additionally, SEER/EER (Rooftop, Packaged, and Condensing A/C Units) certification data or manufacturer's kW per Ton (Central Chillers) is required to be submitted with invoices. After satisfactory review of the application and invoices, a rebate check or bill credit will be issued to the customer. Please allow 6-10 weeks from the date of application submission for delivery of rebate check or bill credit.

6. EQUIPMENT ELIGIBILITY REQUIREMENTS

Eligible high-efficiency cooling equipment must be new and meet or exceed The Utility's minimum efficiency requirements as identified in Tables 1 and 3 according to its respective characteristics. Eligible high-efficiency cooling units must replace units of lesser efficiencies and of equivalent or greater capacity (Tons or Btu's/hour) to qualify for a rebate.

Rooftop, Packaged, and Condensing A/C Units: Qualifying unitary A/C units must have been rated in accordance with the most recent version of AHRI Standard 210/240 if under 65,000 BTU/hour and AHRI 340/360 if above 65,000 BTU/hour, and have nameplate data stamped with the SEER/EER. If equipment is larger than the AHRI Standard certification process, it must be listed as a standard combination in manufacturer's literature. A copy of the manufacturer's applicable unit rating must accompany this application. The AHRI directory and standards are located at www.ahridirectory.org.

Central Chillers: Qualifying chillers must meet the efficiency requirements shown in Table 3 to be eligible and have kW per Ton ratings stamped on the nameplate. Documentation is required. This can be a printout from the AHRI directory (www.ahridirectory.org) or if the chiller has not been tested by AHRI, manufacturer documentation must show the rated capacity (tons), and the IPLV efficiency and the full-load efficiency at AHRI standard 550/590 rating conditions:

- 44° F leaving chilled water temperature
- 85° F entering condenser water temperature (for water cooled chillers)
- 95° F entering condenser air temperature (for air cooled chillers)

7. TAX INFORMATION

The Utility will not be responsible for any tax liability imposed as a result of the rebate payment(s). Customers are advised to consult their tax advisors for details.

8. DISCLAIMER

The Utility does not guarantee that the implementation of energy-efficient measures or use of the equipment purchased or installed pursuant to this program will result in energy or cost savings. The Utility makes no warranties, expressed or implied, with respect to any equipment purchased or installed including, but not limited to, any warrant of merchantability or fitness for purpose. In no event shall The Utility be liable for any incidental or consequential damages. Customers are solely responsible for the proper disposal of existing equipment. Consult the Minnesota Pollution Control Agency (MPCA) office for details at (800) 657-3864.

9. ENDORSEMENT

The Utility does not endorse any particular vendor, manufacturer, product, or system in promoting this rebate program. Listing a vendor or product does not constitute an endorsement, nor does it imply that unlisted vendors or products are deficient or defective in any way.

10. PRIVACY

Information contained in this rebate application may be shared with the Minnesota Department of Commerce and our co-op partners and also may be used in our advertising efforts with your permission as granted in Section 2 of this rebate application.

RETURN COMPLETED APPLICATION AND REQUIRED DOCUMENTATION TO YOUR UTILITY PROVIDER:

Austin Utilities

Attn: Rebate Processing 400 - 4th Street NE Austin, MN 55912 (507) 433–8886 (507) 433–5045 fax www.austinutilities.com Owatonna Public Utilities

Attn: Rebate Processing P.O. Box 800 Owatonna, MN 55060 (507) 451–2480 (507) 451–4940 fax www.owatonnautilities.com **Rochester Public Utilities**

Attn: Rebate Processing 4000 East River Road NE Rochester, MN 55906-2813 (507) 280-1500 (507) 280-1542 fax www.rpu.org

C-7

8/15/2012

OWEF - Solid Waste Division 2122 Campus Dr. SE Rochester MN, 55904

Customer:

2370

ROCHESTER COMMUNITY COLLE

851 30TH AVENUE SE ROCHESTER, MN 55904 The following charges are for July

Please call Justin @ 328-7057 with any questions.

DATE:	DESCRIPTION:	QUANTITY:	UNIT PRICE:	TOTAL:
7/31/2012	Previous Statement Balance		0	\$7,995.18
7/31/2012	Payment - ITACH073012WR		0	(\$7,995.18)
7/31/2012	Steam Sales Firm - Heintz	57.10	14.64	\$835.94
7/31/2012	Steam Sales Firm - UCR	138.20	14.64	\$2,023.25
7/31/2012	Steam Sales Firm - Sports Center	16.50	14.64	\$241.56
7/31/2012	Meter Service Charge	3.00	2.1	\$6.30
7/31/2012	BTU Meter Serv Chg	3.00	21	\$63.00
7/31/2012	Steam Gas Rate - Sports Center	16.50	4.4808	\$73.93
7/31/2012	Steam Gas Rate - Heintz	57.10	4.4808	\$255.85
7/31/2012	Steam Gas Rate - UCR	138.20	4.4808	\$619.25
7/31/2012	Steam Interrupt Rate - Sports Center	16.50	4	(\$66.00)
7/31/2012	Steam Interrupt Rate - Heintz	57.10	4	(\$228.40)
7/31/2012	Steam Interrupt Rate - UCR	138.20	4	(\$552.80)
Payment Due \$3,271.88	Current Previous Balan \$3,271.88 \$0	nce .00		and the state of t

C. Kellas

8.9>./2

9/21/2012 sion Stean

OWEF - Solid Waste Division

2122 Campus Dr. SE Rochester MN, 55904

id Waste Division as Dr. SE N. 55904

Customer:

2370

ROCHESTER COMMUNITY COLLE

851 30TH AVENUE SE ROCHESTER, MN 55904 The following charges are for August

Please call Justin @ 328-7057 with any questions.

DATE:	DESCRIPTION:	QUANTITY:	UNIT PRICE:	ምረንም ል ፻ .
8/31/2012	Previous Statement Balance	2012111111	0	TOTAL: \$3,271.88
8/31/2012	Payment - TACH082912WR		0	(\$3,271.88)
8/31/2012	Meter Service Charge	3.00	2.1	\$6.30
8/31/2012	BTU Meter Serv Chg	.300	21	\$63.00
Payment Due \$69.30	Current Previous Balance \$69.30 \$0.00			

10.4.

SEP 2 4 2012

Appendix D

Opinion of Probable Cost Information

Total Unit Cos 186,000.0 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$5,660.0 00 \$5,660.0 00 \$2,475.0 00 \$650,000.0 00 \$650,000.0 00 \$650,000.0 00 \$85,000.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$700,000.0 00 \$200.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$186,000.0 00 \$23,800.0 00 \$56,000.0 00 \$5,660.0 00 \$75.0 00 \$6,054.0 00 \$65,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$2,000.0 00 \$2,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$60,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$33.3 00 \$15,000.0 00 \$3,3310.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$60,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$33.3 00 \$15,000.0 00 \$3,3310.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
000 \$6,054.0 00 \$23.0 000 \$65,000.0 000 \$85,000.0 000 \$2,150.0 000 \$3,310.0 000 \$15,000.0 000 \$700,000.0 000 \$200.0	00 \$6,05 00 \$3,45 00 \$65,00 00 \$85,00 00 \$4,30 00 \$59,58 00 \$30,00 00 \$700,00
00 \$700,000.0 00 \$200.0	0 \$700,00
AL	
	\$3,599,53
9% 5% 5%	\$1,079,86 \$701,90 \$538,13 \$887,91
ST	\$6,807,34
SE	\$6,810,00
00 \$186 000 0	0 \$186,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0	0 \$60,90 0 \$23,80 0 \$15,05
AL	\$315,75
5% 0%	\$94,72 \$61,57 \$47,20 \$77,88
ST.	\$597,13
SE .	\$600,00
- 30 - 15 - 10 - 15 - 10	000.00 \$186,000.0 100.00 \$60,900.0 500.00 \$23,800.0 150.00 \$15,050.0 100.00 \$15,000.0 **TOTAL - 30% - 15% - 10% - 15% COST **T USE

Stanley Consultants acc	Kyle Johnson	Date	12-Dec-12	Job No. Subject	RCT	32-01-00 C ed Water Sti	udy			
Checked by Approved by		Date Date			TRA			CHILLERS (NO	VFD)	
	Item Description			(Quanti	ty		Unit Cost		Total Cost
	item bescription	ı		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
Phase 3										
Primary Pumps, 60	Centrifugal Chillers wer for Centrifugal Chi HP (1200 GPM @ 130 30 HP (1500 GPM @)' TDH)	1)		1 EA 1 EA 1 EA 1 EA 2 EA		\$170,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00	\$15,050.00	\$186,000 \$60,900 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$315,750
							Contractor C	n Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$94,725 \$61,571 \$47,205 \$77,888
								TOTAL COST		\$597,139
							PROBAE	BLE COST USE	=	\$600,000
								LL 3 PHASES):		\$8,010,000

				24482-01-00	Job No.				
				RCTC	Subject			1	Stanley Consultants avc.
			udy	Chilled Water S		12-Dec-12	Date	Kyle Johnson	Computed by
	VFD)	CHILLERS (with		TRADITIONAL			Date		Checked by
	· •			OPTION 2			Date		Approved by
Total Cost		Unit Cost		uantity			n	Item Description	
	Total Unit Cost	Labor	Material	UOM	No. of Unit			itom 2000 pilot	
						VFD)	RS (With	NTRIFUGAL CHILLEF	TRADITIONAL CEN
									Phase 1
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA	-		vith VFD	Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA			hiller	wer for Centrifugal Ch	500 Ton Cooling To
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA				HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA		OH)	@ 50' TD	s, 30 HP (1500 GPM (
\$650,00	\$650,000.00	\$300,000.00	\$350,000.00	LS					Piping and Accesso
\$113,20	\$5,660.00	\$735.00	\$4,925.00	EA					12" Butterfly Valves
\$29,70 \$67,50	\$2,475.00 \$75.00	\$500.00 \$30.00	\$1,975.00 \$45.00	EA LF				ad Cable & Conduit	8" Butterfly Valves 13.8 kV Undergroun
\$6,05	\$6,054.00	\$1,304.00	\$4,750.00	EA					Pad Mounted Trans
\$3,45	\$23.00	\$11.00	\$12.00	LF			SB.	duit, Secondary to MSE	
\$65,00	\$65,000.00	\$25,000.00	\$40,000.00	EA					1600A Main Switch
\$85,00	\$85,000.00	\$35,000.00	\$50,000.00	EA					Motor Control Cente
\$4,30	\$2,150.00	\$700.00	\$1,450.00	EA					Low Voltage Transfo
\$59,58	\$3,310.00	\$910.00	\$2,400.00	EA					Motor Starter Discor
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$700,00	\$700,000.00	\$300,000.00	\$400,000.00	LS				em	Digital Control Syste
\$1,500,00	\$200.00	\$75.00	\$125.00	SF	7500				Building
\$3,661,53		SUBTOTAL							
\$1,098,46		n Details - 30%	eveloped Desig	Une					
\$713,99		Overhead - 15%	Contractor C						
\$547,39		tor Profit - 10%	Contrac						
\$903,20		gineering - 15%	stration and Eng	Admi					
\$6,924,60		TOTAL COST							
\$6,920,00	=	LE COST USE	PROBAB						
									Phase 2
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA				Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA				wer for Centrifugal Ch	•
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA			<u> </u>	HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA)H)	@ 50' IL	s, 30 HP (1500 GPM (
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$377,75		SUBTOTAL							
		n Details - 30%	eveloped Desig	Uni					
\$113.32		Overhead - 15%		311					
		tor Profit - 10%							
\$73,66			stration and En	Admi					
\$113,32 \$73,66 \$56,47 \$93,18									i
\$73,66 \$56,47		TOTAL COST							

Stanley Consultants	DK.			Job No. Subject	24482-0 RCTC	01-00				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12	Subject	Chilled			CHILLERS (with	ı VFD)	
трріотов зу				(Quantity	-		Unit Cost		
	Item Descriptio	n		No. of Unit	U	OM	Material	Labor	Total Unit Cost	Total Cost
500 Ton Cooling T Primary Pumps, 6	al Centrifugal Chillers w Tower for Centrifugal Cl 0 HP (1200 GPM @ 13 ps, 30 HP (1500 GPM	niller 80' TDH)	DH)	·	I EA I EA I EA I EA 2 EA		\$232,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00	\$248,000.00 \$60,900.00 \$23,800.00 \$15,050.00 \$15,000.00	\$248,000 \$60,900 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$377,750
							Contractor C	n Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$113,325 \$73,661 \$56,474 \$93,181
								TOTAL COST		\$714,391
							PROBAE	BLE COST USE	=	\$710,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$8,340,000

Stanley Consultants »				Job No.	24482	2-01-00				
-				Subject	RCTO					
Computed by Checked by	Kyle Johnson	Date Date	12-Dec-12			d Water St	tudy CHILLERS			
Approved by	-	Date			OPTI		JHILLENS			
, ,				Q	uantity	,		Unit Cost		- · · · ·
	Item Description	1		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
ABSORPTION CHI OPTION 3	<u>LLERS</u>									
Primary Pumps, 60 Condenser Pummp Piping and Accesso 12" Butterfly Valves 8" Butterfly Valves 13.8 kV Undergrou Pad Mounted Trans	wer for Centrifugal Ch HP (1200 GPM @ 13 s, 30 HP (1500 GPM pries and Cable & Conduit former, 13 kV/480V duit, Secondary to MSI Board (MSB) er ormer nnects	0' TDH) @ 50' TI	DH)	1 1 1 20 12 900 1 150 1 1 2 18	EA LF EA EA EA EA LS		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$350,000.00 \$4,925.00 \$1,975.00 \$4,750.00 \$12.00 \$15,000.00 \$50,000.00 \$2,400.00 \$10,000.00 \$10,000.00 \$125.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$300,000.00 \$735.00 \$30.00 \$1,304.00 \$11.00 \$10,000.00 \$700.00 \$910.00 \$5,000.00 \$75.000.00	\$23,800.00 \$15,050.00 \$650,000.00 \$5,660.00 \$2,475.00 \$75.00 \$23.00 \$25,000.00 \$25,000.00 \$2,150.00 \$3,310.00 \$15,000.00	\$367,80 \$105,70 \$23,80 \$15,05 \$650,00 \$113,20 \$29,70 \$67,50 \$6,05 \$3,45 \$25,00 \$85,00 \$4,30 \$59,58 \$30,00 \$700,00
								Overhead - 15% ctor Profit - 10%		\$4,126,13: \$1,237,84! \$804,59! \$616,85' \$1,017,81: \$7,803,24
							PROBAB	LE COST USE	=	\$7,800,00
Primary Pumps, 60	Chillers wer for Centrifugal Ch HP (1200 GPM @ 13 s, 30 HP (1500 GPM	0' TDH)	DH)	1 1 1	EA EA EA EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00		\$367,800 \$105,700 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$542,35
								Overhead - 15% ctor Profit - 10%		\$162,70 \$105,75 \$81,08 \$133,78
								TOTAL COST		\$1,025,67
							РКОВАВ	LE COST USE	=	\$1,030,00

Stanley Consultants	ĸ.			Job No. Subject	2448 RCT	32-01-00 C				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12		Chill	ed Water Str ORPTION C				
	lteres December			(Quanti			Unit Cost		Total Ocat
	Item Description	n		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
Primary Pumps, 60	n Chillers ower for Centrifugal Ch HP (1200 GPM @ 13 os, 30 HP (1500 GPM	0' TDH)	DH)	·	1 EA 1 EA 1 EA 1 EA 2 EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00	\$367,800.00 \$105,700.00 \$23,800.00 \$15,050.00 \$15,000.00	\$367,800 \$105,700 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$542,350
							Contractor C	gn Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$162,705 \$105,758 \$81,081 \$133,784
								TOTAL COST		\$1,025,679
							PROBAE	BLE COST USE	=	\$1,030,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$9,860,000

	Job No.	24482-0	1-00				
Stanley Consultants ac.	Subject	RCTC	1 00				
Computed by Kyle Johnson Date 12-Dec-12	,	Chilled V	Vater St	udv			
Checked by Date				ugh the Buildir	ng		
Approved by Date		Option A			-		
	Q	uantity			Unit Cost		
Item Description		, 				1	Total Cost
	No. of Unit	UC	M	Material	Labor	Total Unit Cost	
Distribution Through the Building - OPTION B PHASE 1							
12" Direct Buried AWWA Pipe	440) LF		\$13.69	\$16.89	\$30.58	\$13,455
12" AWWA LR Elbow	4	EA		\$184.00	\$126.00	\$310.00	\$1,240
12" Steel Pipe	745			\$89.00	\$68.78		\$117,546
12" Pipe Insulation with Jacket		i LF		\$20.50	\$8.95		\$21,940
6" Steel Pipe) LF		\$37.50	\$35.97		\$22,041
6" Pipe Insulation with Jacket	300			\$12.40	\$6.80		\$5,760
4" Steel Pipe	360			\$23.50	\$22.93		\$16,715
4" Pipe Insulation with Jacket) LF		\$9.95 \$17.20	\$6.20		\$5,814 \$5,041
3" Steel Pipe 3" Pipe Insulation with Jacket) LF) LF		\$17.20 \$8.65	\$19.93 \$5.95		\$5,941 \$2,336
12" Steel Elbow		EA		\$3,775.00	\$208.00		\$23,898
6" Steel Elbow		B EA		\$495.00	\$139.00		\$5,072
4" Steel Elbow		EA		\$315.00	\$100.00		\$1,660
3" Steel Elbow		EA		\$255.00	\$73.00		\$984
12"x12"x4" Steel Tee		EA .		\$5,875.00	\$415.00		\$37,740
12"x12"x8" Steel Tee	2	2 EA		\$5,875.00	\$415.00	\$6,290.00	\$12,580
6"x6"x3" Steel Tee	2	2 EA		\$950.00	\$208.00	\$1,158.00	\$2,316
12"x6" Steel Reducer		2 EA		\$3,825.00	\$179.00		\$8,008
Demo and Replace Lay-In Ceiling	6408			\$2.21	\$1.42		\$23,261
AHU (12.5 Tons, 5000 CFM)		EA		\$26,500.00	\$1,600.00		\$28,100
AHU (30 Tons, 12000 CFM)		EA		\$54,500.00	\$2,450.00		\$56,950
AHU (40 Tons, 16000 CFM)		EA		\$79,500.00	\$3,100.00		\$82,600
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)		EA		\$7,900.00	\$620.00		\$8,520
Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH)		EA EA		\$3,725.00	\$475.00		\$4,200
Secondary CHWP (Theater) 7.5 HP (206.25 GPM. 60' TDH) Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)		EA		\$3,725.00 \$3,725.00	\$475.00 \$475.00		\$4,200 \$4,200
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH)		EA		\$1,685.00	\$214.00		\$1,899
				SUBTO	OTAL PHASE 1	I	\$518,976
			Diffie	cult Workina C	onditions - 20%		\$103,795
					n Details - 30%		\$186,831
					Overhead - 15%		\$121,440
			Admins		ctor Profit - 10% gineering - 15%		\$93,104 \$153,622
			710111110		-		
					TOTAL COST		\$1,177,770
				PROBAE	BLE COST USE	•	\$1,178,000
PHASE 2							
12" Steel Pipe	420	LF		\$89.00	\$68.78	\$157.78	\$66,268
12" Pipe Insulation with Jacket	420			\$20.50	\$8.95		\$12,369
8" Steel Pipe	160	LF		\$55.50	\$44.82		\$16,051
8" Pipe Insulation with Jacket	160	LF		\$14.80	\$7.55	\$22.35	\$3,576
12"x12"x12" Steel Tee		EA .		\$5,875.00	\$415.00		\$37,740
12"x8" Steel Reducer		EA		\$3,825.00	\$179.00		\$8,008
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH)	2	2 EA		\$7,900.00	\$620.00	\$8,520.00	\$17,040
				SUBTO	OTAL PHASE 2	2	\$161,052
					onditions - 20%		\$32,210
			Unde		ın Details - 30%		\$57,979
					Overhead - 15%		\$37,686
					ctor Profit - 10%		\$28,893
			Admins	tration and En	gineering - 15%		\$47,673
					TOTAL COST	Ī	\$365,493
				PROBAE	BLE COST USE		\$365,000

			Job No.	24482-01-00				
Stanley Consultants »c.			Subject	RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	,	Chilled Water S	Study			
Checked by	Trylo dominoon	Date			ough the Buildin	ıa		
Approved by		Date		Option A - Ph 1	,2,3	9		
	Item Descripti	00	(Quantity		Unit Cost		Total Cost
	item Descripti		No. of Unit	UOM	Material	Labor	Total Unit Cost	Total Cost
PHASE 3								
8" Direct Buried AW	/WA Pine		236	5 LF	\$11.85	\$15.25	\$27.10	\$64,092
8" AWWA LR Elbov	v			2 EA	\$144.00	\$99.00		\$2,916
8" Steel Pine	•			0 LF	\$55.50	\$44.82		\$16,051
8" Steel Pipe 8" Pipe Insulation w	ith Jacket			0 LF	\$14.80	\$7.55		\$3,576
8" Steel Elbow	iii odonot			4 EA	\$855.00	\$156.00		\$4,044
12"x8" Steel Reduc	er			2 EA	\$3,825.00	\$179.00		\$8,008
Secondary CHWP (SC) 15 HP (520 GF	PM. 60' TDH)		2 EA	\$9,625.00	\$780.00		\$20,810
					SUBTO	OTAL PHASE 3	:	\$119,497
				Line	developed Desig	ın Details - 30%		\$35,849
				One		Overhead - 15%		\$23,302
						tor Profit - 10%		\$17,865
				Admir	stration and En			\$11,552
						TOTAL COST		\$208,065
					PROBAB	LE COST USE	<u>_</u>	\$208,000
				TOTAL	- OPTION B (AL	_L 3 PHASES)	:	\$1,751,000
					,	,		, , , , , , , , , , , , , , , , , , , ,

Computed by									
Comparison by Mark Library Date Library Date	Stanley Consultants ac.				00				
Checked by	Computed by Kylo Johnson	Data 12 Dag 12	Subject		tor Study				
Page						Ruildina			
Distribution Outside the Building - OPTION A						Juliuling			
Description Outside the Building - OPTION A PhASE	Ph		Qı	•	, ,-		Unit Cost		
Distribution Quiside the Building - OPTION A PHASE 12° Direct Buried AWWA Pipe 1025 LF \$13.69 \$16.89 \$30.58 \$31.345 Phase 20° Direct Buried AWWA Pipe 20° DF \$11.85 \$15.25 \$27.10 \$7.046 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.60 \$15.50 \$40.00 \$40.00 Promet Buried AWWA Pipe 20° LF \$26.40 \$20.91 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried Walve 20° LA \$26.00 \$15.00 \$39.40 \$7.08 Promet Buried Walve 20° LA \$26.00 \$15.00 \$39.40 \$7.00 \$1.00 Promet Buried Walve 20° LA \$26.00 \$1.00 \$1.00 \$1.00 Promet Buried Walve 20° LA \$26.00 \$1.00 \$1.00 \$1.00 Promet Buried Walve 20° LA \$26.00 \$1.00 \$1.00 \$1.00 Promet Buried Walve 20° LA \$26.00 \$1.00 \$1.00 \$1.00 \$1.00 Promet Buried Walve 20° LA \$2.00 \$2.00 \$1.00 \$1.00 \$1.00 Promet Buried Walve 20° LA \$2.00 \$2.00 \$1.00 \$1.00 \$1.00 Promet Buried Walve 20° LA \$2.00 \$2.00 \$2.00 \$1.00	Item Descripti	on	No. of Unit	LION	Moto	riol	Labor	Total Unit Cost	Total Cost
PHASE	E		No. of Unit	UOIV	i Mate	riai	Labor	Total Unit Cost	
8**Direct Buried AWWA Pipe** 1620 LF		PTION A							
8' Direct Buried AWWA Pipe 1620 LF	12" Direct Buried AWWA Pipe		1025	LF	\$	13.69	\$16.89	\$30.58	\$31,345
4* Direct Buried AWWA Pipe 240 LF 98.54 st 313.52 \$20.06 \$8.1814 1**Z*12**AWWA Tee	8" Direct Buried AWWA Pipe		260	LF	\$	11.85	\$15.25	\$27.10	\$7,046
12*12* AWWA Tee	6" Direct Buried AWWA Pipe		1620	LF	\$	10.64	\$14.27	\$24.91	\$40,354
12-x4 NWNA Tec 2 EA	4" Direct Buried AWWA Pipe		240	LF		\$6.54	\$13.52	\$20.06	\$4,814
8/st AWMA Tee	12"x12" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006
876 MWA Tee	12"x4" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006
81-86* AWWA Tee 2 EA \$40,00 \$154.00 \$394.00 \$788 6* AWWA LR Ebow 8 EA \$76,00 \$58.00 \$314.00 \$10,00 8 EA \$76,00 \$58.00 \$134.00 \$10,00 8 EA \$76,00 8 EA \$76,00 \$10,00 8 EA \$76,00 8 EA \$76	8"x4" AWWA Tee		2	EA	\$2	40.00	\$154.00	\$394.00	\$788
12 AWMA LP Elbow	8"x6" AWWA Tee								
8 EA \$75.00 \$88.00 \$134.00 \$1.072 \$2.094 \$2.00 \$2.094 \$2.00 \$2.000 \$									
8 AWMA Direct Buried Valve 2 EA \$825.00 \$217.00 \$1,042.00 \$2.004 127.97 AWMA Pretucer 2 EA \$475.00 \$10.60 \$4.005 127.97 AWMA Reducer 2 EA \$475.00 \$10.60 \$4.005 197.67 AWMA Reducer 2 EA \$475.00 \$10.60 \$24.46 \$486 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$32.50 \$2.293 \$46.43 \$5.572 47 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$6.00 \$1.60.00 \$8.65.00 \$56.95.0									
12 MWA Direct Burled Valve									
12-x8f XMWA Reducer									
8'Af AWWA Reducer									
6° Sleel Pipe 6° Pipe Insulation with Jacket 40 LF 512-40 56° Pipe Insulation with Jacket 40 LF 512-40 58-80 513-20 578-84 58-81 58-97 578-47 58-99 58-99 58-90 58									
6° Pipe Insulation with Jacket 40 LF \$12.40 \$8.80 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$10 LF \$23.50 \$22.93 \$46.43 \$5.572 \$4° Pipe Insulation with Jacket 120 LF \$3.95 \$8.20 \$16.15 \$1.33 \$7.99 \$10 LF \$17.20 \$19.93 \$37.13 \$5.941 \$7.99 \$10 LF \$3.65 \$1.93 \$37.13 \$5.941 \$1.99 \$1.93 \$37.13 \$5.941 \$1.99 \$1.93 \$37.13 \$5.941 \$1.99 \$1.93 \$37.13 \$5.941 \$1.90 \$1									
4" Sleel Pipe 4" Pipe Insulation with Jacket 120 LF \$23.50 \$22.93 \$46.43 \$5.572 4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1.938 3" Sleel Pipe 160 LF \$17.20 \$19.93 \$37.13 \$5.941 3" Pipe Insulation with Jacket 160 LF \$16.50 \$8.65 \$5.95 \$46.00 \$2.338 AHU (12.5 Tons, 5000 CFM) 1 EA \$26.500.00 \$1.600.00 \$26.100.00 \$26.100.00 AHU (30 Tons, 12000 CFM) 1 EA \$54.500.00 \$2.450.00 \$56.950 AHU (40 Tons, 16000 CFM) 1 EA \$79.500.00 \$2.100.00 \$26.100.00 Secondary CHWP (CF) To HP (450 GPM, 60' TDH) 1 EA \$7.900.00 \$20.00 \$5.50.00 Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.600 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.600 \$1.899.00 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.800 \$1.000 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.800 \$1.000 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.800	-								
4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1,938 \$1.50 \$10 LF \$17.20 \$19.30 \$3.71.31 \$5.941 \$10 LF \$1.50 \$19.30 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.30 \$1.30 \$1.30 \$2.450.00 \$2.450.00 \$2.250.00 \$2.250.00 \$2.250.00 \$1.30									
3" Stele Pipe 3" Stele Pipe 3" Pipe Insulation with Jacket 180 LF \$8.65 \$5.55 \$5.55 \$14.60 \$2.338 AHU (12.5 Tons, 5000 CFM) 1 EA \$6.6500.00 \$1.600.00 \$22,100.00 \$22,									
10 F									
AHU (12 5 Tons, 5000 CFM) 1 EA \$26,500.00 \$1,600.00 \$28,100.00 \$28,100 AHU (30 Tons, 12000 CFM) 1 EA \$35,500.00 \$2,450.00 \$56,950.00	3" Steel Pipe		160	LF	\$	17.20	\$19.93	\$37.13	\$5,941
AHU (30 Tons, 12000 CFM) AHU (30 Tons, 15000 CFM) 1 EA \$45,500.00 \$2,450.00 \$56,950.00 \$2,600.	3" Pipe Insulation with Jacket		160	LF		\$8.65	\$5.95	\$14.60	\$2,336
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00	AHU (12.5 Tons, 5000 CFM)		1	EA	\$26,5	00.00	\$1,600.00	\$28,100.00	\$28,100
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00			1	EA					
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)	AHU (40 Tons, 16000 CFM)		1	EA					
Secondary CHWP (CF) 7.5 HP (312.5 GPM. 60' TDH)		PM 60' TDH)							
Secondary CHWP (Theater) 7.5 IHP (206.25 GPM, 60' TDH)									
Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)									
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH) 1 EA									
SUBTOTAL PHASE 1									
Undeveloped Design Details - 30%	Secondary CHWP (SH) 2 HP (50 GPM	. 60' TDH)	1	EA	\$1,6	85.00	\$214.00	\$1,899.00	\$1,899
Contractor Overhead - 15%					:	SUBTOT	AL PHASE 1		\$309,014
Contractor Profit - 10% Adminstration and Engineering - 15% \$76,226					Undeveloped	Design I	Details - 30%		\$92,704
Adminstration and Engineering - 15% \$76,226 TOTAL COST \$584,399 PROBABLE COST USE \$584,000 PROBABLE COST USE \$584,000 PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 "Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1.084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1.006 \$8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4.013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60" TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$7.594 Contractor Overhead - 15% Contractor Overhead - 15% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					Contr	actor Ove	erhead - 15%		\$60,258
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 \$30.68 \$10.00 \$					C	Contracto	r Profit - 10%		\$46,198
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% F0244 TOTAL COST \$447,873				А	dminstration a	ind Engin	eering - 15%		\$76,226
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60" TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% FOTAL COST TOTAL COST \$47,873						Т	OTAL COST		\$584,399
12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"X8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"X8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873					PR	OBABLE	COST USE	_	\$584,000
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	PHASE 2								
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	12" Direct Buried AWWA Pinc		10	l E	ď	13.60	¢16 00	¢20 E0	¢20c
12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873									
12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$25,314 \$100.00 \$100								·	
8" Steel Pipe									
8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 \$									
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$4,936 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244									
SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873	Secondary CHWP (ST) 10 HP (362.5 G	GPM. 60' TDH)	2	EA	\$7,9	00.00	\$620.00	\$8,520.00	\$17,040
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					:	SUBTOT	AL PHASE 2		\$25,314
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					Undeveloped	Design I	Details - 30%		\$7 504
Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
				А					
PROBABLE COST USE \$48.000						Т	OTAL COST		\$47,873
					PR	OBABLE	COST USE		\$48,000

			Job No.	24482-01-00				
Stanley Consultants :	c		Subject	RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	,	Chilled Water	Study			
Checked by		Date			tside the Building	g		
Approved by	•	Date		Option B - Ph				
	Item Description	on	C	Quantity		Unit Cost		Total Cost
DUMOE 0		-	No. of Unit	UOM	Material	Labor	Total Unit Cost	
PHASE 3								
8" Direct Buried AV 8" AWWA Reducer 8" Steel Pipe 8" Pipe Insulation v	VWA Pipe		2800) LF	\$11.85	\$15.25	\$27.10	\$75,880
8" AWWA Reducer	r) EA	\$234.00	\$10.60		\$2,446
8" Steel Pipe) LF	\$55.50	\$44.82		\$4,013
8" Pipe Insulation v	vith Jacket) LF	\$14.80	\$7.55		\$894
Secondary CHWP	(SC) 15 HP (520 GP	M. 60' TDH)	2	2 EA	\$9,625.00	\$780.00	\$10,405.00	\$20,810
					SUBTO	OTAL PHASE 3		\$104,043
				Un	developed Desig			\$31,213
						Overhead - 15% ctor Profit - 10%		\$20,288 \$15,554
				Admi	nstration and En			\$25,665
						TOTAL COST		\$196,763
					PROBAB	LE COST USE	_	\$197,000
				TOTAL	- OPTION A (AI	L 3 PHASES):		\$829,000

Appendix E

Life Cycle Cost Analysis

Prepared By:

J. J. Bovenkamp

Chilled Water Plant Comparison Analysis Input & Results Summary

				Date:	12-Dec-2012
Variable Cost Inputs					
Demand Charge-Summer		Energy Charge - Summer		On/Off Peak Split	
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	On-Peak	70%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261	Off-Peak	30%
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
				Summer/Winter Split	
Demand Charge-Winter		Energy Charge - Winter		Summer	70%
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	Winter	30%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261		
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
Variable Cost Rates		Fuel Cost (at Central Plant)			
Purchased Steam Rate (per klb)	\$17.64	Natural Gas (Per MMBtu)	\$7.20	NOT USED	
Purchased CHW Rate (per ton-hr)	\$0.000	Other Stm Costs (Per MMBtu)	\$1.80	NOT USED	
Water Rate (per 1,000 Gal)	\$0.93				
Sewage Rate (per 1,000 Gal)	\$3.30				
Miscellaneous Cost (% of energy cost)	0.0%				

PV Calculation Inputs		Load Profile Inputs		Steam Conditions	
Period (years)		Elec Demand Transformer			
renou (years)	25	Losses	5%	Steam Inlet Pressure (psig)	50.0
Discount Data	4.00/	Auxiliaries Electrical Demand			
Discount Rate	4.0%	(kW/ton)	0.01	Steam Inlet Temperature (°F)	400.0
nterest Rate	1.0%	Peak Make-up Water (gpm)	300	Steam Exhaust Pressure (psig)	-13.2
/ariable Cost Escalation	3.0%	Peak Sewage (gpm)	50	Steam Exhaust Temperature (°F)	115.69
D&M Cost Escalation	2.0%	·		Condensate Pressure (psig)	0.0
Capital Cost Escalation	4.0%			Condensate Temperature (°F)	115.69
•				Condensate Enthalpy (Btu/lb)	83.00
Note: Additional Input on the PV Analysis	Page	Note: Additional Input on the Load F	rofile Case Pages	1, ()	

Case	Description	Temperatures	Chilled Water Source
Case 1	Central plant with constant speed chiller	42 °F Supply, 12 °F ΔT	Self Generated
Case 2	Central Plant with magnetic bearing variable speed chiller	42 °F Supply, 12 °F ∆T	Self Generated
Case 3	Central Plant with absorption chillers	42 °F Supply, 12 °F ∆T	Self Generated
Case 4	not used		Purchased

St Luke's Hospital Building Chillers vs. Central Chiller Plant Present Value Results Summary

	Case 1	Case 2	Case 3	Case 4
25-year Present Value (\$)	\$16,829,609	\$16,573,690	\$23,886,953	\$0
Average Calculated CHW Cost (\$/ton-hr)	\$0.11	\$0.11	\$0.29	#DIV/0!

Present Value Analysis

Prepared By: J. J. Bovenkamp Date: 12-Dec-2012

Assumptions

·	c	Case 1	Case 2 Central Plant with magnetic bearing	Case 3 Central Plai	Case 4			
		ith constant	variable speed					
	s	peed chiller	chiller	chillers	not used	Financing Information		
Peak Cooling Load (tons)		1,500	1,500				CHW System	Distribution System
Annual Consumption (ton-hrs)		4,744,226	4,744,226		26	Percent Financed	0%	
Total Energy Usage (KWh)		3,300,287	2,857,558			Equity Percent	100%	100%
Total Energy Usage (klbs)		0	C	38,	133	Loan Period (years)	₹	5
						Interest Rate	1.0%	
Water Usage (gal)		17,857,020	17,857,020	17,857,0	20	Capital Recovery Factor (CRF)	0.2060398	0.2060398
Water Rate (per 1,000 Gal)	\$	0.93	\$ 0.93	\$ 0.	93 \$ 0.			
						Replacement System Percent Financed	0%	
Sewage Usage (gal)		2,976,170	2,976,170			Replacement System Equity Percent	100%	100%
Sewage Rate (per 1,000 Gal)	\$	3.30	\$ 3.30	\$ 3.	30 \$ 3.	Replacement System Loan Period (years)	₹	5
						Replacement System Interest Rate	1.0%	
Miscellaneous Cost (% of energy cost)		0.0%	0.0%	0.	0% 0.	Replacement System Capital Recovery Factor (CRF)	0.2060398	0.2060398
Annual Maintenance Cost		\$0	\$0		\$0	Other Information		
Number of Operators		0	0		0	Period (years)	25	
Operator Salary		\$0	\$0		\$0	Discount Rate	4.0%	
CHW System Capital Cost (\$)	\$	7,975,425	\$ 8,219,325	\$ 2,840,0	00 \$ -			
CHW Equipment Life (years)		25	25	5	25	Escalation	2.24	
D'. 1. 1	•	000 000			00 0	Variable Cost Escalation	3.0%	
Distribution System Cost (\$)	\$	829,000	\$ 829,000		00 \$ -	O&M Cost Escalation	2.0%	
Distribution System Life (years)		50	50	J	50	Capital Cost Escalation	4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Comparison of Cooling System Costs

Comparison of Cooling System	CUSIS																					
Case 1 - Central plant with con	stant speed	l chiller:				4	2 °F Supply, 12 °F	DT														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment (Equity)	\$	7,975,425	- \$	- \$	- \$	- 9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		9	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		9	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		\$	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment		9	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		\$	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service		\$	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost		\$	347,641 \$	358,070 \$	368,812 \$	379,876	391,273 \$	403,011 \$	415,101 \$	427,554 \$	440,381 \$	453,592 \$	467,200 \$	481,216 \$	495,652 \$	510,522	525,838 \$	541,613 \$	557,861 \$	574,597 \$	591,835 \$	609,590
Water Cost		\$	16,518 \$	17,013 \$	17,524 \$	18,049	18,591 \$	19,149 \$	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost		9	9,821 \$	10,116 \$	10,419 \$	10,732	11,054 \$	11,386 \$	11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs		9	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- 9	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost		9	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- 9	5 - \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost	_	3	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- 9	- 9	- \$	- \$	- \$	- \$	
Total Annual Costs	\$	8,804,425			396,755 \$	408,658	420,918 \$	433,545 \$	446,551 \$	459,948 \$	473,746 \$	487,959 \$	502,598 \$	517,675 \$	533,206 \$	549,202	565,678	582,648 \$, .	618,132 \$	636,675 \$	655,776
Calculated CHW Cost (per ton-hr)		*	0.08 \$	0.08 \$	0.08 \$	0.09	0.09 \$	0.09 \$	0.09 \$	0.10 \$	0.10 \$	0.10 \$	0.11 \$	0.11 \$	0.11 \$	0.12 \$	0.12 \$	0.12 \$	0.13 \$	0.13 \$	0.13 \$	0.14
25-year Present Value Cost	\$	16,829,609																				
25-year Present Value Cost Case 2 - Central Plant with mag			ed chiller:			4	2 °F Supply, 12 °F	DT														
•			eed chiller: 1	2	3	4 4	2 °F Supply, 12 °F 5	DT 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
•	netic beari		eed chiller: 1 5 - \$	2 - \$	3 - \$	4 4 - \$	2 °F Supply, 12 °F 5 5 - \$	DT 6 - \$	7 - \$	8 - \$	9 - \$	10 - \$	11 - \$	12 - \$	13 - \$	14	15 5 - \$	16	17	18 - \$	1 9 - \$	20
Case 2 - Central Plant with mag	netic beari	ng variable spe 0	eed chiller: 1 5 - \$	2 - \$ - \$	3 - \$ - \$	4 4 - \$	2 °F Supply, 12 °F 5 5 - \$ 5 - \$	DT 6 - \$ - \$	7 - \$ - \$	8 - \$ - \$	9 - \$ - \$	10 - \$ - \$	11 - \$ - \$	12 - \$ - \$	13 - \$ - \$	14 ; - \$; - \$	15 5 - \$ 5 - \$	16 5 - \$ 5 - \$	17 : - \$: - \$	18 - \$ - \$	19 - \$ - \$	20 - -
Case 2 - Central Plant with mag	netic beari	ng variable spe 0	eed chiller: 1 5 - \$ 5 - \$	2 - \$ - \$ - \$	3 - \$ - \$ - \$	4 4 - 9 - 9	2 °F Supply, 12 °F 5 5 - \$ 6 - \$ 6 - \$	DT 6 - \$ - \$ - \$ - \$ - \$	7 - \$ - \$ - \$	8 - \$ - \$ - \$	9 - \$ - \$ - \$	10 - \$ - \$ - \$	11 - \$ - \$ - \$	12 - \$ - \$ - \$	13 - \$ - \$ - \$	14 5 - 9 6 - 9	15 6 - \$ 6 - \$	16 6 - \$ 6 - \$	17 ; - \$; - \$; - \$	18 - \$ - \$	19 - \$ - \$ - \$	20 - - -
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service	netic beari	ng variable spe 0 8,219,325	1 5 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$	3 - \$ - \$ - \$	4 4 - 9 - 9 - 9	2 °F Supply, 12 °F 5	DT 6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	7 - \$ - \$ - \$	8 - \$ - \$ - \$	9 - \$ - \$ - \$	10 - \$ - \$ - \$	11 - \$ - \$ - \$ - \$	12 - \$ - \$ - \$	13 - \$ - \$ - \$	14 5 - 9 6 - 9 6 - 9	15 6 - \$ 6 - \$ 6 - \$	16 6 - \$ 6 - \$ 6 - \$	17 : - \$: - \$: - \$	18 - \$ - \$ - \$ - \$	19 - \$ - \$ - \$	20
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment	netic beari	ng variable spe 0	1 5 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$	4 - 9 - 9	2 °F Supply, 12 °F 5 6 - \$ 6 - \$ 6 - \$ 6 - \$	DT 6 . \$. \$ \$ \$ \$	7 - \$ - \$ - \$ - \$ - \$	8 - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	10 - \$ - \$ - \$ - \$ - \$	11 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	12 - \$ - \$ - \$ - \$	13 - \$ - \$ - \$ - \$ - \$	14 ; - 9 ; - 9 ; - 9	15 6 - \$ 6 - \$ 6 - \$	16 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	18 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	20 - - - - -
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment	netic beari	ng variable spe 0 8,219,325	1 5 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$ - \$ - \$	3 - \$ - \$ - \$ - \$ - \$	4 - \$ - \$ - \$	2 °F Supply, 12 °F 5 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	DT 6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7 - \$ - \$ - \$ - \$ - \$	8 - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	10 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	11 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	12 - \$ - \$ - \$ - \$ - \$	13 - \$ - \$ - \$ - \$ - \$	14 : - 9 : - 9 : - 9	15 6 - \$ 6 - \$ 6 - \$ 6 - \$	16 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	17 : - \$: - \$: - \$: - \$: - \$	18 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Case 2 - Central Plant with mage Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment	netic beari	ng variable spe 0 8,219,325	1 5 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$	4 - \$ - \$ - \$ - \$	2 °F Supply, 12 °F	DT 6	7 - \$ - \$ - \$ - \$ - \$ - \$	8 - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	10 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	11 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	12 - \$ - \$ - \$ - \$ - \$	13 - \$ - \$ - \$ - \$ - \$ - \$	14 - \$	15 5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	16 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	17 - \$ \$	18 - \$ - \$ - \$ - \$ - \$ - \$	19 - \$ - \$ - \$ - \$ - \$ - \$	20
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service	netic beari	ng variable spe 0 8,219,325	1	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	4 - 8 - 8 - 8 - 8 - 8 - 8	5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	6	7 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$			- \$ \$ 6 - \$ \$ 6 - \$ \$ 6 - \$ \$ 6 - \$ \$ 6 6 - \$ \$ 6 6 - \$ \$ 6 6 - \$ \$ 6 6 6 - \$ \$ 6 6 6 6		18 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- - - - - - - - - - - - - - - - - - -	·
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost	netic beari	ng variable spe 0 8,219,325	1 5 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$ 344,102	4 - \$ - \$ - \$ - \$ - \$ - \$	5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ 398,908	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	10 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$	14 - \$	- 9966 - 9966 - 99666 - 99666	- \$ \$ \$ 6 - \$ \$ 6 - \$ \$ 6 6 - \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	18 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 552,182 \$	- - - - - - - 568,747
Case 2 - Central Plant with mage Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost	netic beari	ng variable spe 0 8,219,325	1	334,079 \$ 17,013 \$	17,524 \$	4 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	5 - \$ 6 - \$ 7 - \$	6	19,723 \$	20,315 \$	20,924 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 22,198 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	5 - \$ 5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 5 - \$ 7	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 552,182 \$ 28,120 \$	- - - - - - 568,747 28,964
Plant Capital Investment Plant Principal Payment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost	netic beari	ng variable spe 0 8,219,325	1	334,079 \$	- , - •	4 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 7 - \$	6	, +		- / +	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 435,898 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ 462,444 \$		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	5 - \$ 5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 5 505,325 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	536,099 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 552,182 \$	- - - - - - - 568,747
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs	netic beari	ng variable spe 0 8,219,325	1	334,079 \$ 17,013 \$	17,524 \$	4 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	5 - \$ 6 - \$ 7 - \$	6	19,723 \$	20,315 \$	20,924 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 22,198 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	5 - \$ 5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 5 - \$ 7	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 552,182 \$ 28,120 \$	- - - - - - 568,747 28,964
Case 2 - Central Plant with mage Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	netic beari	ng variable spe 0 8,219,325	1	334,079 \$ 17,013 \$ 10,116 \$	17,524 \$	4 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	5 - \$ 6 - \$ 7 - \$	6	19,723 \$ 11,727 \$	20,315 \$ 12,079 \$	20,924 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 22,198 \$ 13,199 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ 5 - \$ 5	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 552,182 \$ 28,120 \$	- - - - - - 568,747 28,964
Case 2 - Central Plant with mage Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost Annual Operations Cost	netic beari	ng variable spe 0 8,219,325	1	334,079 \$ 17,013 \$ 10,116 \$ - \$	17,524 \$ 10,419 \$ - \$	4 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	5 - \$ 6 - \$ 7 - \$	6 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19,723 \$ 11,727 \$ - \$	20,315 \$ 12,079 \$ - \$	20,924 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 5 - 5	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- - - - - - 568,747 28,964 17,222 - -
Case 2 - Central Plant with mage Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	netic beari	ng variable spe 0 8,219,325 829,000 3	1	334,079 \$ 17,013 \$ 10,116 \$ - \$	17,524 \$ 10,419 \$ - \$	4 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	5 - \$ 6 - \$ 7 - \$	6	19,723 \$ 11,727 \$ - \$	20,315 \$ 12,079 \$ - \$	20,924 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- - - - - 568,747 28,964 17,222

Stanley Consultants Printed: 12/14/2012

\$ 16,573,690

25-year Present Value Cost

Present Value Analysis

J. J. Bovenkamp Prepared By: Date: 12-Dec-2012

Assumptions

		Case 1	Case 2 Central Plan	+	Case 3	Case 4		
			with magnet					
	С	entral plant	bearing		Central Plant			
			variable spec	d w	ith absorption			
	s	peed chiller	chiller		chillers	not used	Financing Information	
Peak Cooling Load (tons)		1,500	1,50	00	1,500	1,500	CHW System Distrib	oution System
Annual Consumption (ton-hrs)		4,744,226	4,744,22	26	4,744,226	0	Percent Financed 0%	0%
Total Energy Usage (KWh)		3,300,287	2,857,55	8	1,314,505	0	Equity Percent 100%	100%
Total Energy Usage (klbs)		0		0	38,133		Loan Period (years) 5	5
							Interest Rate 1.0%	1.0%
Water Usage (gal)		17,857,020	17,857,02	20	17,857,020	0	Capital Recovery Factor (CRF) 0.2060398	0.2060398
Water Rate (per 1,000 Gal)	\$	0.93	\$ 0.9	93 \$	0.93	\$ 0.93		
							Replacement System Percent Financed 0%	0%
Sewage Usage (gal)		2,976,170	2,976,17		2,976,170	0	Replacement System Equity Percent 100%	100%
Sewage Rate (per 1,000 Gal)	\$	3.30	\$ 3.3	30 \$	3.30	\$ 3.30	Replacement System Loan Period (years) 5	5
							Replacement System Interest Rate 1.0%	1.0%
Miscellaneous Cost (% of energy cost)		0.0%	0.0)%	0.0%	0.0%	Replacement System Capital Recovery Factor (CRF) 0.2060398	0.2060398
Annual Maintenance Cost		\$0	\$	80	\$0	\$0	Other Information	
Number of Operators		0		0	0	4	Period (years) 25	
Operator Salary		\$0	\$	80	\$0	\$0	Discount Rate 4.0%	
CHW System Capital Cost (\$)	\$	7,975,425	\$ 8,219,32	25 \$	2,840,000	\$ -		
CHW Equipment Life (years)		25		25	25	25	Escalation	
							Variable Cost Escalation 3.0%	
Distribution System Cost (\$)	\$	829,000	\$ 829,00	00 \$	829,000		O&M Cost Escalation 2.0%	
Distribution System Life (years)		50		50	50	50	Capital Cost Escalation 4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

System Costs

Case 3 - Central Plant with absor	rption chille	ers:				42	°F Supply, 12 °F	DT														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	2,840,000 \$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000 \$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- :	5 - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost		\$	915,833 \$	943,308 \$	971,607 \$	1,000,756 \$	1,030,778 \$	1,061,702	1,093,553 \$	1,126,359 \$	1,160,150 \$	1,194,954 \$	1,230,803 \$	1,267,727 \$	1,305,759 \$	1,344,932 \$	1,385,280 \$	1,426,838 \$	1,469,643 \$	1,513,733 \$	1,559,145 \$	1,605,919
Water Cost		\$	16,518 \$	17,013 \$	17,524 \$	18,049 \$	18,591 \$	19,149	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost		\$	9,821 \$	10,116 \$	10,419 \$	10,732 \$	11,054 \$	11,386	\$ 11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423 \$	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs		\$	- \$	- \$	- \$	- \$	- \$	- :	5 - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	
Total Annual Costs	\$	3,669,000 \$	942,172 \$	970,437 \$	999,551 \$	1,029,537 \$	1,060,423 \$	1,092,236	1,125,003 \$	1,158,753 \$	1,193,516 \$		1,266,201 \$	1,304,187 \$	1,343,312 \$	1,383,612 \$	1,425,120 \$	1,467,874 \$	1,511,910 \$	1,557,267 \$	1,603,985 \$	1,652,105
Calculated CHW Cost (per ton-hr)		\$	0.20 \$	0.20 \$	0.21 \$	0.22 \$	0.22 \$	0.23	0.24 \$	0.24 \$	0.25 \$	0.26 \$	0.27 \$	0.27 \$	0.28 \$	0.29 \$	0.30 \$	0.31 \$	0.32 \$	0.33 \$	0.34 \$	0.35
25-year Present Value Cost	\$	23,886,953																				
Case 4 - not used:							0															
	Year:	0	1	2	3	4	5	6	. 7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	- \$	- \$	- \$	- \$	- \$	- \$	- :	5 - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- :	5 - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service	_	\$	- \$	- \$	- \$	- \$	- \$	- :	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	- \$	- \$	- \$	- \$	- \$	- \$	- :	5 - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- 5	5 - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service		\$	- \$	- \$	- \$	- \$	- \$	-	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost		\$	- \$	- \$	- \$	- \$	- \$	-	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Water Cost		\$	- \$	- \$	- \$	- \$	- \$	-	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Sewage Cost		\$	- \$	- \$	- \$	- \$	- \$	- 3	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Misc Variable Costs		\$	- \$	- \$	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost		\$	- \$	- \$	- \$	- \$	- \$	- 3	5 - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost		_\$	- \$	- \$	- \$	- \$	- \$	- 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	
Total Annual Costs Calculated CHW Cost (per ton-hr)	\$	- \$	5 - \$ #DIV/0!	- \$ #DIV/0!	- \$ #DIV/0!	- \$ #DIV/0!	- \$ #DIV/0!	#DIV/0!	\$ - \$ #DIV/0!	- \$ #DIV/0!	- \$ #DIV/0!	; - \$ #DIV/0!	- \$ #DIV/0!	; - \$ #DIV/0!	#DIV/0!							

25-year Present Value Cost

Capital Cost Calculation

	et (Pefer to Detailed Cost Estimate for Break	, Down)						
	t (Refer to Detailed Cost Estimate for Break							
Case 1	Central plant with constant speed chille	er						
42 °F Suppl	ly, 12 % DI							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$6,810,000	\$	6,810,000	85.4%
	Phase 2		i	ls	\$600,000	\$	600,000	7.5%
	Phase 3		1	ls	\$600,000	\$	600,000	7.5%
	Rebate		1	ls	(\$34,575)	\$	(34,575)	
	riebate	Total		15	(ψυ4,υ7υ)	φ \$	7,975,425	100%
		Total				φ	7,975,425	100 /6
Capital Cos	st (Refer to Detailed Cost Estimate for Break	(Down)						
Case 2	Central Plant with magnetic bearing va							
42 °F Suppl	ly, 12 °F DT	-						
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		Quantity	ls		ф	6,920,000	84.2%
	Phase 2		1	ls	\$6,920,000 \$710,000	\$ \$	710,000	8.6%
	Phase 3		1	ls	\$710,000	φ \$	710,000	8.6%
			1					
	Rebate	Tatal	ı	ls	(\$120,675)	\$	(120,675)	
		Total				\$	8,219,325	101%
Capital Cos	st (Refer to Detailed Cost Estimate for Break	(Down)						
Case 3	Central Plant with absorption chillers							
42 °F Suppl	ly, 12 °F DT							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$780,000	\$	780,000	27.5%
	Phase 2		1	ls	\$1,030,000	\$	1,030,000	36.3%
	Phase 3		1	ls	\$1,030,000	\$	1,030,000	36.3%
	i ilase s			15	φ1,030,000	\$	1,030,000	30.3 /6
		Total				φ \$	2,840,000	100%
						· .		
	st (Refer to Detailed Cost Estimate for Break	(Down)						
Case 4	not used							
0								
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Chillers		1	ea	\$0	\$	-	#DIV/0!
	Chilled water pumps		1	ea	\$0	\$	-	#DIV/0!
	AHU Coils		1	ea	\$0	\$	-	#DIV/0!
								"" "
		Total				\$	-	#DIV/0!

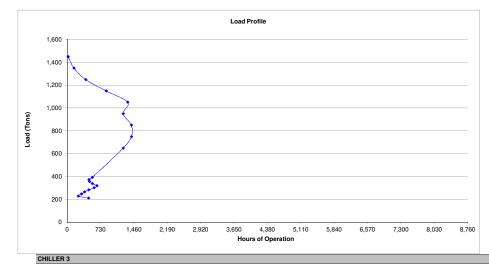
Stanley Consultants Printed: 12/14/2012

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			=

	LOAD SUMMARY													
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)						
95=>99	1,449	14	4	6,712	0	11,592	69,552	11,592						
90=>94	1,350	14	25	37,598	0	67,500	405,000	67,500						
85=>89	1,248	12	68	90,635	0	169,728	1,018,368	169,728						
80=>84	1,149	11	143	168,644	0	327,465	1,964,790	327,465						
75=>79	1,050	11	221	233,906	0	464,100	2,784,600	464,100						
70=>74	950	10	204	296,028	0	582,350	2,329,400	388,233						
65=>69	850	9	234	289,598	0	596,700	2,386,800	397,800						
60=>64	748	7	235	242,934	0	526,592	2,106,368	351,061						
55=>59	648	6	205	174,003	0	397,872	1,591,488	265,248						
50=>54	391	4	92	91,009	0	215,832	431,664	71,944						
45=>49	372	4	80	70,889	0	177,816	355,632	59,272						
40=>44	354	4	81	67,695	0	172,398	344,796	57,466						
35=>39	336	3	92	72,643	0	185,472	370,944	61,824						
30=>34	318	3	109	81,539	0	207,654	415,308	69,218						
25=>29	300	3	99	69,797	0	177,300	354,600	59,100						
20=>24	282	3	79	53,134	0	133,950	267,900	44,650						
15=>19	264	3	63	40,089	0	100,056	200,112	33,352						
10=>14	245	2	52	31,262	0	76,685	153,370	25,562						
5=>9	227	2	40	22,889	0	54,934	109,868	18,311						
0=>4	209	2	78	42,108	0	98,230	196,460	32,743						
Total/Avg				2,183,112	0	4,744,226	17,857,020	2,976,170						


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	391	0.420	164	552	90,649	0	0.0	0.0	215,832
45=>49	372	0.397	148	478	70,593	0	0.0	0.0	177,816
40=>44	354	0.391	138	487	67,408	0	0.0	0.0	172,398
35=>39	336	0.390	131	552	72,334	0	0.0	0.0	185,472
30=>34	318	0.391	124	653	81,193	0	0.0	0.0	207,654
25=>29	300	0.392	118	591	69,502	0	0.0	0.0	177,300
20=>24	282	0.395	111	475	52,910	0	0.0	0.0	133,950
15=>19	264	0.399	105	379	39,922	0	0.0	0.0	100,056
10=>14	245	0.406	99	313	31,134	0	0.0	0.0	76,685
5=>9	227	0.415	94	242	22,798	0	0.0	0.0	54,934
0=>4	209	0.427	89	470	41,944	0	0.0	0.0	98,230
otal/Avg		0.433	3,195	8,746	1,315,594	0.000	0.0	0.0	2,998,879

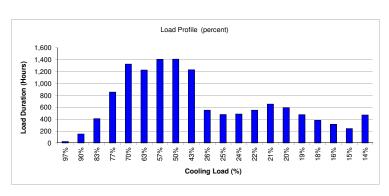
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.480	1,872	3,554	675,207		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	Ö
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.510	921	921	177,431		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0


Load Profile
Case 1 Central plant with constant speed chiller

PEAK ELECTRICAL DEMAND (including transformer losses)											
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
December	60->64	180	180	0	n	n	n	68	41	68	537

CHILLER LOAD PROFILE									
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load	
95=>99	483	483	483	0	0	0	1,449	97%	
90=>94	450	450	450	0	0	0	1,350	909	
85=>89	416	416	416	0	0	0	1,248	839	
80=>84	383	383	383	0	0	0	1,149	779	
75=>79	350	350	350	0	0	0	1,050	709	
70=>74	475	475	0	0	0	0	950	639	
65=>69	425	425	0	0	0	0	850	579	
60=>64	374	374	0	0	0	0	748	509	
55=>59	324	324	0	0	0	0	648	439	
50=>54	391	0	0	0	0	0	391	269	
45=>49	372	0	0	0	0	0	372	259	
40=>44	354	0	0	0	0	0	354	249	
35=>39	336	0	0	0	0	0	336	229	
30=>34	318	0	0	0	0	0	318	219	
25=>29	300	Ō	0	0	0	0	300	209	
20=>24	282	0	0	0	0	0	282	199	
15=>19	264	0	0	0	0	0	264	189	
10=>14	245	Ō	0	0	0	0	245	169	
5=>9	227	0	0	0	0	0	227	159	
0=>4	209	Ō	0	0	0	0	209	149	
Peak	483	483	483	0	0	0	1,449		

		CHILLER	EFFICIENCY (E	LECTRIC)		
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.574	0.574	0.574	0.000	0.000	0.000
90=>94	0.552	0.552	0.552	0.000	0.000	0.000
85=>89	0.529	0.529	0.529	0.000	0.000	0.000
80=>84	0.510	0.510	0.510	0.000	0.000	0.000
75=>79	0.499	0.499	0.499	0.000	0.000	0.000
70=>74	0.505	0.505	0.000	0.000	0.000	0.000
65=>69	0.482	0.482	0.000	0.000	0.000	0.000
60=>64	0.458	0.458	0.000	0.000	0.000	0.000
55=>59	0.434	0.434	0.000	0.000	0.000	0.000
50=>54	0.420	0.000	0.000	0.000	0.000	0.000
45=>49	0.397	0.000	0.000	0.000	0.000	0.000
40=>44	0.391	0.000	0.000	0.000	0.000	0.000
35=>39	0.390	0.000	0.000	0.000	0.000	0.000
30=>34	0.391	0.000	0.000	0.000	0.000	0.000
25=>29	0.392	0.000	0.000	0.000	0.000	0.000
20=>24	0.395	0.000	0.000	0.000	0.000	0.000
15=>19	0.399	0.000	0.000	0.000	0.000	0.000
10=>14	0.406	0.000	0.000	0.000	0.000	0.000
5=>9	0.415	0.000	0.000	0.000	0.000	0.000
0=>4	0.427	0.000	0.000	0.000	0.000	0.000
Average	0.433	0.480	0.510	0.000	0.000	0.000

		Cł	HILLER OPERA	TIONAL HOUR	S		
Temperature Bin (°F)	Chiller 1 Operational Hours	Chiller 2 Operational Hours	Chiller 3 Operational Hours	Chiller 4 Operational Hours	Chiller 5 Operational Hours	Chiller 6 Operational Hours	Cumulative Operationa Hours
95=>99	8	8	8	0	0	0	24
90=>94	50	50	50	o o	ō	ō	150
85=>89	136	136	136	Ö	ō	ō	408
80=>84	285	285	285	0	0	0	855
75=>79	442	442	442	Ö	ō	ō	1,326
70=>74	613	613	0	0	0	0	1,226
65=>69	702	702	ō	Ö	ō	ō	1.404
60=>64	704	704	0	0	0	0	1,408
55=>59	614	614	0	0	0	0	1.228
50=>54	552	0	0	0	0	0	552
45=>49	478	0	0	0	0	0	478
40=>44	487	0	0	0	0	0	487
35=>39	552	0	0	0	0	0	552
30=>34	653	0	0	0	0	0	653
25=>29	591	0	0	0	0	0	591
20=>24	475	0	0	0	0	0	475
15=>19	379	0	0	0	0	0	379
10=>14	313	0	0	0	0	0	313
5=>9	242	0	0	0	0	0	242
0=>4	470	0	0	0	0	0	470
Total	8,746	3,554	921	0	0	0	

CHILLER EFFICIENCY (STEAM)								
Tammanatura Din	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6 Demand (lb/ton)		
Temperature Bin	Demand	Demand	Demand	Demand	Demand			
(°F)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)			
95=>99	0.000	0.000	0.000	0.000	0.000	0.000		
90=>94	0.000	0.000	0.000	0.000	0.000	0.000		
85=>89	0.000	0.000	0.000	0.000	0.000	0.000		
80=>84	0.000	0.000	0.000	0.000	0.000	0.000		
75=>79	0.000	0.000	0.000	0.000	0.000	0.000		
70=>74	0.000	0.000	0.000	0.000	0.000	0.000		
65=>69	0.000	0.000	0.000	0.000	0.000	0.000		
60=>64	0.000	0.000	0.000	0.000	0.000	0.000		
55=>59	0.000	0.000	0.000	0.000	0.000	0.000		
50=>54	0.000	0.000	0.000	0.000	0.000	0.000		
45=>49	0.000	0.000	0.000	0.000	0.000	0.000		
40=>44	0.000	0.000	0.000	0.000	0.000	0.000		
35=>39	0.000	0.000	0.000	0.000	0.000	0.000		
30=>34	0.000	0.000	0.000	0.000	0.000	0.000		
25=>29	0.000	0.000	0.000	0.000	0.000	0.000		
20=>24	0.000	0.000	0.000	0.000	0.000	0.000		
15=>19	0.000	0.000	0.000	0.000	0.000	0.000		
10=>14	0.000	0.000	0.000	0.000	0.000	0.000		
5=>9	0.000	0.000	0.000	0.000	0.000	0.000		
0=>4	0.000	0.000	0.000	0.000	0.000	0.000		
Average	0.000	0.000	0.000	0.000	0.000	0.000		

Stanley Consultants 24482 | RCTC Chilled Water Study E-7

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data						
Pump	Horsepower	Efficiency	Switch Poi			
PCHWP 1	39.96	92%				
PCHWP 2	39.96	92%				
PCHWP 3	39.96	92%				
PCHWP 4	0	92%				
PCHWP 5	0	92%				
PCHWP 6	0	92%				

PCHWP Demand (kW)							
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	ō	ō	ō	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

PCHWP Energy Usage (kWh)							
Temperature Bin (°F)	PCHWP 1 Energy Usage (kWh)	PCHWP 2 Energy Usage (kWh)	PCHWP 3 Energy Usage (kWh)	PCHWP 4 Energy Usage (kWh)	PCHWP 5 Energy Usage (kWh)	PCHWP 6 Energy Usage (kWh)	Total PCHWP Energy Usage (kWh)
95=>99	259	259	259	0	0	, , ,	778
90=>94	1,620	1,620	1,620	0	0	0	4,860
85=>89	4,406	4,406	4,406	0	0	0	13,219
80=>84	9,234	9,234	9,234	0	0	0	27,702
75=>79	14,321	14,321	14,321	0	0	0	42,962
70=>74	19,861	19,861	0	0	0	0	39,722
65=>69	22,745	22,745	0	0	0	0	45,490
60=>64	22,810	22,810	0	0	0	0	45,619
55=>59	19,894	19,894	0	0	0	0	39,787
50=>54	17,885	0	0	0	0	0	17,885
45=>49	15,487	0	0	0	0	0	15,487
40=>44	15,779	0	0	0	0	0	15,779
35=>39	17,885	0	0	0	0	0	17,885
30=>34	21,157	0	0	0	0	0	21,157
25=>29	19,148	0	0	0	0	0	19,148
20=>24	15,390	0	0	0	0	0	15,390
15=>19	12,280	0	0	0	0	0	12,280
10=>14	10,141	0	0	0	0	0	10,141
5=>9	7,841	0	0	0	0	0	7,841
0=>4	15,228	0	0	0	0	0	15,228
otal/Avg	283,370	115,150	29,840	0	0	0	428,360

Condenser Water Pump (CWP)

CWP Energy Data						
Pump	Horsepower	Efficiency	Switch Point			
CWP 1	24.35	92%	1			
CWP 2	24.35	92%	1			
CWP3	24.35	92%	1			
CWP 4	0	92%	1			
CWP 5	0	92%	1			
CWP 6	0	92%	1			

Temperature	CWP 1	CWP 2	CWP 3	CWP 4	CWP 5	CWP 6	Total CWP
Bin	Demand						
(°F)	(kW)						
95=>99	20	20	20	0	0	0	5
90=>94	20	20	20	0	0	0	5
85=>89	20	20	20	0	0	0	5
80=>84	20	20	20	0	0	0	5
75=>79	20	20	20	0	0	0	5
70=>74	20	20	0	0	0	0	3
65=>69	20	20	0	0	0	0	3
60=>64	20	20	0	0	0	0	3
55=>59	20	20	0	0	0	0	3
50=>54	20	0	0	0	0	0	2
45=>49	20	0	0	0	0	0	2
40=>44	20	0	0	0	0	0	2
35=>39	20	0	0	0	0	0	2
30=>34	20	0	0	0	0	0	2
25=>29	20	0	0	0	0	0	2
20=>24	20	0	0	0	0	0	2
15=>19	20	0	0	0	0	0	2
10=>14	20	0	0	0	0	0	2
5=>9	20	0	0	0	0	0	2
0=>4	20	0	0	0	0	0	2
otal/Avg	394	177	99	0	0	0	67

CWP Energy Usage (kWh)							
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	158	158	158	0	0	0	473
90=>94	985	985	985	0	0	0	2,955
85=>89	2,679	2,679	2,679	0	0	0	8,038
80=>84	5,615	5,615	5,615	0	0	0	16,844
75=>79	8,707	8,707	8,707	0	0	0	26,122
70=>74	12,076	12,076	0	0	0	0	24,152
65=>69	13,829	13,829	0	0	0	0	27,659
60=>64	13,869	13,869	0	0	0	0	27,738
55=>59	12,096	12,096	0	0	0	0	24,192
50=>54	10,874	0	0	0	0	0	10,874
45=>49	9,417	0	0	0	0	0	9,417
40=>44	9,594	0	0	0	0	0	9,594
35=>39	10,874	0	0	0	0	0	10,874
30=>34	12,864	0	0	0	0	0	12,864
25=>29	11,643	0	0	0	0	0	11,643
20=>24	9,358	0	0	0	0	0	9,358
15=>19	7,466	0	0	0	0	0	7,466
10=>14	6,166	0	0	0	0	0	6,166
5=>9	4,767	0	0	0	0	0	4,767
0=>4	9,259	0	0	0	0	0	9,259
Total/Avg	172,296	70,014	18,144	0	0	0	260,454

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data							
Pump	Horsepower	Efficiency	Switch Point				
CT 1	40	92%	1				
CT 2	40	92%	1				
CT 3	40	92%	1				
CT 4	0	92%	1				
CT 5	0	92%	1				
CT 6	0	92%	1				

	Cooling Tower Demand (kW)						
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	0	0	0	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

Cooling Tower Energy Usage (kWh)							
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)
95=>99	259	259	259	0	0	0	778
90=>94	1,620	1,620	1,620	0	0	0	4,860
85=>89	4,406	4,406	4,406	0	0	0	13,219
80=>84	9,234	9,234	9,234	0	0	0	27,702
75=>79	14,321	14,321	14,321	0	0	0	42,962
70=>74	19,861	19,861	0	0	0	0	39,722
65=>69	22,745	22,745	0	0	0	0	45,490
60=>64	22,810	22,810	0	0	0	0	45,619
55=>59	19,894	19,894	0	0	0	0	39,787
50=>54	17,885	0	0	0	0	0	17,885
45=>49	15,487	0	0	0	0	0	15,487
40=>44	15,779	0	0	0	0	0	15,779
35=>39	17,885	0	0	0	0	0	17,885
30=>34	21,157	0	0	0	0	0	21,157
25=>29	19,148	0	0	0	0	0	19,148
20=>24	15,390	0	0	0	0	0	15,390
15=>19	12,280	0	0	0	0	0	12,280
10=>14	10,141	0	0	0	0	0	10,141
5=>9	7,841	0	0	0	0	0	7,841
0=>4	15,228	0	0	0	0	0	15,228
Total/Avg	283,370	115,150	29,840	0	0	0	428,360

Air Handling Unit (AHU)

AHU Supply Fan Energy Data						
Coil Pressure drop	0					
Other Pressure drop	0					
Typical Airflow rate	0 cfm					
Fan Efficiency	70%					
Supply Horsepower	0.0					
# of fans	1					
Efficiency	92%					
Contrate District	000/					

Cooling	Cooling Tower Demand (kW)				
Temperature Bin (°F)	Percent Load	AHU Demand (kW)			
95=>99	97%	0			
90=>94	90%	0			
85=>89	83%	0			
80=>84	77%	0			
75=>79	70%	0			
70=>74	63%	0			
65=>69	57%	0			
60=>64	50%	0			
55=>59	43%	0			
50=>54	26%	0			
45=>49	25%	0			
40=>44	24%	0			
35=>39	22%	0			
30=>34	21%	0			
25=>29	20%	0			
20=>24	19%	0			
15=>19	18%	0			
10=>14	16%	0			
5=>9	15%	0			
0=>4	14%	0			
Total/Avg		0			

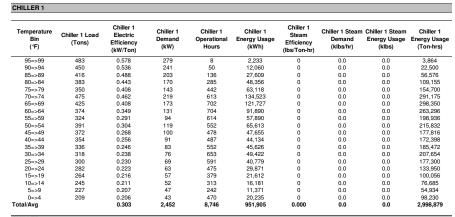
AHU Energy Usage (kWh)						
Temperature Bin (°F)	AHU Energy Usage (kWh)					
95=>99	0					
90=>94	0					
85=>89	0					
80=>84	0					
75=>79	0					
70=>74	0					
65=>69	0					
60=>64	0					
55=>59	0					
50=>54	0					
45=>49	0					
40=>44	0					
35=>39	0					
30=>34	0					
25=>29	0					
20=>24	0					
15=>19	0					
10=>14	0					
5=>9	0					
0=>4	0					
Total/Avg	0					

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Variable Cost

Case 1 Central plant with constant speed chiller

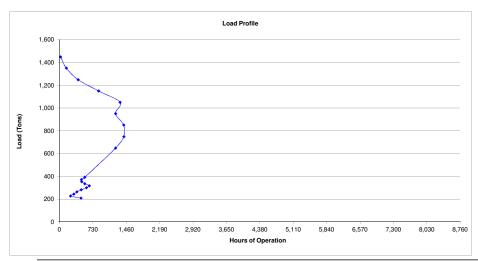
Input Data Summary													
5 0 1 11 11	Demand Charge-S			Energy Charge -			Chilled Water S	ource		Self Generated			
Energy Charge Multiplier 1.00	First 200-kW Next 800-kW	\$16.46 \$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Purchased Stea	m Data (may kib		£17.64	Per kLB		
1.00	Over 1000 kW	\$16.46		Energy Cost Adj	\$0.00000		Purchased CHV				Per Ton-hr		
								-	,				
	Demand Charge-V			Energy Charge -			Water Rate (per				Per 1000 Gal		
	First 200-kW	\$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Sewage Rate (p				Per 1000 Gal		
	Next 800-kW Over 1000 kW	\$16.46 \$16.46		Energy Cost Adj	\$0.0000		Miscellaneous (Cost (% of energ	ly cost)	0%	of Energy Cost		
	Over 1000 kw	ψ10.40		Lifelgy Cost Auj	ψ0.00000		Natural Gas			\$7.20	Per MMbtu	NOT USED	
	On/Off Peak Split			Summer/Winter S	Split		Other Stm Cost	ts			Per MMbtu	NOT USED	
	On Peak	70%		Summer	70%								
Variable Cost Calculation	Off Peak	30%		Winter	30%								
variable Cost Calculation	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs	•				•		•						
CHW Usage (Ton-Hrs)													4,744,226
,												4%	
Purchased CHW Cost													\$0
Steam Usage													
Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage													
Chiller Energy Usage (kWh):													2,183,112
Chilled Water Pump Energy Usage (kWh):													428,360
Condenser Water Pump Energy Usage (kWh):													260,454
Cooling Tower Energy Usage (kWh):													428,360
AHU Supply Fan Energy Usage (kWh):													0
Total Energy Usage													3,300,287
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh													2,310,201
Off Peak Energy Usage - kWh													990,086
													3,300,287
Demand Charge	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013
On Peak Energy Cost	φ1,103	φ0,043	Φ11,214	φ15,794	φ17,204	\$10,759	φ10,759	φ10,739	φ10,759	\$15,754	\$13,439	φο,043	\$121,540
Off Peak Energy Cost													\$52,088
EECR & AEP Cost													\$0
Electricity Cost													\$347,641
Total Energy Cost													\$347,641
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cost)													\$0
-													
Other Variable Costs													\$26,339


Stanley Consultants Printed: 12/14/2012

Load Profile Case 1 Central plant with constant speed chiller

General Assumptions				
Transformer Losses	5%		Peak Make-up Water:	300 gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50 gpm
Peak Cooling Load	1,500	tons		

			L	OAD SUMMARY	1			
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	6,758	0	11,592	69,552	11,592
90=>94	1,350	14	25	36,518	0	67,500	405,000	67,500
85=>89	1,248	12	68	83,676	0	169,728	1,018,368	169,728
80=>84	1,149	11	143	146,704	0	327,465	1,964,790	327,465
75=>79	1,050	11	221	191,673	0	464,100	2,784,600	464,100
70=>74	950	10	204	270,987	0	582,350	2,329,400	388,233
65=>69	850	9	234	245,443	0	596,700	2,386,800	397,800
60=>64	748	7	235	185,536	0	526,592	2,106,368	351,061
55=>59	648	6	205	117,107	0	397,872	1,591,488	265,248
50=>54	391	4	92	65,973	0	215,832	431,664	71,944
45=>49	372	4	80	47,951	0	177,816	355,632	59,272
40=>44	354	4	81	44,421	0	172,398	344,796	57,466
35=>39	336	3	92	45,935	0	185,472	370,944	61,824
30=>34	318	3	109	49,768	0	207,654	415,308	69,218
25=>29	300	3	99	41,075	0	177,300	354,600	59,100
20=>24	282	3	79	30,094	0	133,950	267,900	44,650
15=>19	264	3	63	21,779	0	100,056	200,112	33,352
10=>14	245	2	52	16,308	0	76,685	153,370	25,562
5=>9	227	2	40	11,463	0	54,934	109,868	18,311
0=>4	209	2	78	20,399	0	98,230	196,460	32,743
Total/Avg				1,679,567	0	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

CHILLER 4									
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
			_	_	_				_

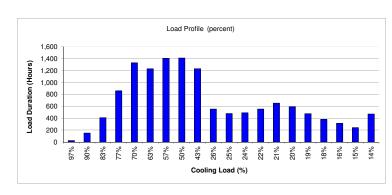
Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	475	0.462	219	613	134,523	0	0.0	0.0	291,175
65=>69	425	0.408	173	702	121,727	0	0.0	0.0	298,350
60=>64	374	0.349	131	704	91,890	0	0.0	0.0	263,296
55=>59	324	0.291	94	614	57,890	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.393	1,654	3,554	559,406		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.439	921	921	153,376		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Load Profile
Case 1 Central plant with constant speed chiller


				PEAK ELECTRI	CAL DEMAND	(including tran	sformer losses	;)			
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
D	00 04	400	400					00		00	507

			CHILL	ER LOAD PRO	FILE			
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load
95=>99	483	483	483	0	0	0	1,449	97%
90=>94	450	450	450	0	0	0	1,350	90%
85=>89	416	416	416	0	0	0	1,248	83%
80=>84	383	383	383	0	0	0	1,149	77%
75=>79	350	350	350	0	0	0	1,050	70%
70=>74	475	475	0	0	0	0	950	63%
65=>69	425	425	0	0	0	0	850	579
60=>64	374	374	0	0	0	0	748	509
55=>59	324	324	0	0	0	0	648	439
50=>54	391	0	0	0	0	0	391	269
45=>49	372	0	0	0	0	0	372	259
40=>44	354	0	0	0	0	0	354	249
35=>39	336	0	0	0	0	0	336	229
30=>34	318	0	0	0	0	0	318	219
25=>29	300	0	0	0	0	0	300	209
20=>24	282	0	0	0	0	0	282	199
15=>19	264	0	0	0	0	0	264	189
10=>14	245	0	0	0	0	0	245	169
5=>9	227	0	0	0	0	0	227	159
0=>4	209	0	0	0	0	0	209	149
Peak	483	483	483	0	0	0	1,449	

		CHILLER	EFFICIENCY (E	LECTRIC)		
Temperature Bin	Chiller 1 Demand	Chiller 2 Efficiency	Chiller 3 Efficiency	Chiller 4 Efficiency	Chiller 5 Efficiency	Chiller 6 Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.578	0.578	0.578	0.000	0.000	0.000
90=>94	0.536	0.536	0.536	0.000	0.000	0.000
85=>89	0.488	0.488	0.488	0.000	0.000	0.000
80=>84	0.443	0.443	0.443	0.000	0.000	0.000
75=>79	0.408	0.408	0.408	0.000	0.000	0.000
70=>74	0.462	0.462	0.000	0.000	0.000	0.000
65=>69	0.408	0.408	0.000	0.000	0.000	0.000
60=>64	0.349	0.349	0.000	0.000	0.000	0.000
55=>59	0.291	0.291	0.000	0.000	0.000	0.000
50=>54	0.304	0.000	0.000	0.000	0.000	0.000
45=>49	0.268	0.000	0.000	0.000	0.000	0.000
40=>44	0.256	0.000	0.000	0.000	0.000	0.000
35=>39	0.246	0.000	0.000	0.000	0.000	0.000
30=>34	0.238	0.000	0.000	0.000	0.000	0.000
25=>29	0.230	0.000	0.000	0.000	0.000	0.000
20=>24	0.223	0.000	0.000	0.000	0.000	0.000
15=>19	0.216	0.000	0.000	0.000	0.000	0.000
10=>14	0.211	0.000	0.000	0.000	0.000	0.000
5=>9	0.207	0.000	0.000	0.000	0.000	0.000
0=>4	0.206	0.000	0.000	0.000	0.000	0.000
Average	0.303	0.393	0.439	0.000	0.000	0.000

(°F)	Demand (lb/ton)	Demand (lb/ton)	Demand (lb/ton)	Demand (lb/ton)	Demand (lb/ton)	(lb/ton)
95=>99	0.000	0.000	0.000	0.000	0.000	0.000
90=>94	0.000	0.000	0.000	0.000	0.000	0.000
85=>89	0.000	0.000	0.000	0.000	0.000	0.000
80=>84	0.000	0.000	0.000	0.000	0.000	0.000
75=>79	0.000	0.000	0.000	0.000	0.000	0.000
70=>74	0.000	0.000	0.000	0.000	0.000	0.000
65=>69	0.000	0.000	0.000	0.000	0.000	0.000
60=>64	0.000	0.000	0.000	0.000	0.000	0.000
55=>59	0.000	0.000	0.000	0.000	0.000	0.000
50=>54	0.000	0.000	0.000	0.000	0.000	0.000
45=>49	0.000	0.000	0.000	0.000	0.000	0.000
40=>44	0.000	0.000	0.000	0.000	0.000	0.000
35=>39	0.000	0.000	0.000	0.000	0.000	0.000
30=>34	0.000	0.000	0.000	0.000	0.000	0.000
25=>29	0.000	0.000	0.000	0.000	0.000	0.000
20=>24	0.000	0.000	0.000	0.000	0.000	0.000
15=>19	0.000	0.000	0.000	0.000	0.000	0.000
10=>14	0.000	0.000	0.000	0.000	0.000	0.000
5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0=>4	0.000	0.000	0.000	0.000	0.000	0.000
Average	0.000	0.000	0.000	0.000	0.000	0.000

CHILLER OPERATIONAL HOURS								
Temperature Bin (°F)	Chiller 1 Operational Hours	Chiller 2 Operational Hours	Chiller 3 Operational Hours	Chiller 4 Operational Hours	Chiller 5 Operational Hours	Chiller 6 Operational Hours	Cumulative Operational Hours	
95=>99	8	8	8	0	0	0	24	
90=>94	50	50	50	0	0	0	150	
85=>89	136	136	136	0	0	0	408	
80=>84	285	285	285	0	0	0	855	
75=>79	442	442	442	0	0	0	1,326	
70=>74	613	613	0	0	0	0	1,226	
65=>69	702	702	0	0	0	0	1,404	
60=>64	704	704	0	0	0	0	1,408	
55=>59	614	614	0	0	0	0	1,228	
50=>54	552	0	0	0	0	0	552	
45=>49	478	0	0	0	0	0	478	
40=>44	487	0	0	0	0	0	487	
35=>39	552	0	0	0	0	0	552	
30=>34	653	0	0	0	0	0	653	
25=>29	591	0	0	0	0	0	591	
20=>24	475	0	0	0	0	0	475	
15=>19	379	0	0	0	0	0	379	
10=>14	313	0	0	0	0	0	313	
5=>9	242	0	0	0	0	0	242	
0=>4	470	0	0	0	0	0	470	
Total	8,746	3,554	921	0	0	0		

24482 | RCTC Chilled Water Study E-12 Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data								
Pump	Horsepower	Efficiency	Switch Point					
PCHWP 1	41.23	92%	1					
PCHWP 2	41.23	92%	1					
PCHWP 3	41.23	92%	1					
PCHWP 4	0	92%	1					
PCHWP 5	0	92%	1					
PCHWP 6	0	92%	1					

PCHWP Demand (kW)							
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	33	33	33	0	0	0	100
90=>94	33	33	33	0	0	0	100
85=>89	33	33	33	0	0	0	100
80=>84	33	33	33	0	0	0	100
75=>79	33	33	33	0	0	0	100
70=>74	33	33	0	0	0	0	67
65=>69	33	33	0	0	0	0	67
60=>64	33	33	0	0	0	0	67
55=>59	33	33	0	0	0	0	67
50=>54	33	0	0	0	0	0	33
45=>49	33	0	0	0	0	0	33
40=>44	33	0	0	0	0	0	33
35=>39	33	0	0	0	0	0	33
30=>34	33	0	0	0	0	0	33
25=>29	33	0	0	0	0	0	33
20=>24	33	0	0	0	0	0	33
15=>19	33	0	0	0	0	0	33
10=>14	33	0	0	0	0	0	33
5=>9	33	0	0	0	0	0	33
0=>4	33	0	0	0	0	0	33
Total/Avg	668	301	167	0	0	0	1,136

			PCHWP Energ	y Usage (kWh)			
Temperature	PCHWP 1	PCHWP 2	PCHWP 3	PCHWP 4	PCHWP 5	PCHWP 6	Total PCHWP
Bin (°F)	Energy Usage (kWh)						
95=>99	267	267	267	0	0	0	802
90=>94	1,670	1,670	1,670	0	0	0	5,010
85=>89	4,542	4,542	4,542	0	0	0	13,627
80=>84	9,519	9,519	9,519	0	0	0	28,557
75=>79	14,763	14,763	14,763	0	0	0	44,288
70=>74	20,474	20,474	. 0	0	0	0	40,948
65=>69	23,447	23,447	0	0	0	0	46,894
60=>64	23,514	23,514	0	0	0	0	47,027
55=>59	20,508	20,508	0	0	0	0	41,015
50=>54	18,437	0	0	0	0	0	18,437
45=>49	15,965	0	0	0	0	0	15,965
40=>44	16,266	0	0	0	0	0	16,266
35=>39	18,437	0	0	0	0	0	18,437
30=>34	21,810	0	0	0	0	0	21,810
25=>29	19,739	0	0	0	0	0	19,739
20=>24	15,865	0	0	0	0	0	15,865
15=>19	12,659	0	0	0	0	0	12,659
10=>14	10,454	0	0	0	0	0	10,454
5=>9	8,083	0	0	0	0	0	8,083
0=>4	15,698	0	0	0	0	0	15,698
Total/Avg	292,116	118,704	30,761	0	0	0	441,581

Condenser Water Pump (CWP)

CWP Energy Data								
Pump	Horsepower	Efficiency	Switch Point					
CWP 1	28.74	92%	1					
CWP 2	28.74	92%	1					
CWP3	28.74	92%	1					
CWP 4	0	92%	1					
CWP 5	0	92%	1					
CWP 6	0	92%	1					

CWP Demand (kW)							
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)
95=>99	23	23	23	0	0	0	70
90=>94	23	23	23	0	0	0	70
85=>89	23	23	23	0	0	0	70
80=>84	23	23	23	0	0	0	70
75=>79	23	23	23	0	0	0	70
70=>74	23	23	0	0	0	0	47
65=>69	23	23	0	0	0	0	47
60=>64	23	23	0	0	0	0	47
55=>59	23	23	0	0	0	0	47
50=>54	23	0	0	0	0	0	23
45=>49	23	0	0	0	0	0	23
40=>44	23	0	0	0	0	0	23
35=>39	23	0	0	0	0	0	23
30=>34	23	0	0	0	0	0	23
25=>29	23	0	0	0	0	0	23
20=>24	23	0	0	0	0	0	23
15=>19	23	0	0	0	0	0	23
10=>14	23	0	0	0	0	0	23
5=>9	23	0	0	0	0	0	23
0=>4	23	0	0	0	0	0	23
Total/Avg	466	210	117	0	0	0	792

CWP Energy Usage (kWh)							
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	186	186		0	0	0	559
90=>94	1,165	1,165	1,165	0	0	0	3,495
85=>89	3,169	3,169	3,169	0	0	0	9,506
80=>84	6,641	6,641	6,641	0	0	0	19,922
75=>79	10,299	10,299	10,299	0	0	0	30,896
70=>74	14,283	14,283	0	0	0	0	28,566
65=>69	16,357	16,357	0	0	0	0	32,713
60=>64	16,403	16,403	0	0	0	0	32,806
55=>59	14,306	14,306	0	0	0	0	28,612
50=>54	12,862	0	0	0	0	0	12,862
45=>49	11,137	0	0	0	0	0	11,137
40=>44	11,347	0	0	0	0	0	11,347
35=>39	12,862	0	0	0	0	0	12,862
30=>34	15,215	0	0	0	0	0	15,215
25=>29	13,770	0	0	0	0	0	13,770
20=>24	11,068	0	0	0	0	0	11,068
15=>19	8,831	0	0	0	0	0	8,831
10=>14	7,293	0	0	0	0	0	7,293
5=>9	5,639	0	0	0	0	0	5,639
0=>4	10,951	0	0	0	0	0	10,951
Total/Avg	203,782	82,808	21,459	0	0	0	308,049

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data							
Pump	Horsepower	Efficiency	Switch Point				
CT 1	40	92%	1				
CT 2	40	92%	1				
CT 3	40	92%	1				
CT 4	0	92%	1				
CT 5	0	92%	1				
CT 6	0	92%	1				

	Cooling Tower Demand (kW)						
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	0	0	0	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

Cooling Tower Energy Usage (kWh)									
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)		
95=>99	259	259	259	0	0	0	77		
90=>94	1,620	1,620	1,620	0	0	0	4,86		
85=>89	4,406	4,406	4,406	0	0	0	13,21		
80=>84	9,234	9,234	9,234	0	0	0	27,70		
75=>79	14,321	14,321	14,321	0	0	0	42,96		
70=>74	19,861	19,861	0	0	0	0	39,72		
65=>69	22,745	22,745	0	0	0	0	45,49		
60=>64	22,810	22,810	0	0	0	0	45,61		
55=>59	19,894	19,894	0	0	0	0	39,78		
50=>54	17,885	0	0	0	0	0	17,88		
45=>49	15,487	0	0	0	0	0	15,48		
40=>44	15,779	0	0	0	0	0	15,77		
35=>39	17,885	0	0	0	0	0	17,88		
30=>34	21,157	0	0	0	0	0	21,15		
25=>29	19,148	0	0	0	0	0	19,14		
20=>24	15,390	0	0	0	0	0	15,39		
15=>19	12,280	0	0	0	0	0	12,28		
10=>14	10,141	0	0	0	0	0	10,14		
5=>9	7,841	0	0	0	0	0	7,84		
0=>4	15,228	0	0	0	0	0	15,22		
Total/Ava	283 370	115 150	20 840	n	0	0	428 36		

Air Handling Unit (AHU)

AHU Supply Fan Energy Data		
Coil Pressure drop	0	
Other Pressure drop	0	
Typical Airflow rate	0	cfm
Fan Efficiency	70%	
Supply Horsepower	0.0	
# of fans	1	
Efficiency	92%	
Switch Point	30%	

Cooling Tower Demand (kW)						
Temperature Bin (°F)	Percent Load	AHU Demand (kW)				
95=>99	97%	0				
90=>94	90%	0				
85=>89	83%	0				
80=>84	77%	0				
75=>79	70%	0				
70=>74	63%	0				
65=>69	57%	0				
60=>64	50%	0				
55=>59	43%	0				
50=>54	26%	0				
45=>49	25%	0				
40=>44	24%	0				
35=>39	22%	0				
30=>34	21%	0				
25=>29	20%	0				
20=>24	19%	0				
15=>19	18%	0				
10=>14	16%	0				
5=>9	15%	0				
0=>4	14%	0				
Total/Avg		0				

AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Variable Cost

Case 2 Central Plant with magnetic bearing variable speed chiller

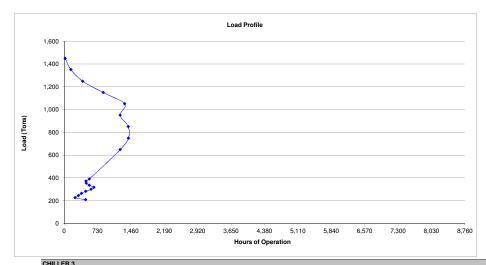
Input Data Summary													
Energy Charge Multiplier 1.00	Demand Charge-S First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000		Purchased Stea				Per kLB Per Ton-hr		
	Demand Charge-W First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000		Water Rate (per Sewage Rate (p Miscellaneous	er 1,000 Gal)	gy cost)	\$3.30 0%	Per 1000 Gal Per 1000 Gal of Energy Cost		
	On/Off Peak Split On Peak	70%		Summer/Winter Summer	70%		Natural Gas Other Stm Cost	ts			Per MMbtu Per MMbtu	NOT USED NOT USED	
Variable Cost Calculation	Off Peak	30%		Winter	30%								
-	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs													
CHW Usage (Ton-Hrs)												4%	4,744,226
Purchased CHW Cost												470	\$0
Steam Usage Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage Chiller Energy Usage (kWh): Chilled Water Pump Energy Usage Condenser Water Pump Energy U Cooling Tower Energy Usage (kW AHU Supply Fan Energy Usage (k	sage (kWh): h):												1,679,567 441,581 308,049 428,360 0
Total Energy Usage													2,857,558
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh Off Peak Energy Usage - kWh													2,000,291 857,267
													2,857,558
Demand Charge On Peak Energy Cost Off Peak Energy Cost EECR & AEP Cost	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013 \$105,235 \$45,101 \$0
Electricity Cost													\$324,349
Total Energy Cost													\$324,349
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cos	t)												\$0
Other Variable Costs													\$26,339

Stanley Consultants Printed: 12/14/2012

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			

Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	58	107	11,592	69,552	11,592
90=>94	1,350	14	25	338	608	67,500	405,000	67,500
85=>89	1,248	12	68	849	1,485	169,728	1,018,368	169,728
80=>84	1,149	11	143	1,637	2,783	327,465	1,964,790	327,465
75=>79	1,050	11	221	2,321	3,857	464,100	2,784,600	464,100
70=>74	950	10	204	1,941	4,978	582,350	2,329,400	388,233
65=>69	850	9	234	1,989	4,935	596,700	2,386,800	397,800
60=>64	748	7	235	1,755	4,204	526,592	2,106,368	351,061
55=>59	648	6	205	1,326	3,069	397,872	1,591,488	265,248
50=>54	391	4	92	360	1,692	215,832	431,664	71,944
45=>49	372	4	80	296	1,371	177,816	355,632	59,272
40=>44	354	4	81	287	1,316	172,398	344,796	57,466
35=>39	336	3	92	309	1,404	185,472	370,944	61,824
30=>34	318	3	109	346	1,561	207,654	415,308	69,218
25=>29	300	3	99	296	1,324	177,300	354,600	59,100
20=>24	282	3	79	223	996	133,950	267,900	44,650
15=>19	264	3	63	167	741	100,056	200,112	33,352
10=>14	245	2	52	128	567	76,685	153,370	25,562
5=>9	227	2	40	92	406	54,934	109,868	18,311
0=>4	209	2	78	164	728	98,230	196,460	32,743
Total/Avg				14,881	38,133	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	391	0.000	0	552	0	8	3.1	1,692.4	215,832
45=>49	372	0.000	0	478	0	8	2.9	1,371.4	177,816
40=>44	354	0.000	0	487	0	8	2.7	1,315.9	172,398
35=>39	336	0.000	0	552	0	8	2.5	1,404.3	185,472
30=>34	318	0.000	0	653	0	8	2.4	1,561.3	207,654
25=>29	300	0.000	0	591	0	7	2.2	1,324.4	177,300
20=>24	282	0.000	0	475	0	7	2.1	995.6	133,950
15=>19	264	0.000	0	379	0	7	2.0	740.9	100,056
10=>14	245	0.000	0	313	0	7	1.8	566.8	76,685
5=>9	227	0.000	0	242	0	7	1.7	406.1	54,934
0=>4	209	0.000	0	470	0	7	1.5	728.0	98,230
otal/Ava		0.000	Ó	8,746	0	7.817	56.3	23,646,7	2.998.879

CHILLER 4									
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
Takal/Assa		#DIV/01		•	•		0.0	0.0	

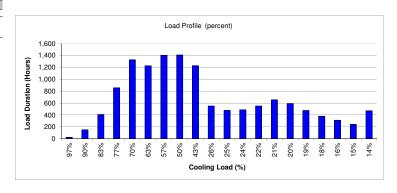
Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.000	0	3,554	0		31.4	11,539.5	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	Ö
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.000	921	921	Ō		18.3	2,946.7	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Load Profile
Case 1 Central plant with constant speed chiller


			i	PEAK ELECTRI	CAL DEMAND	(including tran	sformer losses)			
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
December	60 - 64	100	100	0	0	0	0	60	41	60	E97

Chiller Input

			CHILL	ER LOAD PRO	FILE			
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load
95=>99	483	483	483	0	0	0	1,449	97%
90=>94	450	450	450	0	0	0	1,350	90%
85=>89	416	416	416	0	0	0	1,248	83%
80=>84	383	383	383	0	0	0	1,149	77%
75=>79	350	350	350	0	0	0	1,050	70%
70=>74	475	475	0	0	0	0	950	63%
65=>69	425	425	0	0	0	0	850	579
60=>64	374	374	0	0	0	0	748	50%
55=>59	324	324	0	0	0	0	648	439
50=>54	391	0	0	0	0	0	391	269
45=>49	372	0	0	0	0	0	372	259
40=>44	354	0	0	0	0	0	354	249
35=>39	336	0	0	0	0	0	336	229
30=>34	318	0	0	0	0	0	318	21%
25=>29	300	0	0	0	0	0	300	209
20=>24	282	Ō	Ó	0	0	0	282	199
15=>19	264	0	0	0	0	0	264	189
10=>14	245	0	0	0	0	0	245	169
5=>9	227	Ō	0	0	0	0	227	159
0=>4	209	0	0	0	0	0	209	149
Peak	483	483	483	0	0	0	1,449	

CHILLER EFFICIENCY (ELECTRIC)									
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6			
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency			
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)			
95=>99	0.000	0.000	0.000	0.000	0.000	0.000			
90=>94	0.000	0.000	0.000	0.000	0.000	0.000			
85=>89	0.000	0.000	0.000	0.000	0.000	0.000			
80=>84	0.000	0.000	0.000	0.000	0.000	0.000			
75=>79	0.000	0.000	0.000	0.000	0.000	0.000			
70=>74	0.000	0.000	0.000	0.000	0.000	0.000			
65=>69	0.000	0.000	0.000	0.000	0.000	0.000			
60=>64	0.000	0.000	0.000	0.000	0.000	0.000			
55=>59	0.000	0.000	0.000	0.000	0.000	0.000			
50=>54	0.000	0.000	0.000	0.000	0.000	0.000			
45=>49	0.000	0.000	0.000	0.000	0.000	0.000			
40=>44	0.000	0.000	0.000	0.000	0.000	0.000			
35=>39	0.000	0.000	0.000	0.000	0.000	0.000			
30=>34	0.000	0.000	0.000	0.000	0.000	0.000			
25=>29	0.000	0.000	0.000	0.000	0.000	0.000			
20=>24	0.000	0.000	0.000	0.000	0.000	0.000			
15=>19	0.000	0.000	0.000	0.000	0.000	0.000			
10=>14	0.000	0.000	0.000	0.000	0.000	0.000			
5=>9	0.000	0.000	0.000	0.000	0.000	0.000			
0=>4	0.000	0.000	0.000	0.000	0.000	0.000			
Average	0.000	0.000	0.000	0.000	0.000	0.000			

		01	ED ODEDA	TIONAL LIQUID	•				
CHILLER OPERATIONAL HOURS									
Temperature Bin	Chiller 1 Operational	Chiller 2 Operational	Chiller 3 Operational	Chiller 4 Operational	Chiller 5 Operational	Chiller 6 Operational	Cumulative		
(°F) 95=>99	Hours 8	Hours 8	Hours 8	Hours	Hours	Hours	Hours 24		
90=>94	50	50	50	0	0	0	150		
85=>89	136	136	136	0	0	0	408		
80=>84	285	285	285	0	0	0	855		
75=>79	442	442	442	0	0	0	1,326		
70=>74	613	613	0	0	ů .	0	1,226		
65=>69	702	702	ů .	0	0	0	1,404		
60=>64	704	704	ů .	0	ů .	0	1,408		
55=>59	614	614	0	0	o O	0	1,228		
50=>54	552	0	0	0	0	0	552		
45=>49	478	ō	ō	ō	ō	ō	478		
40=>44	487	0	0	0	0	0	487		
35=>39	552	0	0	Ö	0	0	552		
30=>34	653	0	0	0	0	0	653		
25=>29	591	0	0	0	0	0	591		
20=>24	475	0	0	0	0	0	475		
15=>19	379	0	0	0	0	0	379		
10=>14	313	0	0	0	0	0	313		
5=>9	242	0	0	0	0	0	242		
0=>4	470	0	0	0	0	0	470		
Total	8,746	3,554	921	0	0	0			

CHILLER EFFICIENCY (STEAM)										
Temperature Bin (°F)	Chiller 1 Demand (lb/ton)	Chiller 2 Demand (lb/ton)	Chiller 3 Demand (lb/ton)	Chiller 4 Demand (lb/ton)	Chiller 5 Demand (lb/ton)	Chiller 6 Demand (lb/ton)				
95=>99	9.219	9.219	9.219	0.000	0.000	0.000				
90=>94	9.002	9.002	9.002	0.000	0.000	0.000				
85=>89	8.750	8.750	8.750	0.000	0.000	0.000				
80=>84	8.499	8.499	8.499	0.000	0.000	0.000				
75=>79	8.311	8.311	8.311	0.000	0.000	0.000				
70=>74	8.547	8.547	0.000	0.000	0.000	0.000				
65=>69	8.271	8.271	0.000	0.000	0.000	0.000				
60=>64	7.984	7.984	0.000	0.000	0.000	0.000				
55=>59	7.713	7.713	0.000	0.000	0.000	0.000				
50=>54	7.841	0.000	0.000	0.000	0.000	0.000				
45=>49	7.712	0.000	0.000	0.000	0.000	0.000				
40=>44	7.633	0.000	0.000	0.000	0.000	0.000				
35=>39	7.571	0.000	0.000	0.000	0.000	0.000				
30=>34	7.519	0.000	0.000	0.000	0.000	0.000				
25=>29	7.470	0.000	0.000	0.000	0.000	0.000				
20=>24	7.433	0.000	0.000	0.000	0.000	0.000				
15=>19	7.405	0.000	0.000	0.000	0.000	0.000				
10=>14	7.392	0.000	0.000	0.000	0.000	0.000				
5=>9	7.392	0.000	0.000	0.000	0.000	0.000				
0=>4	7.411	0.000	0.000	0.000	0.000	0.000				
Average	7.817	8.219	8.480	0.000	0.000	0.000				

24482 | RCTC Chilled Water Study E-17 Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data									
Pump	Horsepower	Efficiency	Switch Point						
PCHWP 1	42.6	92%	1						
PCHWP 2	42.6	92%	1						
PCHWP 3	42.6	92%	1						
PCHWP 4	0	92%	1						
PCHWP 5	0	92%	1						
PCHWP 6	0	92%	1						

	PCHWP Demand (kW)							
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)	
95=>99	35	35	35	0	0	0	104	
90=>94	35	35	35	0	0	0	104	
85=>89	35	35	35	0	0	0	104	
80=>84	35	35	35	0	0	0	104	
75=>79	35	35	35	0	0	0	104	
70=>74	35	35	0	0	0	0	69	
65=>69	35	35	0	0	0	0	69	
60=>64	35	35	0	0	0	0	69	
55=>59	35	35	0	0	0	0	69	
50=>54	35	0	0	0	0	0	35	
45=>49	35	0	0	0	0	0	35	
40=>44	35	0	0	0	0	0	35	
35=>39	35	0	0	0	0	0	35	
30=>34	35	0	0	0	0	0	35	
25=>29	35	0	0	0	0	0	35	
20=>24	35	0	0	0	0	0	35	
15=>19	35	0	0	0	0	0	35	
10=>14	35	0	0	0	0	0	35	
5=>9	35	0	0	0	0	0	35	
0=>4	35	0	0	0	0	0	35	
Total/Avg	690	311	173	0	0	0	1,173	

			PCHWP Energ	y Usage (kWh)			
Temperature Bin (°F)	PCHWP 1 Energy Usage (kWh)	PCHWP 2 Energy Usage (kWh)	PCHWP 3 Energy Usage (kWh)	PCHWP 4 Energy Usage (kWh)	PCHWP 5 Energy Usage (kWh)	PCHWP 6 Energy Usage (kWh)	Total PCHWP Energy Usage (kWh)
95=>99	276	276	276	0	0	, , ,	828
90=>94	1,725	1,725	1,725	0	0	0	5,175
85=>89	4,692	4,692	4,692	0	0	0	14,076
80=>84	9,833	9,833	9,833	0	0	0	29,498
75=>79	15,249	15,249	15,249	0	0	0	45,747
70=>74	21,149	21,149	0	0	0	0	42,297
65=>69	24,219	24,219	0	0	0	0	48,438
60=>64	24,288	24,288	0	0	0	0	48,576
55=>59	21,183	21,183	0	0	0	0	42,366
50=>54	19,044	0	0	0	0	0	19,044
45=>49	16,491	0	0	0	0	0	16,491
40=>44	16,802	0	0	0	0	0	16,802
35=>39	19,044	0	0	0	0	0	19,044
30=>34	22,529	0	0	0	0	0	22,529
25=>29	20,390	0	0	0	0	0	20,390
20=>24	16,388	0	0	0	0	0	16,388
15=>19	13,076	0	0	0	0	0	13,076
10=>14	10,799	0	0	0	0	0	10,799
5=>9	8,349	0	0	0	0	0	8,349
0=>4	16,215	0	0	0	0	0	16,215
otal/Ava	301,737	122,613	31,775	0	0	0	456,125

Condenser Water Pump (CWP)

CWP Energy	CWP Energy Data								
Pump	Horsepower	Efficiency	Switch Point						
CWP 1	28.74	92%	1						
CWP 2	28.74	92%	1						
CWP 3	28.74	92%	1						
CWP 4	0	92%	1						
CWP 5	0	92%	1						
CWP 6	0	92%	1						

	CWP Demand (kW)							
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)	
95=>99	23	23	23	0	0	0	70	
90=>94	23	23	23	0	0	0	70	
85=>89	23	23	23	0	0	0	70	
80=>84	23	23	23	0	0	0	70	
75=>79	23	23	23	0	0	0	70	
70=>74	23	23	0	0	0	0	47	
65=>69	23	23	0	0	0	0	47	
60=>64	23	23	0	0	0	0	47	
55=>59	23	23	0	0	0	0	47	
50=>54	23	0	0	0	0	0	23	
45=>49	23	0	0	0	0	0	23	
40=>44	23	0	0	0	0	0	23	
35=>39	23	0	0	0	0	0	23	
30=>34	23	0	0	0	0	0	23	
25=>29	23	0	0	0	0	0	23	
20=>24	23	0	0	0	0	0	23	
15=>19	23	0	0	0	0	0	23	
10=>14	23	0	0	0	0	0	23	
5=>9	23	0	0	0	0	0	23	
0=>4	23	0	0	0	0	0	23	
Total/Avg	466	210	117	0	0	0	792	

			CWP Energy	Usage (kWh)			
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	186	186	186	0	0	0	559
90=>94	1,165	1,165	1,165	0	0	0	3,495
85=>89	3,169	3,169	3,169	0	0	0	9,506
80=>84	6,641	6,641	6,641	0	0	0	19,922
75=>79	10,299	10,299	10,299	0	0	0	30,896
70=>74	14,283	14,283	0	0	0	0	28,566
65=>69	16,357	16,357	0	0	0	0	32,713
60=>64	16,403	16,403	0	0	0	0	32,806
55=>59	14,306	14,306	0	0	0	0	28,612
50=>54	12,862	0	0	0	0	0	12,862
45=>49	11,137	0	0	0	0	0	11,137
40=>44	11,347	0	0	0	0	0	11,347
35=>39	12,862	0	0	0	0	0	12,862
30=>34	15,215	0	0	0	0	0	15,215
25=>29	13,770	0	0	0	0	0	13,770
20=>24	11,068	0	0	0	0	0	11,068
15=>19	8,831	0	0	0	0	0	8,831
10=>14	7,293	0	0	0	0	0	7,293
5=>9	5,639	0	0	0	0	0	5,639
0=>4	10,951	0	0	0	0	0	10,951
Total/Avg	203,782	82,808	21,459	0	0	0	308,049

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tow	Cooling Tower Energy Data										
Pump	Horsepower	Efficiency	Switch Point								
CT 1	50	92%	1								
CT 2	50	92%	1								
CT 3	50	92%	1								
CT 4	0	92%	1								
CT 5	0	92%	1								
CT 6	0	92%	1								

	Cooling Tower Demand (kW)						
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	41	41	41	0	0	0	122
90=>94	41	41	41	0	0	0	122
85=>89	41	41	41	0	0	0	122
80=>84	41	41	41	0	0	0	122
75=>79	41	41	41	0	0	0	122
70=>74	41	41	0	0	0	0	81
65=>69	41	41	0	0	0	0	81
60=>64	41	41	0	0	0	0	81
55=>59	41	41	0	0	0	0	81
50=>54	41	0	0	0	0	0	41
45=>49	41	0	0	0	0	0	41
40=>44	41	0	0	0	0	0	41
35=>39	41	0	0	0	0	0	41
30=>34	41	0	0	0	0	0	41
25=>29	41	0	0	0	0	0	41
20=>24	41	0	0	0	0	0	41
15=>19	41	0	0	0	0	0	41
10=>14	41	0	0	0	0	0	41
5=>9	41	0	0	0	0	0	41
0=>4	41	0	0	0	0	0	41
Total/Avg	810	365	203	0	0	0	1,377

		Co	oling Tower En	ergy Usage (k\	Vh)		
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)
95=>99	324	324	324	0	0	0	97
90=>94	2,025	2,025	2,025	0	0	0	6,07
85=>89	5,508	5,508	5,508	0	0	0	16,52
80=>84	11,543	11,543	11,543	0	0	0	34,628
75=>79	17,901	17,901	17,901	0	0	0	53,700
70=>74	24,827	24,827	0	0	0	0	49,65
65=>69	28,431	28,431	0	0	0	0	56,86
60=>64	28,512	28,512	0	0	0	0	57,024
55=>59	24,867	24,867	0	0	0	0	49,73
50=>54	22,356	0	0	0	0	0	22,35
45=>49	19,359	0	0	0	0	0	19,35
40=>44	19,724	0	0	0	0	0	19,72
35=>39	22,356	0	0	0	0	0	22,350
30=>34	26,447	0	0	0	0	0	26,44
25=>29	23,936	0	0	0	0	0	23,93
20=>24	19,238	0	0	0	0	0	19,23
15=>19	15,350		0	0	0	0	15,350
10=>14	12,677	0	0	0	0	0	12,67
5=>9	9,801	0	0	0	0	0	9,80
0=>4	19,035	0	0	0	0	0	19,03
Total/Ava	354,213	143.937	37.301	0	0	0	535,451

Air Handling Unit (AHU)

AHU Supply Fan Energy Data									
Coil Pressure drop	0								
Other Pressure drop	0								
Typical Airflow rate	0 c	fm							
Fan Efficiency	70%								
Supply Horsepower	0.0								
# of fans	1								
Efficiency	92%								
Curitoh Doint	200/								

Coolin	g Tower Deman	d (kW)
Temperature Bin (°F)	Percent Load	AHU Demand (kW)
95=>99	97%	0
90=>94	90%	0
85=>89	83%	0
80=>84	77%	0
75=>79	70%	0
70=>74	63%	0
65=>69	57%	0
60=>64	50%	0
55=>59	43%	0
50=>54	26%	0
45=>49	25%	0
40=>44	24%	0
35=>39	22%	0
30=>34	21%	0
25=>29	20%	0
20=>24	19%	0
15=>19	18%	0
10=>14	16%	0
5=>9	15%	0
0=>4	14%	0
Total/Avg		0

AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Variable Cost

Case 3 Central Plant with absorption chillers

Input Data Summary													
5 O M III II	Demand Charge-S			Energy Charge -				Self Generated					
Energy Charge Multiplier 1.00	First 200-kW Next 800-kW	\$16.46 \$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Burchasad Star	m Poto (nor kil	•)	¢17.64	Per kLB		
1.00	Next 800-kW \$16.46 Off Peak \$0.05261 Purchased Steam Rate (per klb) Over 1000 kW \$16.46 Energy Cost Adj \$0.00000 Purchased CHW Rate (per ton-hr)									Per Ton-hr			
								-	,				
	Demand Charge-V			Energy Charge -			Water Rate (pe			\$0.93			
	First 200-kW Next 800-kW	\$16.46		On Peak	\$0.05261		Sewage Rate (p				Per 1000 Gal		
	Over 1000 kW	\$16.46 \$16.46		Off Peak Energy Cost Adj	\$0.05261 \$0.00000		Miscellaneous	Cost (% of ener	gy cost)	0%	of Energy Cost		
	Over 1000 kw	φ10.40		Ellergy Cost Auj	φυ.υυυυ		Natural Gas			\$7.20	Per MMbtu	NOT USED	
	On/Off Peak Split			Summer/Winter	Split		Other Stm Cost	ts			Per MMbtu	NOT USED	
	On Peak	70%		Summer	70%								
V : 11 0 : 0 1 1 ::	Off Peak	30%		Winter	30%								
Variable Cost Calculation	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs	- Canada y	. 02. 44. 7	a. o	7.4	,	54.15	v a.,	, tagaot	Coptombol	0010201		200020.	741144
CHW Usage (Ton-Hrs)													4,744,226
Purchased CHW Cost												4%	\$0
Steam Usage Energy Usage (klb):													38,133
Steam Cost													\$672,664
Electricity Usage													44.004
Chiller Energy Usage (kWh):	(LAMIE).												14,881
Chilled Water Pump Energy Usag													456,125 308.049
Condenser Water Pump Energy L Cooling Tower Energy Usage (kW													535,451
AHU Supply Fan Energy Usage (kW													0
Allo Supply I all Ellergy Osage (F	KVVII).												0
Total Energy Usage													1,314,505
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh													920,154
Off Peak Energy Usage - kWh													394,352
													1,314,505
Daniel Obanie	Φ7.700	#0.040	644.044	045.704	#47.004	640.750	#40.7F0	#40.750	040.750	045 704	#40.400	#0.040	0474.040
Demand Charge	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013
On Peak Energy Cost Off Peak Energy Cost													\$48,409 \$20,747
EECR & AEP Cost													\$0,747
Electricity Cost													\$243,169
•													
Total Energy Cost													\$915,833
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cos	st)												\$0
•	•												
Other Variable Costs													\$26,339

Stanley Consultants Printed: 12/14/2012

Prepared By:

J. J. Bovenkamp

Chilled Water Plant Comparison Analysis Input & Results Summary

				Date:	12-Dec-2012
Variable Cost Inputs					
Demand Charge-Summer		Energy Charge - Summer		On/Off Peak Split	
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	On-Peak	70%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261	Off-Peak	30%
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
				Summer/Winter Split	
Demand Charge-Winter		Energy Charge - Winter		Summer	70%
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	Winter	30%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261		
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
Variable Cost Rates		Fuel Cost (at Central Plant)			
Purchased Steam Rate (per klb)	\$17.64	Natural Gas (Per MMBtu)	\$7.20	NOT USED	
Purchased CHW Rate (per ton-hr)	\$0.000	Other Stm Costs (Per MMBtu)	\$1.80	NOT USED	
Water Rate (per 1,000 Gal)	\$0.93				
Sewage Rate (per 1,000 Gal)	\$3.30				
Miscellaneous Cost (% of energy cost)	0.0%				

PV Calculation Inputs		Load Profile Inputs		Steam Conditions	
Period (years)		Elec Demand Transformer			
Tellou (years)	25	Losses	5%	Steam Inlet Pressure (psig)	50.0
scount Rate	8.0%	Auxiliaries Electrical Demand			
Discount hate	8.0%	(kW/ton)	0.01	Steam Inlet Temperature (°F)	400.0
Interest Rate	1.0%	Peak Make-up Water (gpm)	300	Steam Exhaust Pressure (psig)	-13.2
Variable Cost Escalation	3.0%	Peak Sewage (gpm)	50	Steam Exhaust Temperature (°F)	115.69
O&M Cost Escalation	2.0%			Condensate Pressure (psig)	0.0
Capital Cost Escalation	4.0%			Condensate Temperature (°F)	115.69
·				Condensate Enthalpy (Btu/lb)	83.00
Note: Additional Input on the DV Analysis	Beas	Note: Additional Input on the Lead P	rofile Cose Boses		

Cases			
Case	Description	Temperatures	Chilled Water Source
Case 1	Central plant with constant speed chiller	42 °F Supply, 12 °F ∆T	Self Generated
Case 2	Central Plant with magnetic bearing variable speed chiller	42 °F Supply, 12 °F ∆T	Self Generated
Case 3	Central Plant with absorption chillers	42 °F Supply, 12 °F ∆T	Self Generated
Case 4	not used		Purchased

St Luke's Hospital Building Chillers vs. Central Chiller Plant Present Value Results Summary

CentralPlant-PV Case Comparison8%discount Rate.xlsx

	Case 1	Case 2	Case 3	Case 4
25-year Present Value (\$)	\$13,997,290	\$13,917,772	\$16,751,456	\$0
Average Calculated CHW Cost (\$/ton-hr)	\$0.11	\$0.11	\$0.29	#DIV/0!

Stanley Consultants Printed: 12/14/2012

Present Value Analysis

Prepared By: J. J. Bovenkamp
Date: 12-Dec-2012

Assumptions

		Case 1	Case 2 Central Plant with magnetic		se 3	Case 4		
	w	Central plant rith constant speed chiller	bearing variable speed chiller	Centra with abs		not used	Financing Information	
Peak Cooling Load (tons)	_	1,500	1,500		1,500	1,500	CHW System	Distribution System
Annual Consumption (ton-hrs)		4,744,226	4,744,226		744,226	0		0%
Total Energy Usage (KWh)		3,300,287	2,857,558		314,505	0	Equity Percent 100	
Total Energy Usage (klbs)		0	, ,		38,133		Loan Period (years)	5 5
o, o , ,					,			0% 1.0%
Water Usage (gal)		17,857,020	17,857,020	17,	857,020	0	Capital Recovery Factor (CRF) 0.20603	
Water Rate (per 1,000 Gal)	\$	0.93	\$ 0.93	\$	0.93	\$ 0.93		
,							Replacement System Percent Financed	0%
Sewage Usage (gal)		2,976,170	2,976,170	2,	976,170	0	Replacement System Equity Percent 100	0% 100%
Sewage Rate (per 1,000 Gal)	\$	3.30	\$ 3.30	\$	3.30	\$ 3.30	Replacement System Loan Period (years)	5 5
							Replacement System Interest Rate 1.0	0% 1.0%
Miscellaneous Cost (% of energy cost)		0.0%	0.0%	ó	0.0%	0.0%	Replacement System Capital Recovery Factor (CRF) 0.20603	98 0.2060398
Annual Maintenance Cost		\$0	\$0		\$0	\$0	Other Information	
Number of Operators		0	0		0	4	Period (years) 25	
Operator Salary		\$0	\$0		\$0	\$0	Discount Rate 8.0%	
CHW System Capital Cost (\$)	\$	7,975,425	\$ 8,219,325	\$ 2,	840,000	\$ -		
CHW Equipment Life (years)		25	2	5	25	25	Escalation	
							Variable Cost Escalation 3.0%	
Distribution System Cost (\$)	\$	829,000			829,000		O&M Cost Escalation 2.0%	
Distribution System Life (years)		50	50)	50	50	Capital Cost Escalation 4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Case 1 - Central plant with con-	stant speed o	chiller:				42 9	F Supply, 12 °F D	Т														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment (Equity)	\$	7,975,425 \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000 \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost		\$	347,641 \$	358,070 \$	368,812 \$	379,876 \$	391,273 \$	403,011 \$	415,101 \$	427,554 \$	440,381 \$	453,592 \$	467,200 \$	481,216 \$	495,652 \$	510,522 \$	525,838 \$	541,613 \$	557,861 \$	574,597 \$	591,835 \$	609,590
Water Cost		\$	16,518 \$	17,013 \$	17,524 \$	18,049 \$	18,591 \$	19,149 \$	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost		\$	9,821 \$	10,116 \$	10,419 \$	10,732 \$	11,054 \$	11,386 \$	11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423 \$	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Total Annual Costs	\$	8,804,425	373,980 \$	385,199 \$	396,755 \$	408,658 \$	420,918 \$	433,545 \$	446,551 \$	459,948 \$	473,746 \$	487,959 \$	502,598 \$	517,675 \$	533,206 \$	549,202 \$	565,678 \$	582,648 \$	600,128 \$	618,132 \$	636,675 \$	655,776
Calculated CHW Cost (per ton-hr)		\$	0.08 \$	0.08 \$	0.08 \$	0.09 \$	0.09 \$	0.09 \$	0.09 \$	0.10 \$	0.10 \$	0.10 \$	0.11 \$	0.11 \$	0.11 \$	0.12 \$	0.12 \$	0.12 \$	0.13 \$	0.13 \$	0.13 \$	0.14
25-year Present Value Cost	\$	13,997,290																				
Case 2 - Central Plant with mag	netic bearing	g variable spe	ed chiller:			42 9	F Supply, 12 °F D	Т														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	8,219,325 \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000 \$																				
Distribution Principal Payment		029,000 4	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
		029,000 \$	· - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	-
Distribution Principal Payment Distribution Interest Payment		829,000 \$ \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	-
		029,000 \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	Ψ	- \$ - \$ - \$	Ψ	Ψ	- \$ - \$ - \$	Ψ	- \$ - \$ - \$	Ψ	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	¥	-
Distribution Interest Payment		829,000 \$ \$ \$	- \$ - \$ - \$ - \$ - 324,349 \$	- \$ - \$ - \$ - \$ 334,079 \$	- \$ - \$ - \$ - \$ 344,102 \$	Ψ	Ψ	- \$	- \$ - \$ - \$ - \$ 387,289 \$	- \$	- \$	Ψ	- \$	- \$ - \$ - \$ - \$ 448,974 \$	- \$	Ψ	Ψ	- \$ - \$ - \$ - \$ 505,325 \$	Ψ.	- \$ - \$ - \$ - \$ 536,099 \$	- \$	- - - - 568,747
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost		629,000 \$ \$ \$	324,349 \$ 16,518 \$	- \$ - \$ - \$ - \$ 334,079 \$ 17,013 \$	- \$ - \$ - \$ - \$ 344,102 \$ 17,524 \$	- \$ 354,425 \$ 18,049 \$	- \$ 365,057 \$ 18,591 \$	- \$ - \$ 376,009 \$ 19,149 \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$	- \$ - \$	- \$ 423,201 \$ 21,552 \$	- \$ - \$ 435,898 \$ 22,198 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$	- \$ 505,325 \$ 25,734 \$	- \$ 520,484 \$ 26,506 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$	568,747 28,964
Distribution Interest Payment Distribution Debt Service Annual Energy Cost		029,000 \$	324,349 \$, •		- \$ 354,425 \$	- \$ 365,057 \$	- \$ - \$ 376,009 \$, •	- \$ - \$ 398,908 \$	- \$ - \$ 410,875 \$	- \$ 423,201 \$	- \$ - \$ 435,898 \$	448,974 \$	- \$ - \$ 462,444 \$	- \$ 476,317 \$	- \$ 490,607 \$	- \$ 505,325 \$	- \$ 520,484 \$,	- \$ - \$ 552,182 \$	568,747
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost		029,000 3 3 4 4 9	324,349 \$ 16,518 \$	17,013 \$	17,524 \$	- \$ 354,425 \$ 18,049 \$	- \$ 365,057 \$ 18,591 \$	- \$ - \$ 376,009 \$ 19,149 \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$	- \$ - \$ 410,875 \$ 20,924 \$	- \$ 423,201 \$ 21,552 \$	- \$ - \$ 435,898 \$ 22,198 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$	- \$ 505,325 \$ 25,734 \$	- \$ 520,484 \$ 26,506 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$	568,747 28,964
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost		629,000 3 3 4 9 9	324,349 \$ 16,518 \$	17,013 \$	17,524 \$ 10,419 \$	- \$ 354,425 \$ 18,049 \$	- \$ 365,057 \$ 18,591 \$ 11,054 \$	- \$ - \$ 376,009 \$ 19,149 \$ 11,386 \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$ 12,079 \$	- \$ - \$ 410,875 \$ 20,924 \$	- \$ 423,201 \$ 21,552 \$ 12,815 \$	- \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$ 14,003 \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$ 14,856 \$	- \$ 505,325 \$ 25,734 \$ 15,301 \$	- \$ 520,484 \$ 26,506 \$ 15,760 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$	568,747 28,964 17,222
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs		629,000	324,349 \$ 16,518 \$ 9,821 \$ - \$	17,013 \$	17,524 \$ 10,419 \$ - \$	- \$ 354,425 \$ 18,049 \$ 10,732 \$ - \$	- \$ 365,057 \$ 18,591 \$ 11,054 \$	- \$ - \$ 376,009 \$ 19,149 \$ 11,386 \$ - \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$	- \$ - \$ 410,875 \$ 20,924 \$	- \$ 423,201 \$ 21,552 \$ 12,815 \$	- \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$ 14,003 \$ - \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$ 14,856 \$	- \$ 505,325 \$ 25,734 \$ 15,301 \$ - \$	520,484 \$ 26,506 \$ 15,760 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$ - \$	568,747 28,964 17,222
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	\$	9999	324,349 \$ 16,518 \$ 9,821 \$ - \$ - \$ - \$	17,013 \$	17,524 \$ 10,419 \$ - \$ - \$	- \$ 354,425 \$ 18,049 \$ 10,732 \$ - \$	- \$ 365,057 \$ 18,591 \$ 11,054 \$	- \$ - \$ 376,009 \$ 19,149 \$ 11,386 \$ - \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$	- \$ - \$ 410,875 \$ 20,924 \$ 12,441 \$ - \$	- \$ 423,201 \$ 21,552 \$ 12,815 \$ - \$ - \$	- \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$ - \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$ 14,003 \$ - \$	- \$ 476,317 \$ 24,257 \$ 14,423 \$ - \$ - \$	- \$ 490,607 \$ 24,985 \$ 14,856 \$ - \$ - \$	- \$ 505,325 \$ 25,734 \$ 15,301 \$ - \$	- \$ 520,484 \$ 26,506 \$ 15,760 \$ - \$ - \$	27,301 \$ 16,233 \$ - \$ - \$	- \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$ - \$	568,747 28,964 17,222 -

Stanley Consultants Printed: 12/14/2012

CentralPlant-PV Case Comparison8%discount Rate.xlsx

\$ 13,917,772

25-year Present Value Cost

24482 | RCTC Chilled Water Study

E-22

Stanley Consultants

Present Value Analysis

J. J. Bovenkamp Prepared By: Date: 12-Dec-2012

Assumptions

Assumptions									
		Case 1	Ce	Case 2 ntral Plant h magnetic	Case 3		Case 4		
	_	Central plant		bearing	Central Pla	nt			
		ith constant			with absorp				
		peed chiller		chiller	chillers		not used	Financing Information	
Book Cooling Load (topo)	3					500	1,500		ution Custom
Peak Cooling Load (tons)		1,500		1,500			1,500		ution System
Annual Consumption (ton-hrs)		4,744,226		4,744,226	4,744,		0	Percent Financed 0%	0%
Total Energy Usage (KWh)		3,300,287		2,857,558	1,314,		0	Equity Percent 100%	100%
Total Energy Usage (klbs)		0		0	38	,133		Loan Period (years) 5	5
								Interest Rate 1.0%	1.0%
Water Usage (gal)		17,857,020		17,857,020	17,857,	020	0	Capital Recovery Factor (CRF) 0.2060398	0.2060398
Water Rate (per 1,000 Gal)	\$	0.93	\$	0.93	\$ 0	.93	\$ 0.93		
								Replacement System Percent Financed 0%	0%
Sewage Usage (gal)		2,976,170		2,976,170	2,976,	170	0	Replacement System Equity Percent 100%	100%
Sewage Rate (per 1,000 Gal)	\$	3.30		3.30		3.30	3.30	Replacement System Loan Period (years) 5	5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								Replacement System Interest Rate 1.0%	1.0%
Miscellaneous Cost (% of energy cost)		0.0%		0.0%	C	0.0%	0.0%		0.2060398
Annual Maintenance Cost		\$0		\$0		\$0	\$0	Other Information	
Number of Operators		0		0		0	4	Period (years) 25	
Operator Salary		\$0		\$0		\$0	\$0	Discount Rate 8.0%	
Operator Salary		φυ		φυ		φυ	Φ0	Discount nate 0.0%	
CHW System Capital Cost (\$)	\$	7,975,425		-,,	\$ 2,840,				
CHW Equipment Life (years)		25		25		25	25	Escalation	
								Variable Cost Escalation 3.0%	
Distribution System Cost (\$)	\$	829,000	\$	829,000	\$ 829,	000	\$ -	O&M Cost Escalation 2.0%	
Distribution System Life (years)		50		50		50	50	Capital Cost Escalation 4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Comparison of Cooling System Costs

Case 3 - Central Plant with absor							°F Supply, 12 °F I															
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	2,840,000	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost			\$ 915,833 \$	943,308 \$	971,607 \$	1,000,756 \$	1,030,778 \$	1,061,702 \$	1,093,553 \$	1,126,359 \$	1,160,150 \$	1,194,954 \$	1,230,803 \$	1,267,727 \$	1,305,759 \$	1,344,932 \$	1,385,280 \$	1,426,838 \$	1,469,643 \$	1,513,733 \$	1,559,145 \$	1,605,919
Water Cost			\$ 16,518 \$	17,013 \$	17,524 \$	18,049 \$	18,591 \$	19,149 \$	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost			\$ 9,821 \$	10,116 \$	10,419 \$	10,732 \$	11,054 \$	11,386 \$	11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423 \$	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Total Annual Costs	\$	3,669,000	\$ 942,172 \$	970,437 \$	999,551 \$	1,029,537 \$	1,060,423 \$	1,092,236 \$	1,125,003 \$	1,158,753 \$	1,193,516 \$	1,229,321 \$	1,266,201 \$	1,304,187 \$	1,343,312 \$	1,383,612 \$	1,425,120 \$	1,467,874 \$	1,511,910 \$	1,557,267 \$	1,603,985 \$	1,652,105
Total Alliaal Costs	Ψ	0,000,000											0.07 6	0.07 6	0.00					0.00 0	004 6	0.35
Calculated CHW Cost (per ton-hr)	¥	0,000,000	\$ 0.20 \$	0.20 \$	0.21 \$	0.22 \$	0.22 \$	0.23 \$	0.24 \$	0.24 \$	0.25 \$	0.26 \$	0.27 \$	0.27 \$	0.28 \$	0.29 \$	0.30 \$	0.31 \$	0.32 \$	0.33 \$	0.34 \$	0.35
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost	·			0.20 \$	0.21 \$	0.22 \$	0.22 \$	0.23 \$	6 0.24 \$	0.24 \$	0.25 \$	0.26 \$	0.27 \$	0.27 \$	0.28 \$	0.29 \$	0.30 \$	0.31 \$	0.32 \$	0.33 \$	0.34 \$	0.35
Calculated CHW Cost (per ton-hr)	\$			0.20 \$	0.21 \$	0.22 \$	·	0.23 \$	7	0.24 \$	0.25 \$	0.26 \$				0.29 \$			0.32 \$		0.34 \$	
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used:	·	16,751,456		0.20 \$	0.21 \$ 3 - \$	0.22 \$ 4 - \$	·	0.23 \$ 6 - \$	7 5 - \$	0.24 \$ 8 - \$	0.25 \$ 9 - \$		0.27 \$	12	13		0.30 \$ 15 - \$	0.31 \$	·	0.33 \$ 18 - \$		20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment	\$ Year:	16,751,456		0.20 \$ 2 - \$	0.21 \$ 3 - \$ - \$	0.22 \$ 4 - \$ - \$	·	0.23 \$ 6 - \$	7 5 - \$ 6 - \$	0.24 \$ 8 - \$ - \$	9 - \$ - \$								·			
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment	\$ Year:	16,751,456		0.20 \$ 2 - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$	0.22 \$ 4 - \$ - \$	·	0.23 \$ 6 - \$ - \$	7 - \$ - \$ - \$ - \$	0.24 \$ 8 - \$ - \$ - \$	9 - \$ - \$								·			
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$	·	0.23 \$ 6 - \$ - \$ - \$	7 7 7 7 8 - \$ 8 - \$	8 - \$ - \$ - \$	9 - \$ - \$ - \$								·			
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$	·	0.23 \$ 6 - \$ - \$ - \$ - \$	7 7 5 - \$ 5	8 - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$								·		19 - \$ - \$	
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$	·	0.23 \$ 6 - \$ - \$ - \$ - \$	7 7 5 - \$ 5	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	9 - \$ - \$ - \$ - \$								·		19 - \$ - \$	
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	0.23 \$ 6	7 7 S S S S S S S S S S S S S S S S S S	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	9 - \$ - \$ - \$ - \$ - \$ - \$								·		19 - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment	\$ Year:	16,751,456	\$ 0.20 \$ 1	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$	7 7 5 - \$ 5	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	9				13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service	\$ Year:	16,751,456	1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Interest Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Debt Service Annual Energy Cost Water Cost	\$ Year:	16,751,456	1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost	\$ Year:	16,751,456	1	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs	\$ Year:	16,751,456	1 S S S S S S S S S S S S S S S S S S S	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	\$ Year:	16,751,456	1 S - S S - S S - S S - S S - S S S - S S S - S S S - S S S S - S S S S - S S S S - S	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	7	8 - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ -	9 - \$ \$ 6 - \$		111 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ - \$ \$ - \$	14 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	15 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs	\$ Year:	16,751,456	1	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3	4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7 :	8	9		111 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	12 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	13	14 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	15 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	16 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	17	18 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20

25-year Present Value Cost

Capital Cost Calculation

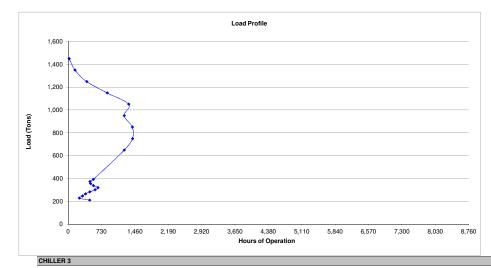
Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 1	Central plant with constant speed chiller							
42 °F Supp	ly, 12 ℉ DT							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$6,810,000	\$	6,810,000	85.4%
	Phase 2		1	ls	\$600,000	\$	600,000	7.5%
	Phase 3		1	ls	\$600,000	\$	600,000	7.5%
	Rebate		1	ls	(\$34,575)	\$	(34,575)	
	ricbate	Total		13	(ψο+,στο)	\$	7,975,425	
		iotai				Ψ	1,313,423	100 /0
Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 2	Central Plant with magnetic bearing variable sp	eed chiller						
42 °F Supp	ly, 12 ℉ DT							
	.,,							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$6,920,000	\$	6,920,000	84.2%
	Phase 2		1	ls	\$710,000	\$	710,000	8.6%
	Phase 3		1	ls	\$710,000	\$	710,000	8.6%
	Rebate		1	ls	(\$120,675)	\$	(120,675)	
	ricbate	Total	•	13	(ψ120,070)	\$	8,219,325	
		Total				Ψ	0,210,020	10170
Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 3	Central Plant with absorption chillers							
	ly, 12 ℉ DT							
42 i Gupp	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$780,000	\$	780,000	27.5%
	Phase 2		1	ls	\$1,030,000	\$	1,030,000	36.3%
	Phase 3		1	ls	\$1,030,000	\$	1,030,000	36.3%
	Thase 3		'	15	φ1,030,000	\$	1,030,000	30.5 /6
		Total				φ \$	2,840,000	100%
		iotai				Ψ	2,040,000	100 /0
Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 4	not used							
0								
•								
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	•		•			Φ.		
	Chilled		1	ea	\$ 0	\$	-	#DIV/0!
	Chilled water pumps		1	ea	\$ 0	\$	-	#DIV/0!
	AHU Coils		1	ea	\$0	\$	-	#DIV/0!
								((P.1) (A.1
		Total				\$	-	#DIV/0!

Stanley Consultants Printed: 12/14/2012

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			

	LOAD SUMMARY												
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)					
95=>99	1,449	14	4	6,712	0	11,592	69,552	11,592					
90=>94	1,350	14	25	37,598	0	67,500	405,000	67,500					
85=>89	1,248	12	68	90,635	0	169,728	1,018,368	169,728					
80=>84	1,149	11	143	168,644	0	327,465	1,964,790	327,465					
75=>79	1,050	11	221	233,906	0	464,100	2,784,600	464,100					
70=>74	950	10	204	296,028	0	582,350	2,329,400	388,233					
65=>69	850	9	234	289,598	0	596,700	2,386,800	397,800					
60=>64	748	7	235	242,934	0	526,592	2,106,368	351,061					
55=>59	648	6	205	174,003	0	397,872	1,591,488	265,248					
50=>54	391	4	92	91,009	0	215,832	431,664	71,944					
45=>49	372	4	80	70,889	0	177,816	355,632	59,272					
40=>44	354	4	81	67,695	0	172,398	344,796	57,466					
35=>39	336	3	92	72,643	0	185,472	370,944	61,824					
30=>34	318	3	109	81,539	0	207,654	415,308	69,218					
25=>29	300	3	99	69,797	0	177,300	354,600	59,100					
20=>24	282	3	79	53,134	0	133,950	267,900	44,650					
15=>19	264	3	63	40,089	0	100,056	200,112	33,352					
10=>14	245	2	52	31,262	0	76,685	153,370	25,562					
5=>9	227	2	40	22,889	0	54,934	109,868	18,311					
0=>4	209	2	78	42,108	0	98,230	196,460	32,743					
Total/Avg				2,183,112	0	4,744,226	17,857,020	2,976,170					


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	391	0.420	164	552	90,649	0	0.0	0.0	215,832
45=>49	372	0.397	148	478	70,593	0	0.0	0.0	177,816
40=>44	354	0.391	138	487	67,408	0	0.0	0.0	172,398
35=>39	336	0.390	131	552	72,334	0	0.0	0.0	185,472
30=>34	318	0.391	124	653	81,193	0	0.0	0.0	207,654
25=>29	300	0.392	118	591	69,502	0	0.0	0.0	177,300
20=>24	282	0.395	111	475	52,910	0	0.0	0.0	133,950
15=>19	264	0.399	105	379	39,922	0	0.0	0.0	100,056
10=>14	245	0.406	99	313	31,134	0	0.0	0.0	76,685
5=>9	227	0.415	94	242	22,798	0	0.0	0.0	54,934
0=>4	209	0.427	89	470	41,944	0	0.0	0.0	98,230
otal/Ava		0.433	3,195	8,746	1.315.594	0.000	0.0	0.0	2.998.879

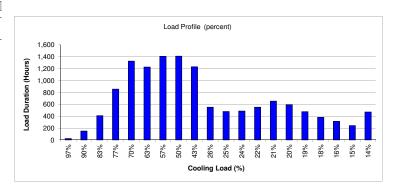
CHILLER 4									
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
Takal/Assa		#DIV/01		•	•		0.0	0.0	

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.480	1,872	3,554	675,207		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Fotal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.510	921	921	177,431		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0


Load Profile
Case 1 Central plant with constant speed chiller

	PEAK ELECTRICAL DEMAND (including transformer losses)											
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)	
January	55=>59	148	148	0	0	0	0	68	41	68	473	
February	60=>64	180	180	0	0	0	0	68	41	68	537	
March	70=>74	252	252	0	0	0	0	68	41	68	681	
April	85=>89	231	231	231	0	0	0	102	62	102	959	
May	90=>94	261	261	261	0	0	0	102	62	102	1,049	
June	95=>99	291	291	291	0	0	0	102	62	102	1,139	
July	95=>99	291	291	291	0	0	0	102	62	102	1,139	
August	95=>99	291	291	291	0	0	0	102	62	102	1,139	
September	95=>99	291	291	291	0	0	0	102	62	102	1,139	
October	85=>89	231	231	231	0	0	0	102	62	102	959	
November	75=>79	183	183	183	0	0	0	102	62	102	816	
Docombor	60 - 64	100	180	0	ñ	ñ	n	68	41	60	E97	

			CHILL	ER LOAD PRO	FILE			
Femperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load
95=>99	483	483	483	0	0	0	1,449	979
90=>94	450	450	450	0	0	0	1,350	909
85=>89	416	416	416	0	0	0	1,248	831
80=>84	383	383	383	0	0	0	1,149	77'
75=>79	350	350	350	0	0	0	1,050	701
70=>74	475	475	0	0	0	0	950	63
65=>69	425	425	0	0	0	0	850	57
60=>64	374	374	0	0	0	0	748	50
55=>59	324	324	0	0	0	0	648	43
50=>54	391	0	0	0	0	0	391	26
45=>49	372	0	0	0	0	0	372	25
40=>44	354	0	0	0	0	0	354	24
35=>39	336	0	0	0	0	0	336	22
30=>34	318	0	0	0	0	0	318	21
25=>29	300	0	0	0	0	0	300	20
20=>24	282	0	0	0	0	0	282	19
15=>19	264	0	0	0	0	0	264	18
10=>14	245	0	0	0	0	0	245	16
5=>9	227	0	0	0	0	0	227	15
0=>4	209	0	0	0	0	0	209	14
Peak	483	483	483	0	0	0	1,449	

CHILLER EFFICIENCY (ELECTRIC)										
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6				
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency				
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)				
95=>99	0.574	0.574	0.574	0.000	0.000	0.000				
90=>94	0.552	0.552	0.552	0.000	0.000	0.000				
85=>89	0.529	0.529	0.529	0.000	0.000	0.000				
80=>84	0.510	0.510	0.510	0.000	0.000	0.000				
75=>79	0.499	0.499	0.499	0.000	0.000	0.000				
70=>74	0.505	0.505	0.000	0.000	0.000	0.000				
65=>69	0.482	0.482	0.000	0.000	0.000	0.000				
60=>64	0.458	0.458	0.000	0.000	0.000	0.000				
55=>59	0.434	0.434	0.000	0.000	0.000	0.000				
50=>54	0.420	0.000	0.000	0.000	0.000	0.000				
45=>49	0.397	0.000	0.000	0.000	0.000	0.000				
40=>44	0.391	0.000	0.000	0.000	0.000	0.000				
35=>39	0.390	0.000	0.000	0.000	0.000	0.000				
30=>34	0.391	0.000	0.000	0.000	0.000	0.000				
25=>29	0.392	0.000	0.000	0.000	0.000	0.000				
20=>24	0.395	0.000	0.000	0.000	0.000	0.000				
15=>19	0.399	0.000	0.000	0.000	0.000	0.000				
10=>14	0.406	0.000	0.000	0.000	0.000	0.000				
5=>9	0.415	0.000	0.000	0.000	0.000	0.000				
0=>4	0.427	0.000	0.000	0.000	0.000	0.000				
Average	0.433	0.480	0.510	0.000	0.000	0.000				

CHILLER OPERATIONAL HOURS									
Temperature Bin (°F)	Chiller 1 Operational Hours	Chiller 2 Operational Hours	Chiller 3 Operational Hours	Chiller 4 Operational Hours	Chiller 5 Operational Hours	Chiller 6 Operational Hours	Cumulative Operationa Hours		
95=>99	8	8	8	0	0	0	24		
90=>94	50	50	50	0	0	0	150		
85=>89	136	136	136	0	0	0	408		
80=>84	285	285	285	0	0	0	855		
75=>79	442	442	442	0	0	0	1,326		
70=>74	613	613	0	0	0	0	1,226		
65=>69	702	702	0	0	0	0	1,404		
60=>64	704	704	0	0	0	0	1,408		
55=>59	614	614	0	0	0	0	1,228		
50=>54	552	0	0	0	0	0	552		
45=>49	478	0	0	0	0	0	478		
40=>44	487	0	0	0	0	0	487		
35=>39	552	0	0	0	0	0	552		
30=>34	653	0	0	0	0	0	653		
25=>29	591	0	0	0	0	0	591		
20=>24	475	0	0	0	0	0	475		
15=>19	379	0	0	0	0	0	379		
10=>14	313	0	0	0	0	0	313		
5=>9	242	0	0	0	0	0	242		
0=>4	470	0	0	0	0	0	470		
Total	8,746	3,554	921	0	0	0			

		CHILLE	R EFFICIENCY	(STEAM)		
T D'	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	OL: II C D
Temperature Bin	Demand	Demand	Demand	Demand	Demand	Chiller 6 Demand
(°F)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)
95=>99	0.000	0.000	0.000	0.000	0.000	0.000
90=>94	0.000	0.000	0.000	0.000	0.000	0.000
85=>89	0.000	0.000	0.000	0.000	0.000	0.000
80=>84	0.000	0.000	0.000	0.000	0.000	0.000
75=>79	0.000	0.000	0.000	0.000	0.000	0.000
70=>74	0.000	0.000	0.000	0.000	0.000	0.000
65=>69	0.000	0.000	0.000	0.000	0.000	0.000
60=>64	0.000	0.000	0.000	0.000	0.000	0.000
55=>59	0.000	0.000	0.000	0.000	0.000	0.000
50=>54	0.000	0.000	0.000	0.000	0.000	0.000
45=>49	0.000	0.000	0.000	0.000	0.000	0.000
40=>44	0.000	0.000	0.000	0.000	0.000	0.000
35=>39	0.000	0.000	0.000	0.000	0.000	0.000
30=>34	0.000	0.000	0.000	0.000	0.000	0.000
25=>29	0.000	0.000	0.000	0.000	0.000	0.000
20=>24	0.000	0.000	0.000	0.000	0.000	0.000
15=>19	0.000	0.000	0.000	0.000	0.000	0.000
10=>14	0.000	0.000	0.000	0.000	0.000	0.000
5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0=>4	0.000	0.000	0.000	0.000	0.000	0.000
Average	0.000	0.000	0.000	0.000	0.000	0.000

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data								
Pump	Horsepower	Efficiency	Switch Poir					
PCHWP 1	39.96	92%						
PCHWP 2	39.96	92%						
PCHWP 3	39.96	92%						
PCHWP 4	0	92%						
PCHWP 5	0	92%						
PCHWP 6	0	92%						

			PCHWP Dem	and (kW)			
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	0	0	0	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Γotal/Avg	648	292	162	0	0	0	1,102

			PCHWP Energ	y Usage (kWh)			
Temperature	PCHWP 1	PCHWP 2	PCHWP 3	PCHWP 4	PCHWP 5	PCHWP 6	Total PCHWP
Bin (°F)	Energy Usage (kWh)	Energy Usage (kWh)	Energy Usage (kWh)		Energy Usage	Energy Usage	Energy Usage
95=>99	(KWII) 259	(KWII) 259	(KWII) 259	(kWh)	(kWh)	(kWh)	(kWh) 778
90=>94	1,620	1,620	1,620	0	0	U O	4,860
	4.406			0	0	0	
85=>89			4,406 9,234	0	0	0	13,219
80=>84	9,234	9,234		0	0	0	27,70
75=>79	14,321	14,321	14,321	0	0	0	42,96
70=>74	19,861	19,861	0	0	0	0	39,72
65=>69	22,745		0	0	0	0	45,49
60=>64	22,810		0	0	0	0	45,61
55=>59	19,894		0	0	0	0	39,78
50=>54	17,885	0	0	0	0	0	17,88
45=>49	15,487	0	0	0	0	0	15,48
40=>44	15,779	0	0	0	0	0	15,77
35=>39	17,885	0	0	0	0	0	17,88
30=>34	21,157	0	0	0	0	0	21,15
25=>29	19,148	0	0	0	0	0	19,14
20=>24	15,390	0	0	0	0	0	15,39
15=>19	12,280	0	0	0	0	0	12,28
10=>14	10,141	0	0	0	0	0	10,14
5=>9	7,841	0	0	0	0	0	7,84
0=>4	15,228	0	0	0	0	0	15.22
Total/Avg	283,370	115,150	29,840	Ó	0	0	428,36

Condenser Water Pump (CWP)

CWP Energy Data									
Pump	Horsepower	Efficiency	Switch Point						
CWP 1	24.35	92%	1						
CWP 2	24.35	92%	1						
CWP3	24.35	92%	1						
CWP 4	0	92%	1						
CWP 5	0	92%	1						
CWP 6	0	92%	1						

Temperature	CWP 1	CWP 2	CWP 3	CWP 4	CWP 5	CWP 6	Total CWP
Bin	Demand						
(°F)	(kW)						
95=>99	20	20	20	0	0	0	5
90=>94	20	20	20	0	0	0	59
85=>89	20	20	20	0	0	0	59
80=>84	20	20	20	0	0	0	59
75=>79	20	20	20	0	0	0	59
70=>74	20	20	0	0	0	0	39
65=>69	20	20	0	0	0	0	39
60=>64	20	20	0	0	0	0	39
55=>59	20	20	0	0	0	0	39
50=>54	20	0	0	0	0	0	20
45=>49	20	0	0	0	0	0	20
40=>44	20	0	0	0	0	0	20
35=>39	20	0	0	0	0	0	20
30=>34	20	0	0	0	0	0	20
25=>29	20	0	0	0	0	0	20
20=>24	20	0	0	0	0	0	20
15=>19	20	0	0	0	0	0	20
10=>14	20	0	0	0	0	0	20
5=>9	20	0	0	0	0	0	20
0=>4	20	0	0	0	0	0	20
otal/Avg	394	177	99	0	0	0	670

	CWP Energy Usage (kWh)							
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)	
95=>99	158				0	0	473	
90=>94	985	985	985	0	0	0	2,955	
85=>89	2,679	2,679	2,679	0	0	0	8,038	
80=>84	5,615	5,615	5,615	0	0	0	16,844	
75=>79	8,707	8,707	8,707	0	0	0	26,122	
70=>74	12,076	12,076	0	0	0	0	24,152	
65=>69	13,829	13,829	0	0	0	0	27,659	
60=>64	13,869	13,869	0	0	0	0	27,738	
55=>59	12,096	12,096	0	0	0	0	24,192	
50=>54	10,874	0	0	0	0	0	10,874	
45=>49	9,417	0	0	0	0	0	9,417	
40=>44	9,594	0	0	0	0	0	9,594	
35=>39	10,874	0	0	0	0	0	10,874	
30=>34	12,864	0	0	0	0	0	12,864	
25=>29	11,643	0	0	0	0	0	11,643	
20=>24	9,358	0	0	0	0	0	9,358	
15=>19	7,466	0	0	0	0	0	7,466	
10=>14	6,166	0	0	0	0	0	6,166	
5=>9	4,767	0	0	0	0	0	4,767	
0=>4	9,259	0	0	0	0	0	9,259	
Total/Avg	172,296	70,014	18,144	0	0	0	260,454	

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tow	Cooling Tower Energy Data									
Pump	Horsepower	Efficiency	Switch Point							
CT 1	40	92%	1							
CT 2	40	92%	1							
CT 3	40	92%	1							
CT 4	0	92%	1							
CT 5	0	92%	1							
CT 6	0	92%	1							

	Cooling Tower Demand (kW)								
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)		
95=>99	32	32	32	0	0	0	97		
90=>94	32	32	32	0	0	0	97		
85=>89	32	32	32	0	0	0	97		
80=>84	32	32	32	0	0	0	97		
75=>79	32	32	32	0	0	0	97		
70=>74	32	32	0	0	0	0	65		
65=>69	32	32	0	0	0	0	65		
60=>64	32	32	0	0	0	0	65		
55=>59	32	32	0	0	0	0	65		
50=>54	32	0	0	0	0	0	32		
45=>49	32	0	0	0	0	0	32		
40=>44	32	0	0	0	0	0	32		
35=>39	32	0	0	0	0	0	32		
30=>34	32	0	0	0	0	0	32		
25=>29	32	0	0	0	0	0	32		
20=>24	32	0	0	0	0	0	32		
15=>19	32	0	0	0	0	0	32		
10=>14	32	0	0	0	0	0	32		
5=>9	32	0	0	0	0	0	32		
0=>4	32	0	0	0	0	0	32		
Total/Avg	648	292	162	0	0	0	1,102		

		Co	oling Tower En	ergy Usage (kV	Vh)		
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)
95=>99	259	259	259	0	0	0	77
90=>94	1,620	1,620	1,620	0	0	0	4,860
85=>89	4,406	4,406	4,406	0	0	0	13,219
80=>84	9,234	9,234	9,234	0	0	0	27,70
75=>79	14,321	14,321	14,321	0	0	0	42,96
70=>74	19,861	19,861	0	0	0	0	39,72
65=>69	22,745	22,745	0	0	0	0	45,490
60=>64	22,810	22,810	0	0	0	0	45,619
55=>59	19,894	19,894	0	0	0	0	39,787
50=>54	17,885	0	0	0	0	0	17,88
45=>49	15,487	0	0	0	0	0	15,48
40=>44	15,779	0	0	0	0	0	15,779
35=>39	17,885	0	0	0	0	0	17,88
30=>34	21,157	0	0	0	0	0	21,15
25=>29	19,148	0	0	0	0	0	19,14
20=>24	15,390	0	0	0	0	0	15,390
15=>19	12,280	0	0	0	0	0	12,280
10=>14	10,141	0	0	0	0	0	10,141
5=>9	7,841	0	0	0	0	0	7,841
0=>4	15,228	0	0	0	0	0	15,228
Total/Ava	283,370	115,150	29.840	0	0	0	428,360

Air Handling Unit (AHU)

AHU Supply Fan Energy Data		
Coil Pressure drop	0	
Other Pressure drop	0	
Typical Airflow rate	0 (cfm
Fan Efficiency	70%	
Supply Horsepower	0.0	
# of fans	1	
Efficiency	92%	
Switch Point	30%	

Coolir	ng Tower Deman	d (kW)
Temperature Bin (°F)	Percent Load	AHU Demand (kW)
95=>99	97%	0
90=>94	90%	0
85=>89	83%	0
80=>84	77%	0
75=>79	70%	0
70=>74	63%	0
65=>69	57%	0
60=>64	50%	0
55=>59	43%	0
50=>54	26%	0
45=>49	25%	0
40=>44	24%	0
35=>39	22%	0
30=>34	21%	0
25=>29	20%	0
20=>24	19%	0
15=>19	18%	0
10=>14	16%	0
5=>9	15%	0
0=>4	14%	0
Total/Ava		0

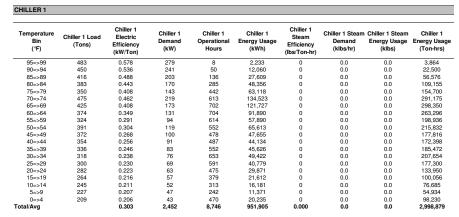
AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Variable Cost

Case 1 Central plant with constant speed chiller

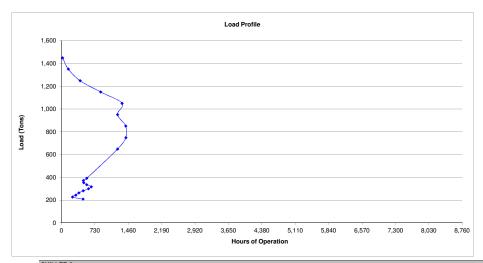
Input Data Summary													
Energy Charge Multiplier 1.00	Demand Charge First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge - On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000			Source am Rate (per klb V Rate (per ton-l			Per kLB Per Ton-hr		
	Demand Charge First 200-kW Next 800-kW Over 1000 kW	**************************************		Energy Charge - On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000				y cost)	\$3.30 0%	Per 1000 Gal Per 1000 Gal of Energy Cost	NOTUSES	
	On/Off Peak Spli On Peak Off Peak	it 70% 30%		Summer/Winter Summer Winter	Split 70% 30%		Natural Gas Other Stm Cost	ts			Per MMbtu Per MMbtu	NOT USED NOT USED	
Variable Cost Calculation													
Energy Costs	January	February	March	April	May	June	July	August	September	October	November	December	Annual
CHW Usage (Ton-Hrs)												***	4,744,226
Purchased CHW Cost												4%	\$0
Steam Usage Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage Chiller Energy Usage (kWh): Chilled Water Pump Energy Usage (kWh): Condenser Water Pump Energy Usage (kWh): Cooling Tower Energy Usage (kWh): AHU Supply Fan Energy Usage (kWh):													2,183,112 428,360 260,454 428,360 0
Total Energy Usage													3,300,287
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh Off Peak Energy Usage - kWh													2,310,201 990,086 3,300,287
Demand Charge On Peak Energy Cost Off Peak Energy Cost EECR & AEP Cost	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013 \$121,540 \$52,088 \$0
Electricity Cost													\$347,641
Total Energy Cost													\$347,641
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage					·								2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cost)													\$0
Other Variable Costs													\$26,339


Stanley Consultants Printed: 12/14/2012

Load Profile Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			

			L	OAD SUMMAR	1			
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	6,758	0	11,592	69,552	11,592
90=>94	1,350	14	25	36,518	0	67,500	405,000	67,500
85=>89	1,248	12	68	83,676	0	169,728	1,018,368	169,728
80=>84	1,149	11	143	146,704	0	327,465	1,964,790	327,465
75=>79	1,050	11	221	191,673	0	464,100	2,784,600	464,100
70=>74	950	10	204	270,987	0	582,350	2,329,400	388,233
65=>69	850	9	234	245,443	0	596,700	2,386,800	397,800
60=>64	748	7	235	185,536	0	526,592	2,106,368	351,061
55=>59	648	6	205	117,107	0	397,872	1,591,488	265,248
50=>54	391	4	92	65,973	0	215,832	431,664	71,944
45=>49	372	4	80	47,951	0	177,816	355,632	59,272
40=>44	354	4	81	44,421	0	172,398	344,796	57,466
35=>39	336	3	92	45,935	0	185,472	370,944	61,824
30=>34	318	3	109	49,768	0	207,654	415,308	69,218
25=>29	300	3	99	41,075	0	177,300	354,600	59,100
20=>24	282	3	79	30,094	0	133,950	267,900	44,650
15=>19	264	3	63	21,779	0	100,056	200,112	33,352
10=>14	245	2	52	16,308	0	76,685	153,370	25,562
5=>9	227	2	40	11,463	0	54,934	109,868	18,311
0=>4	209	2	78	20,399	0	98,230	196,460	32,743
Total/Avg				1,679,567	0	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	Ó	0	Ó	0.0	0.0	Ō
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	ō	0.000	ō	ō	Ö	ō	0.0	0.0	ō
0=>4	ō	0.000	ō	ō	Ö		0.0	0.0	ō
Γotal/Δvα		#DIV/0!	n	n	n		0.0	0.0	'n

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	475	0.462	219	613	134,523	0	0.0	0.0	291,175
65=>69	425	0.408	173	702	121,727	0	0.0	0.0	298,350
60=>64	374	0.349	131	704	91,890	0	0.0	0.0	263,296
55=>59	324	0.291	94	614	57,890	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.393	1,654	3,554	559,406		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.439	921	921	153,376		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Load Profile
Case 1 Central plant with constant speed chiller

Chiller 1 Operational Hours

Temperature
Bin
('\$F]
95=>99
90=>94
85=>89
80=>84
75=>79
70=>74
65=>69
60=>64
55=>59
40=>44
55=>99
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
1

Chiller 2 Operational

Chiller 3 Operational

			ı	PEAK ELECTRI	CAL DEMAND	(including tran	sformer losses	;)			
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
Docombor	60 - 64	100	100	0	0	0	0	60	41	60	E97

		CHILLER LOAD PROFILE											
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load					
95=>99	483	483	483	0	0	0	1,449	97%					
90=>94	450	450	450	0	0	0	1,350	90%					
85=>89	416	416	416	0	0	0	1,248	83%					
80=>84	383	383	383	0	0	0	1,149	77%					
75=>79	350	350	350	0	0	0	1,050	70%					
70=>74	475	475	0	0	0	0	950	63%					
65=>69	425	425	0	0	0	0	850	579					
60=>64	374	374	0	0	0	0	748	509					
55=>59	324	324	0	0	0	0	648	439					
50=>54	391	0	0	0	0	0	391	269					
45=>49	372	0	0	0	0	0	372	259					
40=>44	354	0	0	0	0	0	354	249					
35=>39	336	0	0	0	0	0	336	229					
30=>34	318	0	0	0	0	0	318	219					
25=>29	300	0	0	0	0	0	300	209					
20=>24	282	0	0	0	0	0	282	199					
15=>19	264	0	0	0	0	0	264	189					
10=>14	245	0	0	0	0	0	245	169					
5=>9	227	0	0	0	0	0	227	159					
0=>4	209	0	0	0	0	0	209	149					
Peak	483	483	483	0	0	0	1,449						

		CHILLER	EFFICIENCY (E	LECTRIC)		
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.578	0.578	0.578	0.000	0.000	0.000
90=>94	0.536	0.536	0.536	0.000	0.000	0.000
85=>89	0.488	0.488	0.488	0.000	0.000	0.000
80=>84	0.443	0.443	0.443	0.000	0.000	0.000
75=>79	0.408	0.408	0.408	0.000	0.000	0.000
70=>74	0.462	0.462	0.000	0.000	0.000	0.000
65=>69	0.408	0.408	0.000	0.000	0.000	0.000
60=>64	0.349	0.349	0.000	0.000	0.000	0.000
55=>59	0.291	0.291	0.000	0.000	0.000	0.000
50=>54	0.304	0.000	0.000	0.000	0.000	0.000
45=>49	0.268	0.000	0.000	0.000	0.000	0.000
40=>44	0.256	0.000	0.000	0.000	0.000	0.000
35=>39	0.246	0.000	0.000	0.000	0.000	0.000
30=>34	0.238	0.000	0.000	0.000	0.000	0.000
25=>29	0.230	0.000	0.000	0.000	0.000	0.000
20=>24	0.223	0.000	0.000	0.000	0.000	0.000
15=>19	0.216	0.000	0.000	0.000	0.000	0.000
10=>14	0.211	0.000	0.000	0.000	0.000	0.000
5=>9	0.207	0.000	0.000	0.000	0.000	0.000
0=>4	0.206	0.000	0.000	0.000	0.000	0.000
Average	0.303	0.393	0.439	0.000	0.000	0.000

										Co	oling	Load	(%)				
		%26	%06	83%	77%	%02	%89	21%	20%	43%	26%	25%	24%	22%	21%	20%	19%
	0	_			, .			,	, .			, 💶		,			, .
ڎ	200		_	-	-	-	1	-	-	-	-	-	-	-	-	-	-
ad	400				▋	-	▋	-	┫	-	-	-	\blacksquare	-	-	▋	-
Jura	600				1	-	1	-	┫	-	_				-		
ij	800					-	1	-	┫	-							
Ē	1,000					-	▋	-	┫	-							
Load Duration (Hours)	1,200					-		-	-								
<u>~</u>	1,400					_											
	1,600	1															
								Lo	oad F	Profile	e (per	cent)					

CHILLER	EFFICIENCY (E	LECTRIC)					CHILLE	R EFFICIENCY	(STEAM)		
Chiller 2 Efficiency (kW/ton)	Chiller 3 Efficiency (kW/ton)	Chiller 4 Efficiency (kW/ton)	Chiller 5 Efficiency (kW/ton)	Chiller 6 Efficiency (kW/ton)	Temperature Bin (°F)	Chiller 1 Demand (lb/ton)	Chiller 2 Demand (lb/ton)	Chiller 3 Demand (lb/ton)	Chiller 4 Demand (lb/ton)	Chiller 5 Demand (lb/ton)	Chiller 6 Demand (lb/ton)
0.578	0.578	0.000	0.000	0.000	95=>99	0.000	0.000	0.000	0.000	0.000	0.000
0.536	0.536	0.000	0.000	0.000	90=>94	0.000	0.000	0.000	0.000	0.000	0.000
0.488	0.488	0.000	0.000	0.000	85=>89	0.000	0.000	0.000	0.000	0.000	0.000
0.443	0.443	0.000	0.000	0.000	80=>84	0.000	0.000	0.000	0.000	0.000	0.000
0.408	0.408	0.000	0.000	0.000	75=>79	0.000	0.000	0.000	0.000	0.000	0.000
0.462	0.000	0.000	0.000	0.000	70=>74	0.000	0.000	0.000	0.000	0.000	0.000
0.408	0.000	0.000	0.000	0.000	65=>69	0.000	0.000	0.000	0.000	0.000	0.000
0.349	0.000	0.000	0.000	0.000	60=>64	0.000	0.000	0.000	0.000	0.000	0.000
0.291	0.000	0.000	0.000	0.000	55=>59	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	50=>54	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	45=>49	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	40=>44	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	35=>39	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	30=>34	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	25=>29	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	20=>24	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	15=>19	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	10=>14	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0=>4	0.000	0.000	0.000	0.000	0.000	0.000
0.393	0.439	0.000	0.000	0.000	Average	0.000	0.000	0.000	0.000	0.000	0.000

24482 | RCTC Chilled Water Study E-31 Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data										
Pump	Horsepower	Efficiency	Switch Poin							
PCHWP 1	41.23	92%								
PCHWP 2	41.23	92%								
PCHWP 3	41.23	92%								
PCHWP 4	0	92%								
PCHWP 5	0	92%								
PCHWP 6	0	92%								

			PCHWP Dem	and (kW)			
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	33	33	33	0	0	0	100
90=>94	33	33	33	0	0	0	100
85=>89	33	33	33	0	0	0	100
80=>84	33	33	33	0	0	0	100
75=>79	33	33	33	0	0	0	100
70=>74	33	33	0	0	0	0	67
65=>69	33	33	0	0	0	0	67
60=>64	33	33	0	0	0	0	67
55=>59	33	33	0	0	0	0	67
50=>54	33	0	0	0	0	0	33
45=>49	33	0	0	0	0	0	33
40=>44	33	0	0	0	0	0	33
35=>39	33	0	0	0	0	0	33
30=>34	33	0	0	0	0	0	33
25=>29	33	0	0	0	0	0	33
20=>24	33	0	0	0	0	0	33
15=>19	33	0	0	0	0	0	33
10=>14	33	0	0	0	0	0	33
5=>9	33	0	0	0	0	0	33
0=>4	33	0	0	0	0	0	33
Total/Avg	668	301	167	0	0	0	1,136

			PCHWP Energ	y Usage (kWh)			
Temperature Bin (°F)	PCHWP 1 Energy Usage (kWh)	PCHWP 2 Energy Usage (kWh)	PCHWP 3 Energy Usage (kWh)	PCHWP 4 Energy Usage (kWh)	PCHWP 5 Energy Usage (kWh)	PCHWP 6 Energy Usage (kWh)	Total PCHWP Energy Usage (kWh)
95=>99	267	267	267	0	0	0	80
90=>94	1.670		1.670	ō	ō	ō	5,01
85=>89	4,542	4,542	4,542	0	0	0	13,62
80=>84	9,519	9,519	9,519	0	0	0	28,55
75=>79	14,763		14,763	0	0	0	44,28
70=>74	20,474	20,474	0	0	0	0	40,94
65=>69	23,447	23,447	0	0	0	0	46,89
60=>64	23,514	23,514	0	0	0	0	47,02
55=>59	20,508	20,508	0	0	0	0	41,01
50=>54	18,437	0	0	0	0	0	18,43
45=>49	15,965	0	0	0	0	0	15,96
40=>44	16,266	0	0	0	0	0	16,26
35=>39	18,437	0	0	0	0	0	18,43
30=>34	21,810	0	0	0	0	0	21,81
25=>29	19,739	0	0	0	0	0	19,73
20=>24	15,865	0	0	0	0	0	15,86
15=>19	12,659	0	0	0	0	0	12,65
10=>14	10,454	0	0	0	0	0	10,45
5=>9	8,083	0	0	0	0	0	8,08
0=>4	15,698	0	0	0	0	0	15,69
Total/Avg	292,116	118,704	30,761	0	0	0	441,58

Condenser Water Pump (CWP)

CWP Energy	CWP Energy Data										
Pump	Horsepower	Efficiency	Switch Point								
CWP 1	28.74	92%	1								
CWP 2	28.74	92%	1								
CWP3	28.74	92%	1								
CWP 4	0	92%	1								
CWP 5	0	92%	1								
CWP 6	0	92%	1								

24482 | RCTC Chilled Water Study

			CWP Dema	nd (kW)	CWP Demand (kW)										
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)								
95=>99	23	23	23	0	0	0	70								
90=>94	23	23	23	0	0	0	70								
85=>89	23	23	23	0	0	0	70								
80=>84	23	23	23	0	0	0	70								
75=>79	23	23	23	0	0	0	70								
70=>74	23	23	0	0	0	0	47								
65=>69	23	23	0	0	0	0	47								
60=>64	23	23	0	0	0	0	47								
55=>59	23	23	0	0	0	0	47								
50=>54	23	0	0	0	0	0	23								
45=>49	23	0	0	0	0	0	23								
40=>44	23	0	0	0	0	0	23								
35=>39	23	0	0	0	0	0	23								
30=>34	23	0	0	0	0	0	23								
25=>29	23	0	0	0	0	0	23								
20=>24	23	0	0	0	0	0	23								
15=>19	23	0	0	0	0	0	23								
10=>14	23	0	0	0	0	0	23								
5=>9	23	0	0	0	0	0	23								
0=>4	23	0	0	0	0	0	23								
otal/Avg	466	210	117	0	0	0	792								

			CWP Energy	Usage (kWh)			
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	186	186	186	0	0	0	55
90=>94	1,165	1,165	1,165	0	0	0	3,49
85=>89	3,169	3,169	3,169	0	0	0	9,50
80=>84	6,641	6,641	6,641	0	0	0	19,92
75=>79	10,299	10,299	10,299	0	0	0	30,89
70=>74	14,283	14,283	0	0	0	0	28,56
65=>69	16,357	16,357	0	0	0	0	32,71
60=>64	16,403	16,403	0	0	0	0	32,80
55=>59	14,306	14,306	0	0	0	0	28,61
50=>54	12,862	0	0	0	0	0	12,86
45=>49	11,137	0	0	0	0	0	11,13
40=>44	11,347	0	0	0	0	0	11,34
35=>39	12,862	0	0	0	0	0	12,86
30=>34	15,215	0	0	0	0	0	15,21
25=>29	13,770	0	0	0	0	0	13,77
20=>24	11,068		0	0	0	0	11,06
15=>19	8,831	0	0	0	0	0	8,83
10=>14	7,293	0	0	0	0	0	7,29
5=>9	5,639		0	0	0	0	5,63
0=>4	10.951	0	0	0	0	0	10.95
Fotol/Ava	202 702	02 000	21 /50	'n	0	'n	300 04

E-32

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data											
Pump	Horsepower	Efficiency	Switch Point								
CT 1	40	92%	1								
CT 2	40	92%	1								
CT 3	40	92%	1								
CT 4	0	92%	1								
CT 5	0	92%	1								
CT 6	0	92%	1								

	Cooling Tower Demand (kW)									
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)			
95=>99	32	32	32	0	0	0	97			
90=>94	32	32	32	0	0	0	97			
85=>89	32	32	32	0	0	0	97			
80=>84	32	32	32	0	0	0	97			
75=>79	32	32	32	0	0	0	97			
70=>74	32	32	0	0	0	0	65			
65=>69	32	32	0	0	0	0	65			
60=>64	32	32	0	0	0	0	65			
55=>59	32	32	0	0	0	0	65			
50=>54	32	0	0	0	0	0	32			
45=>49	32	0	0	0	0	0	32			
40=>44	32	0	0	0	0	0	32			
35=>39	32	0	0	0	0	0	32			
30=>34	32	0	0	0	0	0	32			
25=>29	32	0	0	0	0	0	32			
20=>24	32	0	0	0	0	0	32			
15=>19	32	0	0	0	0	0	32			
10=>14	32	0	0	0	0	0	32			
5=>9	32	0	0	0	0	0	32			
0=>4	32	0	0	0	0	0	32			
Total/Avg	648	292	162	0	0	0	1,102			

	Cooling Tower Energy Usage (kWh)											
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)					
95=>99	259	259	259	0	0	0	77					
90=>94	1,620	1,620	1,620	0	0	0	4,860					
85=>89	4,406	4,406	4,406	0	0	0	13,219					
80=>84	9,234	9,234	9,234	0	0	0	27,70					
75=>79	14,321	14,321	14,321	0	0	0	42,96					
70=>74	19,861	19,861	0	0	0	0	39,72					
65=>69	22,745	22,745	0	0	0	0	45,490					
60=>64	22,810	22,810	0	0	0	0	45,619					
55=>59	19,894	19,894	0	0	0	0	39,78					
50=>54	17,885	0	0	0	0	0	17,88					
45=>49	15,487	0	0	0	0	0	15,48					
40=>44	15,779	0	0	0	0	0	15,779					
35=>39	17,885	0	0	0	0	0	17,885					
30=>34	21,157	0	0	0	0	0	21,157					
25=>29	19,148	0	0	0	0	0	19,14					
20=>24	15,390	0	0	0	0	0	15,390					
15=>19	12,280	0	0	0	0	0	12,280					
10=>14	10,141	0	0	0	0	0	10,14					
5=>9	7,841	0	0	0	0	0	7,84					
0=>4	15,228	0	0	0	0	0	15,228					
T-4-1/4	000 070	115 150	00.040			•	400.000					

Air Handling Unit (AHU)

AHU Supply Fan Energy Data		
		-
Coil Pressure drop	0	
Other Pressure drop	0	
Typical Airflow rate	0	cfm
Fan Efficiency	70%	
Supply Horsepower	0.0	
# of fans	1	
Efficiency	92%	
Switch Point	30%	

Coolin	g Tower Deman	d (kW)
Temperature Bin (°F)	Percent Load	AHU Demand (kW)
95=>99	97%	0
90=>94	90%	0
85=>89	83%	0
80=>84	77%	0
75=>79	70%	0
70=>74	63%	0
65=>69	57%	0
60=>64	50%	0
55=>59	43%	0
50=>54	26%	0
45=>49	25%	0
40=>44	24%	0
35=>39	22%	0
30=>34	21%	0
25=>29	20%	0
20=>24	19%	0
15=>19	18%	0
10=>14	16%	0
5=>9	15%	0
0=>4	14%	0
Tatal/Arm		•

AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Variable Cost

Case 2 Central Plant with magnetic bearing variable speed chiller

Input Data Summary													
Energy Charge Multiplier	Demand Charge-S First 200-kW	summer \$16.46		Energy Charge On Peak	- Summer \$0.05261			Self Generated					
1.00	Next 800-kW	\$16.46		Off Peak	\$0.05261		Purchased Stea				Per kLB		
	Over 1000 kW	\$16.46		Energy Cost Adj	\$0.00000		Purchased CHV	V Rate (per ton-	hr)	\$0.000	Per Ton-hr		
	Demand Charge-V			Energy Charge			Water Rate (per				Per 1000 Gal		
	First 200-kW Next 800-kW	\$16.46 \$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Sewage Rate (p Miscellaneous		av cost)		Per 1000 Gal of Energy Cost		
	Over 1000 kW	\$16.46		Energy Cost Adj					3, ,				
	On/Off Peak Split			Summer/Winter	Split		Natural Gas Other Stm Cost	s			Per MMbtu Per MMbtu	NOT USED NOT USED	
	On Peak Off Peak	70% 30%		Summer Winter	70% 30%								
Variable Cost Calculation	Oli Feak	30 %		vviiitei	30 /6								
	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs													
CHW Usage (Ton-Hrs)													4,744,226
Purchased CHW Cost												4%	\$0
Steam Usage													
Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage													
Chiller Energy Usage (kWh):													1,679,567
Chilled Water Pump Energy Usag													441,581
Condenser Water Pump Energy L Cooling Tower Energy Usage (kW													308,049 428,360
AHU Supply Fan Energy Usage (I													0
Total Energy Usage													2,857,558
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh													2,000,291
Off Peak Energy Usage - kWh													857,267 2,857,558
Demand Charge On Peak Energy Cost	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013 \$105,235
Off Peak Energy Cost													\$45,101
EECR & AEP Cost													\$0
Electricity Cost													\$324,349
Total Energy Cost													\$324,349
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cos	st)												\$0
Other Variable Costs													\$26,339
													,

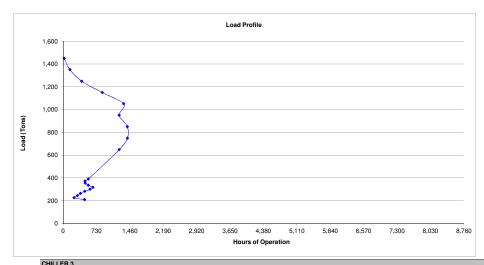
Stanley Consultants Printed: 12/14/2012

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			-

			L	OAD SUMMARY	1			
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	58	107	11,592	69,552	11,592
90=>94	1,350	14	25	338	608	67,500	405,000	67,500
85=>89	1,248	12	68	849	1,485	169,728	1,018,368	169,728
80=>84	1,149	11	143	1,637	2,783	327,465	1,964,790	327,465
75=>79	1,050	11	221	2,321	3,857	464,100	2,784,600	464,100
70=>74	950	10	204	1,941	4,978	582,350	2,329,400	388,233
65=>69	850	9	234	1,989	4,935	596,700	2,386,800	397,800
60=>64	748	7	235	1,755	4,204	526,592	2,106,368	351,061
55=>59	648	6	205	1,326	3,069	397,872	1,591,488	265,248
50=>54	391	4	92	360	1,692	215,832	431,664	71,944
45=>49	372	4	80	296	1,371	177,816	355,632	59,272
40=>44	354	4	81	287	1,316	172,398	344,796	57,466
35=>39	336	3	92	309	1,404	185,472	370,944	61,824
30=>34	318	3	109	346	1,561	207,654	415,308	69,218
25=>29	300	3	99	296	1,324	177,300	354,600	59,100
20=>24	282	3	79	223	996	133,950	267,900	44,650
15=>19	264	3	63	167	741	100,056	200,112	33,352
10=>14	245	2	52	128	567	76,685	153,370	25,562
5=>9	227	2	40	92	406	54,934	109,868	18,311
0=>4	209	2	78	164	728	98,230	196,460	32,743
Total/Avg				14,881	38,133	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	391	0.000	0	552	0	8	3.1	1,692.4	215,832
45=>49	372	0.000	0	478	0	8	2.9	1,371.4	177,816
40=>44	354	0.000	0	487	0	8	2.7	1,315.9	172,398
35=>39	336	0.000	0	552	0	8	2.5	1,404.3	185,472
30=>34	318	0.000	0	653	0	8	2.4	1,561.3	207,654
25=>29	300	0.000	0	591	0	7	2.2	1,324.4	177,300
20=>24	282	0.000	0	475	0	7	2.1	995.6	133,950
15=>19	264	0.000	0	379	0	7	2.0	740.9	100,056
10=>14	245	0.000	0	313	0	7	1.8	566.8	76,685
5=>9	227	0.000	0	242	0	7	1.7	406.1	54,934
0=>4	209	0.000	0	470	0	7	1.5	728.0	98,230
otal/Ava		0.000	'n	8 746	'n	7 817	56.3	23 646 7	2 008 870

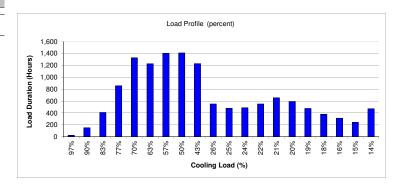
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
otal/Ava		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.000	0	3,554	0		31.4	11,539.5	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	Ö
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.000	921	921	Ô		18.3	2,946.7	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0


Load Profile
Case 1 Central plant with constant speed chiller

	PEAK ELECTRICAL DEMAND (including transformer losses)												
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)		
January	55=>59	148	148	0	0	0	0	68	41	68	473		
February	60=>64	180	180	0	0	0	0	68	41	68	537		
March	70=>74	252	252	0	0	0	0	68	41	68	681		
April	85=>89	231	231	231	0	0	0	102	62	102	959		
May	90=>94	261	261	261	0	0	0	102	62	102	1,049		
June	95=>99	291	291	291	0	0	0	102	62	102	1,139		
July	95=>99	291	291	291	0	0	0	102	62	102	1,139		
August	95=>99	291	291	291	0	0	0	102	62	102	1,139		
September	95=>99	291	291	291	0	0	0	102	62	102	1,139		
October	85=>89	231	231	231	0	0	0	102	62	102	959		
November	75=>79	183	183	183	0	0	0	102	62	102	816		
D	00 04	400	100					-00		00	507		

			CHILL	ER LOAD PRO	FILE			CHILLER LOAD PROFILE											
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load											
95=>99	483	483	483	0	0	0	1,449	97%											
90=>94	450	450	450	0	0	0	1,350	90%											
85=>89	416	416	416	0	0	0	1,248	83%											
80=>84	383	383	383	0	0	0	1,149	77%											
75=>79	350	350	350	0	0	0	1,050	70%											
70=>74	475	475	0	0	0	0	950	63%											
65=>69	425	425	0	0	0	0	850	57%											
60=>64	374	374	0	0	0	0	748	50%											
55=>59	324	324	0	0	0	0	648	43%											
50=>54	391	0	0	0	0	0	391	26%											
45=>49	372	0	0	0	0	0	372	25%											
40=>44	354	0	0	0	0	0	354	24%											
35=>39	336	0	0	0	0	0	336	22%											
30=>34	318	0	0	0	0	0	318	21%											
25=>29	300	0	0	0	0	0	300	20%											
20=>24	282	0	0	0	0	0	282	19%											
15=>19	264	0	0	0	0	0	264	18%											
10=>14	245	0	0	0	0	0	245	16%											
5=>9	227	0	0	0	0	0	227	15%											
0=>4	209	0	0	0	0	0	209	14%											
Peak	483	483	483	0	0	0	1,449												

			EFFICIENCY (E			
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.000	0.000	0.000	0.000	0.000	0.000
90=>94	0.000	0.000	0.000	0.000	0.000	0.000
85=>89	0.000	0.000	0.000	0.000	0.000	0.000
80=>84	0.000	0.000	0.000	0.000	0.000	0.000
75=>79	0.000	0.000	0.000	0.000	0.000	0.000
70=>74	0.000	0.000	0.000	0.000	0.000	0.000
65=>69	0.000	0.000	0.000	0.000	0.000	0.000
60=>64	0.000	0.000	0.000	0.000	0.000	0.000
55=>59	0.000	0.000	0.000	0.000	0.000	0.000
50=>54	0.000	0.000	0.000	0.000	0.000	0.000
45=>49	0.000	0.000	0.000	0.000	0.000	0.000
40=>44	0.000	0.000	0.000	0.000	0.000	0.000
35=>39	0.000	0.000	0.000	0.000	0.000	0.000
30=>34	0.000	0.000	0.000	0.000	0.000	0.000
25=>29	0.000	0.000	0.000	0.000	0.000	0.000
20=>24	0.000	0.000	0.000	0.000	0.000	0.000
15=>19	0.000	0.000	0.000	0.000	0.000	0.000
10=>14	0.000	0.000	0.000	0.000	0.000	0.000
5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0=>4	0.000	0.000	0.000	0.000	0.000	0.000
Average	0.000	0.000	0.000	0.000	0.000	0.000

CHILLER OPERATIONAL HOURS											
Temperature Bin (°F)	Chiller 1 Operational Hours	Chiller 2 Operational Hours	Chiller 3 Operational Hours	Chiller 4 Operational Hours	Chiller 5 Operational Hours	Chiller 6 Operational Hours	Cumulative Operationa Hours				
95=>99	8	8	8	0	0	0	24				
90=>94	50	50	50	0	0	0	150				
85=>89	136	136	136	Ö	0	0	408				
80=>84	285	285	285	0	0	0	855				
75=>79	442	442	442	0	0	0	1,326				
70=>74	613	613	0	0	0	0	1,226				
65=>69	702	702	0	0	0	0	1,404				
60=>64	704	704	0	0	0	0	1,408				
55=>59	614	614	0	0	0	0	1,228				
50=>54	552	0	0	0	0	0	552				
45=>49	478	0	0	0	0	0	478				
40=>44	487	0	0	0	0	0	487				
35=>39	552	0	0	0	0	0	552				
30=>34	653	0	0	0	0	0	653				
25=>29	591	0	0	0	0	0	591				
20=>24	475	0	0	0	0	0	475				
15=>19	379	0	0	0	0	0	379				
10=>14	313	0	0	0	0	0	313				
5=>9	242	0	0	0	0	0	242				
0=>4	470	0	0	0	0	0	470				
Total	8,746	3,554	921	0	0	0					

		CHILLE	R EFFICIENCY	(STEAM)		
Temperature Bin (°F)	Chiller 1 Demand (lb/ton)	Chiller 2 Demand (lb/ton)	Chiller 3 Demand (lb/ton)	Chiller 4 Demand (lb/ton)	Chiller 5 Demand (lb/ton)	Chiller 6 Demand (lb/ton)
95=>99	9.219	9.219	9.219	0.000	0.000	0.000
90=>94	9.002	9.002	9.002	0.000	0.000	0.000
85=>89	8.750	8.750	8.750	0.000	0.000	0.000
80=>84	8.499	8.499	8.499	0.000	0.000	0.000
75=>79	8.311	8.311	8.311	0.000	0.000	0.000
70=>74	8.547	8.547	0.000	0.000	0.000	0.000
65=>69	8.271	8.271	0.000	0.000	0.000	0.000
60=>64	7.984	7.984	0.000	0.000	0.000	0.000
55=>59	7.713	7.713	0.000	0.000	0.000	0.000
50=>54	7.841	0.000	0.000	0.000	0.000	0.000
45=>49	7.712	0.000	0.000	0.000	0.000	0.000
40=>44	7.633	0.000	0.000	0.000	0.000	0.000
35=>39	7.571	0.000	0.000	0.000	0.000	0.000
30=>34	7.519	0.000	0.000	0.000	0.000	0.000
25=>29	7.470	0.000	0.000	0.000	0.000	0.000
20=>24	7.433	0.000	0.000	0.000	0.000	0.000
15=>19	7.405	0.000	0.000	0.000	0.000	0.000
10=>14	7.392	0.000	0.000	0.000	0.000	0.000
5=>9	7.392	0.000	0.000	0.000	0.000	0.000
0=>4	7.411	0.000	0.000	0.000	0.000	0.000
Average	7.817	8.219	8,480	0.000	0.000	0.000

24482 | RCTC Chilled Water Study E-36 Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energ	gy Data		
Pump	Horsepower	Efficiency	Switch Poir
PCHWP 1	42.6	92%	
PCHWP 2	42.6	92%	
PCHWP 3	42.6	92%	
PCHWP 4	0	92%	
PCHWP 5	0	92%	
PCHWP 6	0	92%	

			PCHWP Dem	nand (kW)			
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	35	35	35	0	0	0	104
90=>94	35	35	35	0	0	0	104
85=>89	35	35	35	0	0	0	104
80=>84	35	35	35	0	0	0	104
75=>79	35	35	35	0	0	0	104
70=>74	35	35	0	0	0	0	69
65=>69	35	35	0	0	0	0	69
60=>64	35	35	0	0	0	0	69
55=>59	35	35	0	0	0	0	69
50=>54	35	0	0	0	0	0	35
45=>49	35	0	0	0	0	0	35
40=>44	35	0	0	0	0	0	35
35=>39	35	0	0	0	0	0	35
30=>34	35	0	0	0	0	0	35
25=>29	35	0	0	0	0	0	35
20=>24	35	0	0	0	0	0	35
15=>19	35	0	0	0	0	0	35
10=>14	35	0	0	0	0	0	35
5=>9	35	0	0	0	0	0	35
0=>4	35	0	0	0	0	0	35
Γotal/Avg	690	311	173	0	0	0	1,173

			PCHWP Energ	y Usage (kWh)			
Temperature Bin	PCHWP 1 Energy Usage	PCHWP 2 Energy Usage	PCHWP 3 Energy Usage	PCHWP 4 Energy Usage	PCHWP 5 Energy Usage	PCHWP 6 Energy Usage	Total PCHWP Energy Usage
(°F)	(kWh)						
95=>99	276	276	276	0	0	0	828
90=>94	1,725	1,725	1,725	0	0	0	5,175
85=>89	4,692	4,692	4,692	0	0	0	14,076
80=>84	9,833	9,833	9,833	0	0	0	29,498
75=>79	15,249	15,249	15,249	0	0	0	45,747
70=>74	21,149	21,149	0	0	0	0	42,297
65=>69	24,219	24,219	0	0	0	0	48,438
60=>64	24,288	24,288	0	0	0	0	48,576
55=>59	21,183	21,183	0	0	0	0	42,366
50=>54	19,044	0	0	0	0	0	19,044
45=>49	16,491	0	0	0	0	0	16,491
40=>44	16,802	0	0	0	0	0	16,802
35=>39	19,044	0	0	0	0	0	19,044
30=>34	22,529	0	0	0	0	0	22,529
25=>29	20,390	0	0	0	0	0	20,390
20=>24	16,388	0	0	0	0	0	16,388
15=>19	13,076	0	0	0	0	0	13,076
10=>14	10,799	0	0	0	0	0	10,799
5=>9	8,349	0	0	0	0	0	8,349
0=>4	16,215	0	0	0	0	0	16,215
Total/Avg	301,737	122,613	31,775	0	0	0	456,125

Condenser Water Pump (CWP)

CWP Energy	CWP Energy Data											
Pump	Horsepower	Efficiency	Switch Point									
CWP 1	28.74	92%	1									
CWP 2	28.74	92%	1									
CWP 3	28.74	92%	1									
CWP 4	0	92%	1									
CWP 5	0	92%	1									
CWP 6	0	92%	1									

			CWP Dema	nd (kW)			
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)
95=>99	23	23	23	0	0	0	70
90=>94	23	23	23	0	0	0	70
85=>89	23	23	23	0	0	0	70
80=>84	23	23	23	0	0	0	70
75=>79	23	23	23	0	0	0	70
70=>74	23	23	0	0	0	0	47
65=>69	23	23	0	0	0	0	47
60=>64	23	23	0	0	0	0	47
55=>59	23	23	0	0	0	0	47
50=>54	23	0	0	0	0	0	23
45=>49	23	0	0	0	0	0	23
40=>44	23	0	0	0	0	0	23
35=>39	23	0	0	0	0	0	23
30=>34	23	0	0	0	0	0	23
25=>29	23	0	0	0	0	0	23
20=>24	23	0	0	0	0	0	23
15=>19	23	0	0	0	0	0	23
10=>14	23	0	0	0	0	0	23
5=>9	23	0	0	0	0	0	23
0=>4	23	0	0	0	0	0	23
Total/Avg	466	210	117	0	0	0	792

			CWP Energy	Usage (kWh)			
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	186	186	186	0	0	0	559
90=>94	1,165	1,165	1,165	0	0	0	3,495
85=>89	3,169	3,169	3,169	0	0	0	9,506
80=>84	6,641	6,641	6,641	0	0	0	19,922
75=>79	10,299	10,299	10,299	0	0	0	30,896
70=>74	14,283	14,283	0	0	0	0	28,566
65=>69	16,357	16,357	0	0	0	0	32,713
60=>64	16,403	16,403	0	0	0	0	32,806
55=>59	14,306	14,306	0	0	0	0	28,612
50=>54	12,862	0	0	0	0	0	12,862
45=>49	11,137	0	0	0	0	0	11,137
40=>44	11,347	0	0	0	0	0	11,347
35=>39	12,862	0	0	0	0	0	12,862
30=>34	15,215	0	0	0	0	0	15,215
25=>29	13,770	0	0	0	0	0	13,770
20=>24	11,068	0	0	0	0	0	11,068
15=>19	8,831	0	0	0	0	0	8,831
10=>14	7,293	0	0	0	0	0	7,293
5=>9	5,639	0	0	0	0	0	5,639
0=>4	10,951	0	0	0	0	0	10,951
Total/Avg	203,782	82,808	21,459	0	0	0	308,049

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data									
Pump	Horsepower	Efficiency	Switch Point						
CT 1	50	92%	1						
CT 2	50	92%	1						
CT 3	50	92%	1						
CT 4	0	92%	1						
CT 5	0	92%	1						
CT 6	0	92%	1						

			Cooling Tower	Demand (kW)			
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	41	41	41	0	0	0	122
90=>94	41	41	41	0	0	0	122
85=>89	41	41	41	0	0	0	122
80=>84	41	41	41	0	0	0	122
75=>79	41	41	41	0	0	0	122
70=>74	41	41	0	0	0	0	81
65=>69	41	41	0	0	0	0	81
60=>64	41	41	0	0	0	0	81
55=>59	41	41	0	0	0	0	81
50=>54	41	0	0	0	0	0	41
45=>49	41	0	0	0	0	0	41
40=>44	41	0	0	0	0	0	41
35=>39	41	0	0	0	0	0	41
30=>34	41	0	0	0	0	0	41
25=>29	41	0	0	0	0	0	41
20=>24	41	0	0	0	0	0	41
15=>19	41	0	0	0	0	0	41
10=>14	41	0	0	0	0	0	41
5=>9	41	0	0	0	0	0	41
0=>4	41	0	0	0	0	0	41
Total/Avg	810	365	203	0	0	0	1,377

Cooling Tower Energy Usage (kWh)								
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)	
95=>99	324	324	324	0	0	0	97	
90=>94	2,025	2,025	2,025	0	0	0	6,07	
85=>89	5,508	5,508	5,508	0	0	0	16,524	
80=>84	11,543	11,543	11,543	0	0	0	34,628	
75=>79	17,901	17,901	17,901	0	0	0	53,700	
70=>74	24,827	24,827	0	0	0	0	49,650	
65=>69	28,431	28,431	0	0	0	0	56,86	
60=>64	28,512	28,512	0	0	0	0	57,02	
55=>59	24,867	24,867	0	0	0	0	49,73	
50=>54	22,356	0	0	0	0	0	22,35	
45=>49	19,359	0	0	0	0	0	19,35	
40=>44	19,724	0	0	0	0	0	19,72	
35=>39	22,356	0	0	0	0	0	22,35	
30=>34	26,447		0	0	0	0	26,44	
25=>29	23,936	0	0	0	0	0	23,93	
20=>24	19,238	0	0	0	0	0	19,23	
15=>19	15,350	0	0	0	0	0	15,35	
10=>14	12,677		0	0	0	0	12,67	
5=>9	9,801	0	0	0	0	0	9,80	
0=>4	19,035	0	0	0	0	0	19,03	
Total/Ava	354.213		37.301	0	0	n	535.45	

Air Handling Unit (AHU)

AHU Supply Fan Energy Da	ata
Coil Pressure drop	0
Other Pressure drop	0
Typical Airflow rate	0 cfm
Fan Efficiency	70%
Supply Horsepower	0.0
# of fans	1
Efficiency	92%
Curitals Daint	200/

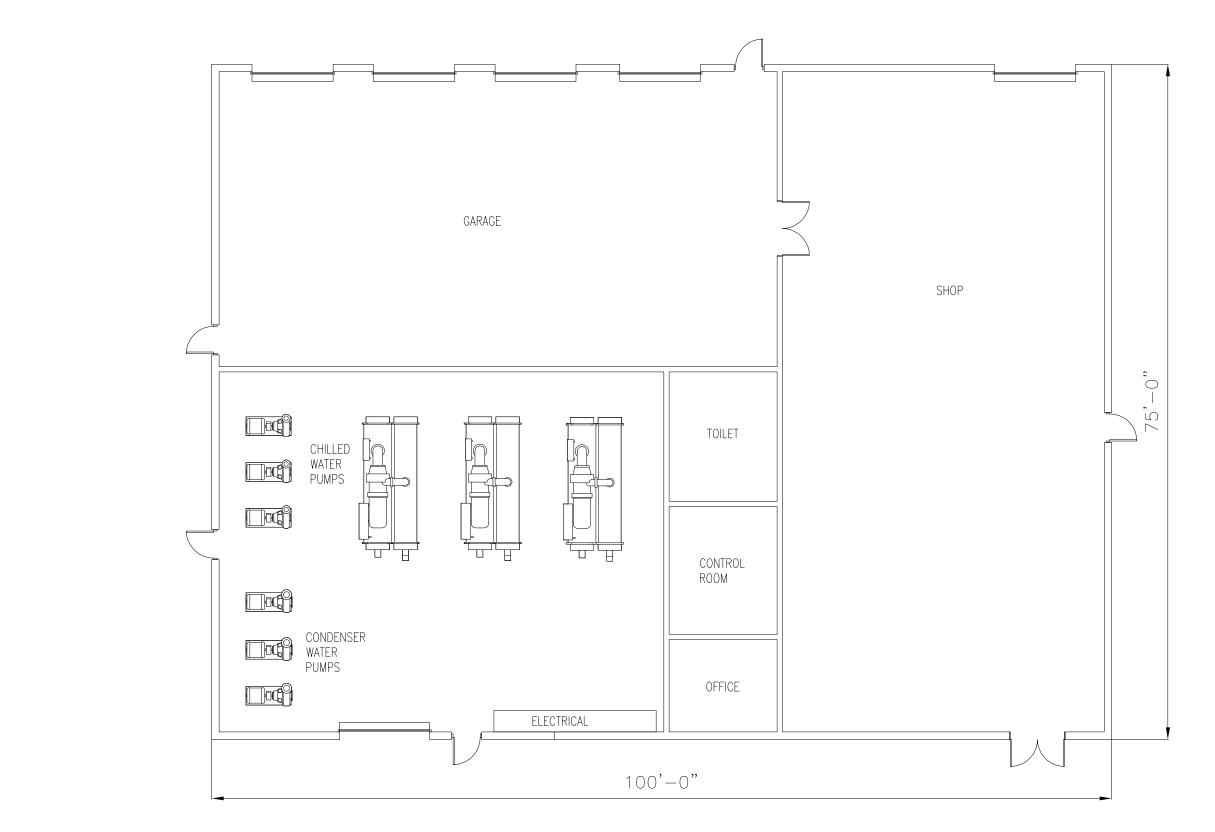
Cooling	g Tower Deman	d (kW)		
Temperature Bin (°F)	Percent Load	AHU Demand (kW)		
95=>99	97%	0		
90=>94	90%	0		
85=>89	83%	0		
80=>84	77%	0		
75=>79	70%	0		
70=>74	63%	0		
65=>69	57%	0		
60=>64	50%	0		
55=>59	43%	0		
50=>54	26%	0		
45=>49	25%	0		
40=>44	24%	0		
35=>39	22%	0		
30=>34	21%	0		
25=>29	20%	0		
20=>24	19%	0		
15=>19	18%	0		
10=>14	16%	0		
5=>9	15%	0		
0=>4	14%	0		
Total/Avg		0		

AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Variable Cost

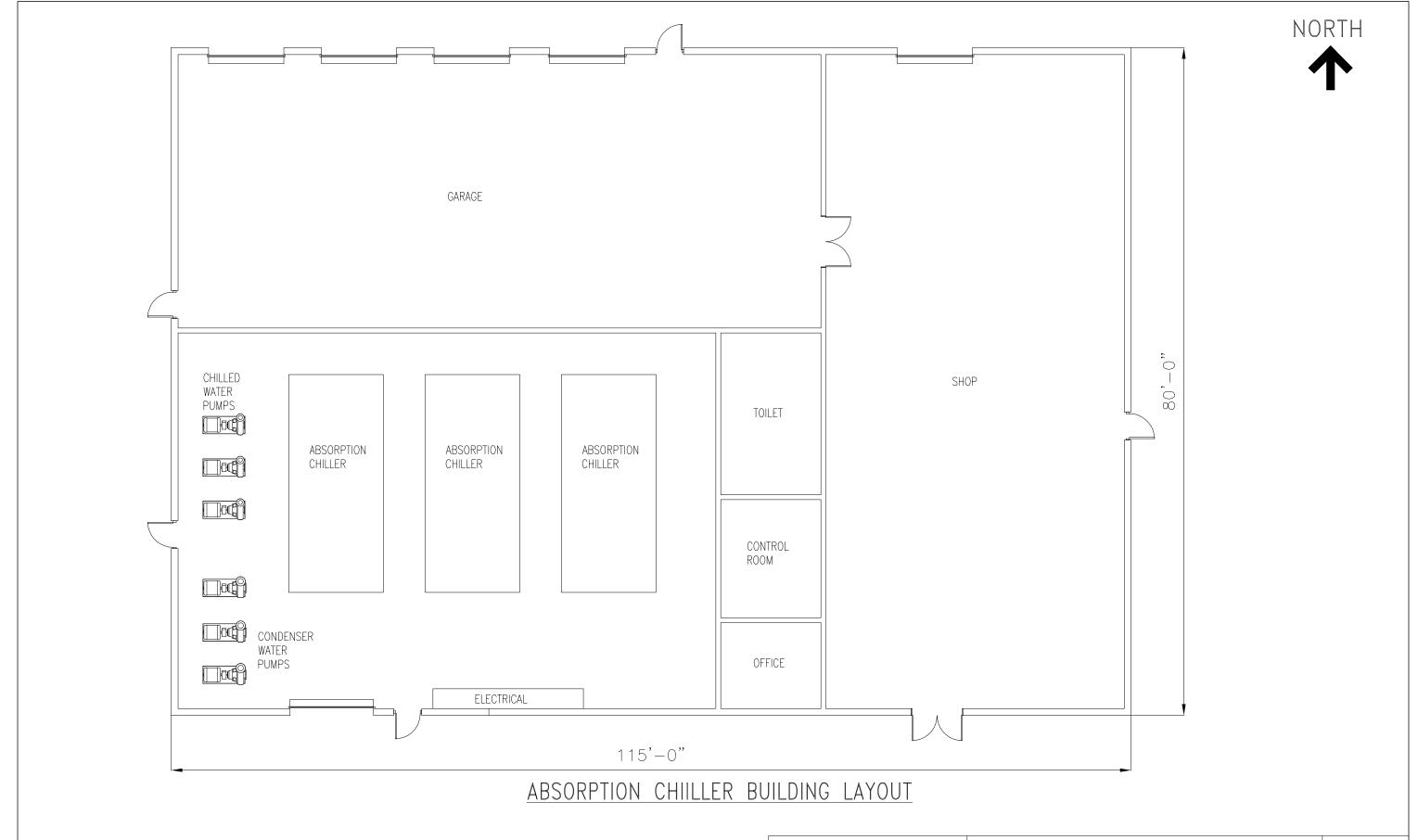
Case 3 Central Plant with absorption chillers


Input Data Summary													
Energy Charge Multiplier 1.00	Demand Charge-S First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000		Purchased Stea				Per kLB Per Ton-hr		
	Demand Charge-W First 200-kW Next 800-kW Over 1000 kW	Next 800-kW \$16.46		Energy Charge - Winter On Peak \$0.05261 Off Peak \$0.05261 Energy Cost Adj \$0.00000			Water Rate (per 1,000 Gal) Sewage Rate (per 1,000 Gal) Miscellaneous Cost (% of energy cost)		gy cost)	\$0.93 Per 1000 Gal \$3.30 Per 1000 Gal 0% of Energy Cost			
	On/Off Peak Split On Peak	70%		Summer/Winter Summer	70%		Natural Gas Other Stm Cos	ts			Per MMbtu Per MMbtu	NOT USED NOT USED	
Variable Cost Calculation	Off Peak	30%		Winter	30%								
	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs													
CHW Usage (Ton-Hrs)												4%	4,744,226
Purchased CHW Cost												470	\$0
Steam Usage Energy Usage (klb):													38,133
Steam Cost													\$672,664
Electricity Usage Chiller Energy Usage (kWh): Chilled Water Pump Energy Usag Condenser Water Pump Energy U Cooling Tower Energy Usage (kW AHU Supply Fan Energy Usage (k	Jsage (kWh): 'h):												14,881 456,125 308,049 535,451 0
Total Energy Usage													1,314,505
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh Off Peak Energy Usage - kWh													920,154 394,352
													1,314,505
Demand Charge On Peak Energy Cost Off Peak Energy Cost EECR & AEP Cost	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013 \$48,409 \$20,747 \$0
Electricity Cost													\$243,169
Total Energy Cost													\$915,833
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cos	t)												\$0
Other Variable Costs													\$26,339

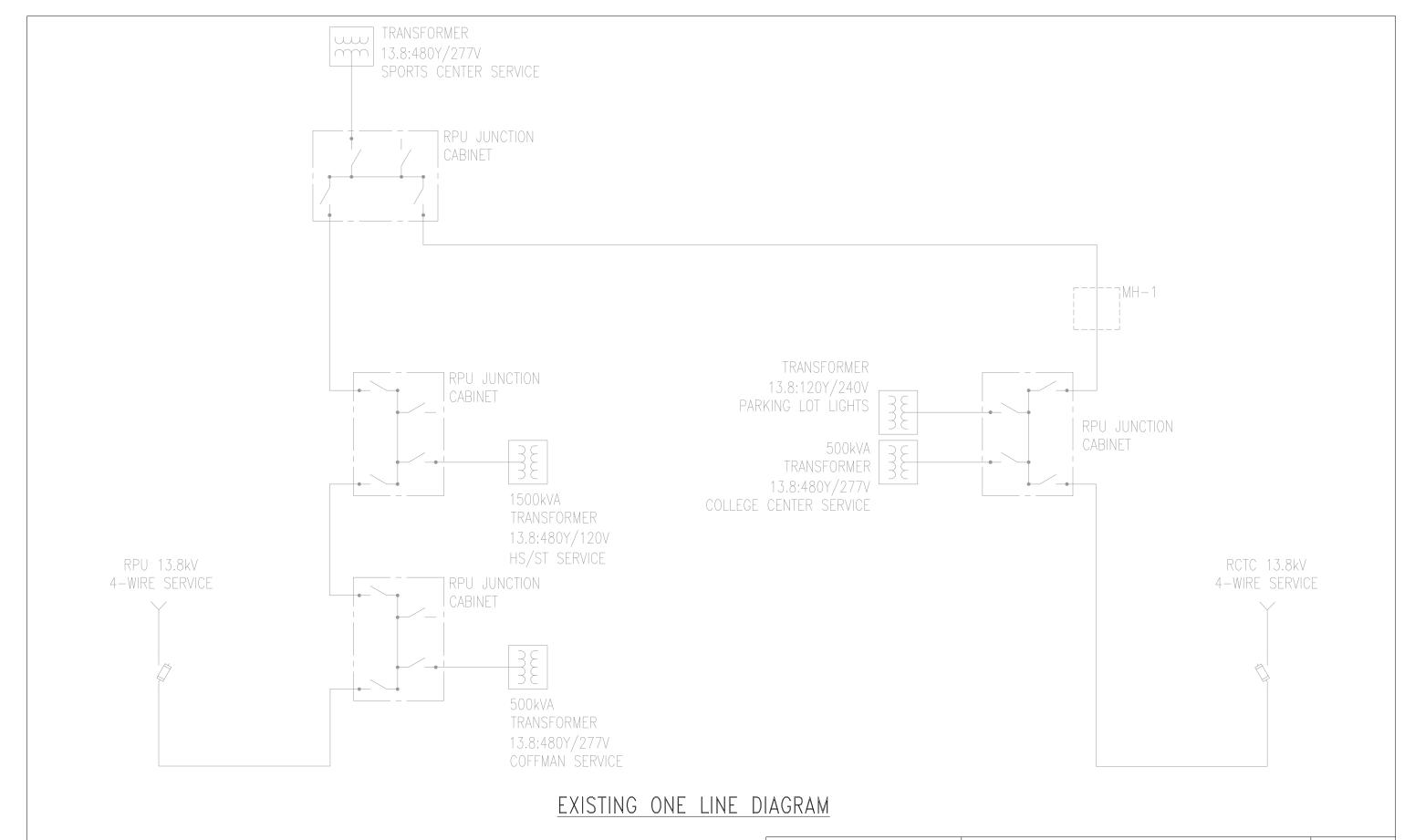
Stanley Consultants Printed: 12/14/2012

Appendix F

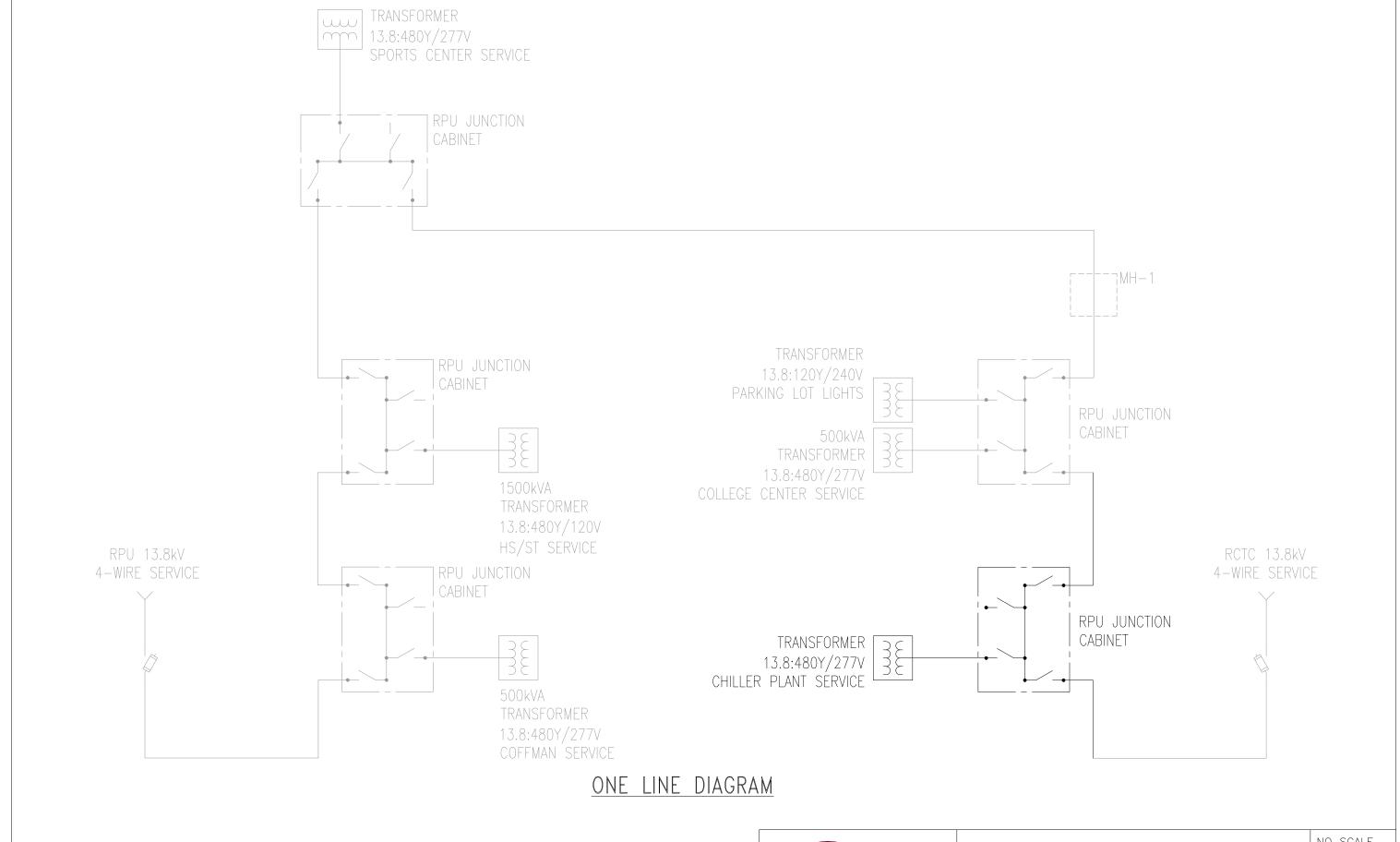
Drawings

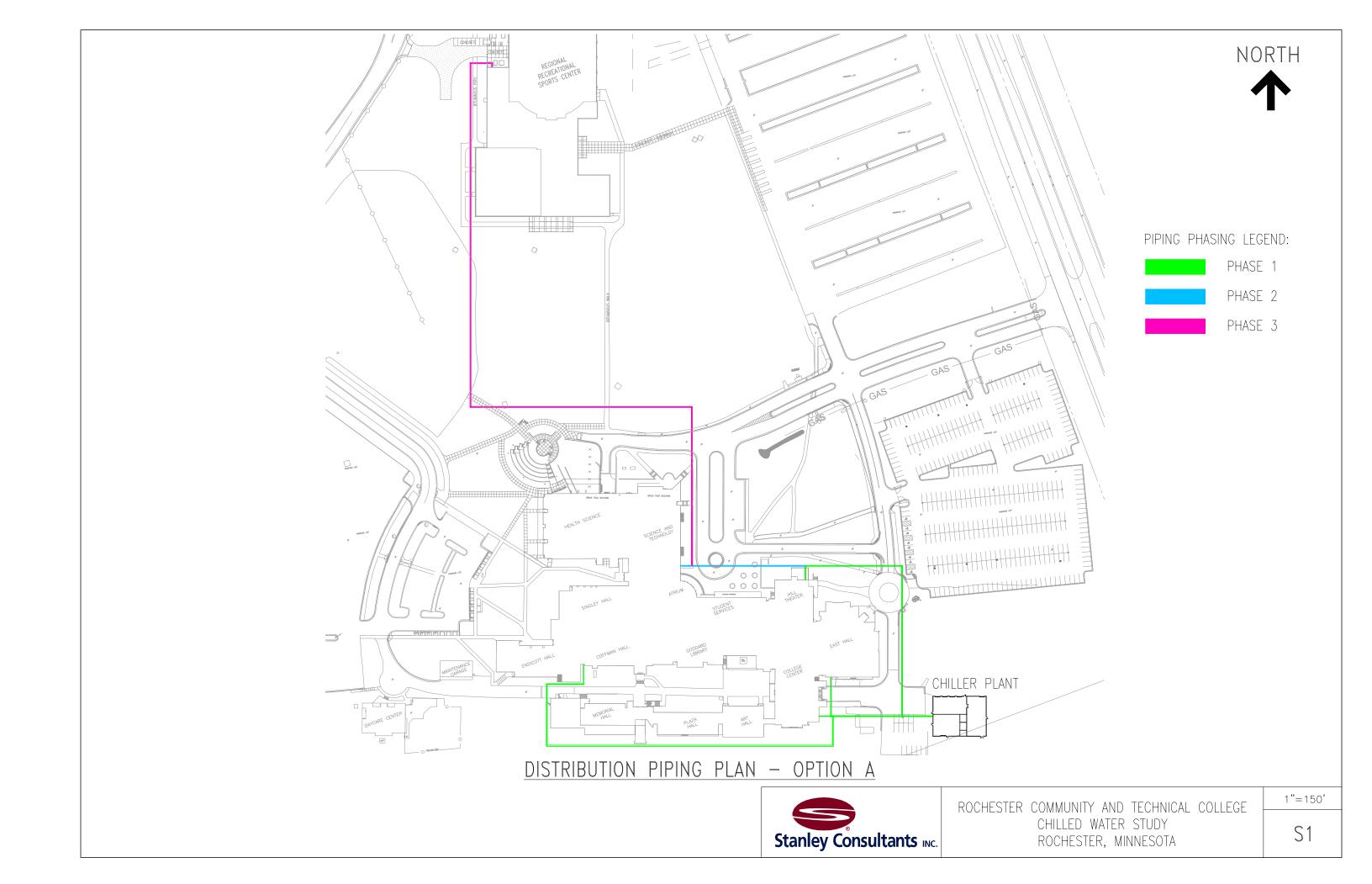

- A1 Centrifugal Chiller Building Layout
- A2 Absorption Chiller Building Layout
- E1 Existing One Line Diagram
- E2 One Line Diagram
- S1 Distribution Piping Plan Option A
- S2 Distribution Piping Plan Option B

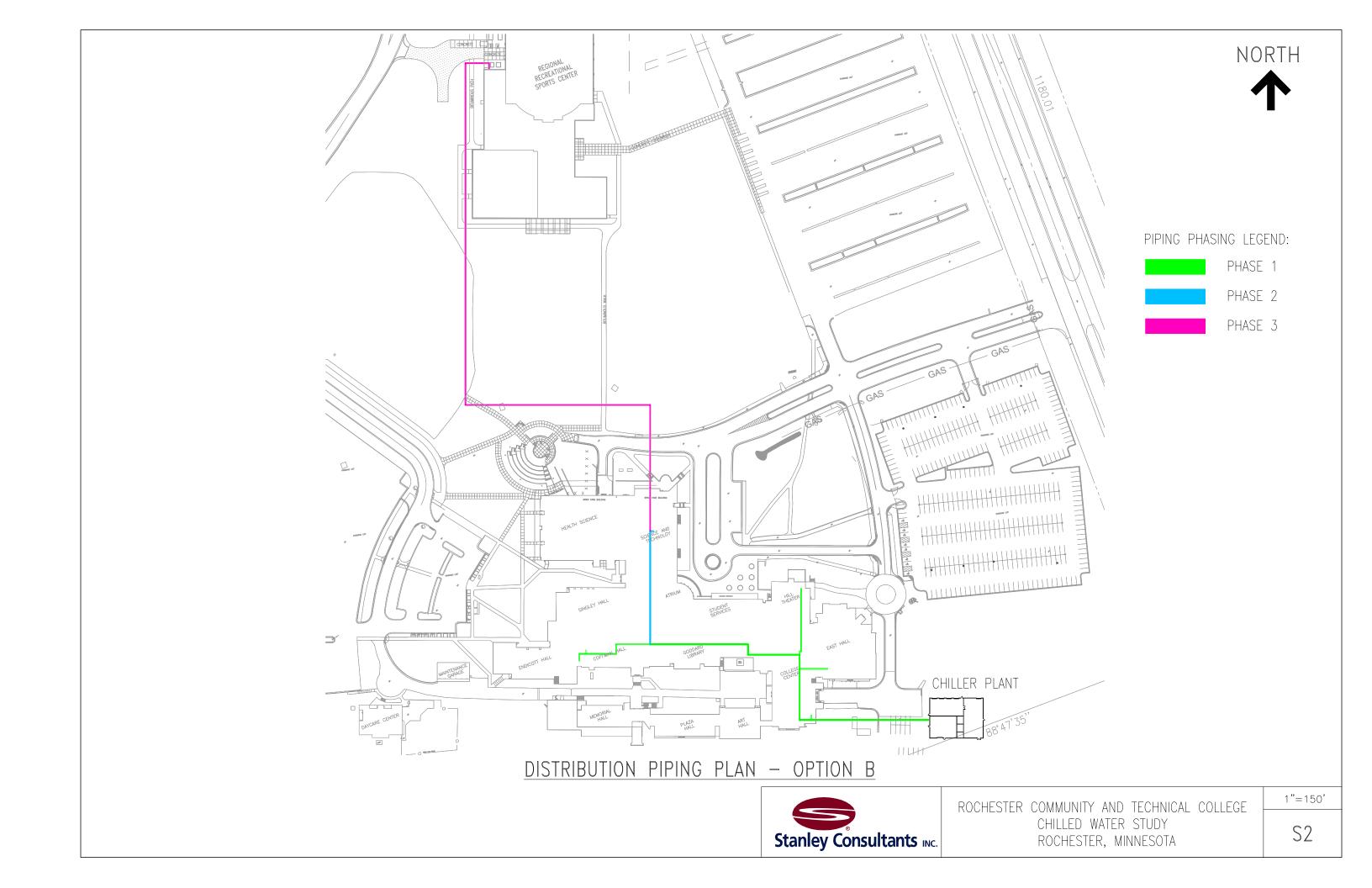
CENTRIFUGAL CHILLER BUILDING LAYOUT



ROCHESTER COMMUNITY AND TECHNICAL COLLEGE CHILLED WATER STUDY ROCHESTER, MINNESOTA 3/32"=1'-0"


Α2





ROCHESTER COMMUNITY AND TECHNICAL COLLEGE CHILLED WATER STUDY ROCHESTER, MINNESOTA NO SCALE

E1

Appendix D

Opinion of Probable Cost Information

Total Unit Cos 186,000.0 00 \$186,000.0 00 \$60,000.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$650,000.0 00 \$650,000.0 00 \$2,475.0 00 \$23.3 00 \$65,000.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$186,000.0 00 \$23,800.0 00 \$56,000.0 00 \$5,660.0 00 \$75.0 00 \$6,054.0 00 \$65,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$2,000.0 00 \$2,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$60,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$33.3 00 \$15,000.0 00 \$3,3310.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$60,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$33.3 00 \$15,000.0 00 \$3,3310.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
000 \$6,054.0 00 \$23.0 000 \$65,000.0 000 \$85,000.0 000 \$2,150.0 000 \$3,310.0 000 \$15,000.0 000 \$700,000.0 000 \$200.0	00 \$6,05 00 \$3,45 00 \$65,00 00 \$85,00 00 \$4,30 00 \$59,58 00 \$30,00 00 \$700,00
00 \$700,000.0 00 \$200.0	0 \$700,00
AL	
	\$3,599,53
9% 5% 5%	\$1,079,86 \$701,90 \$538,13 \$887,91
ST	\$6,807,34
SE	\$6,810,00
00 \$186 000 0	0 \$186,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0	0 \$60,90 0 \$23,80 0 \$15,05
AL	\$315,75
5% 0%	\$94,72 \$61,57 \$47,20 \$77,88
ST.	\$597,13
SE .	\$600,00
- 30 - 15 - 10 - 15 - 10	000.00 \$186,000.0 100.00 \$60,900.0 500.00 \$23,800.0 150.00 \$15,050.0 100.00 \$15,000.0 **TOTAL - 30% - 15% - 10% - 15% COST **T USE

				Job No.	24482-01-0	n				
Stanley Consultants	vc.			Subject	RCTC	<u> </u>				
Computed by	Kyle Johnson	Date	12-Dec-12		Chilled Water					
Checked by Approved by		Date Date			OPTION 1	IAL C	ENTRIFUGAL	CHILLERS (NO	VFD)	
- грр. от от от	Itom Deparintin			(Quantity			Unit Cost		Total Coat
	Item Description)fi		No. of Unit	UOM		Material	Labor	Total Unit Cost	Total Cost
Phase 3										
500 Ton Cooling To Primary Pumps, 60	I Centrifugal Chillers ower for Centrifugal C) HP (1200 GPM @ 13 , 30 HP (1500 GPM @	30' TDH)	I)		1 EA 1 EA 1 EA 1 EA 2 EA		\$170,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00		\$186,000 \$60,900 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$315,750
							Contractor C	n Details - 30% Overhead - 15% Stor Profit - 10% Gineering - 15%		\$94,725 \$61,571 \$47,205 \$77,888
								TOTAL COST		\$597,139
							PROBAB	LE COST USE	=	\$600,000
					10	TAL -	- OPTION 1 (AI	LL 3 PHASES):		\$8,010,000

				24482-01-00	Job No.				
				RCTC	Subject			1	Stanley Consultants avc.
			udy	Chilled Water S		12-Dec-12	Date	Kyle Johnson	Computed by
	VFD)	CHILLERS (with		TRADITIONAL			Date		Checked by
	· •			OPTION 2			Date		Approved by
Total Cost		Unit Cost		uantity			n	Item Description	
	Total Unit Cost	Labor	Material	UOM	No. of Unit			itom 2000 pilot	
						VFD)	RS (With	NTRIFUGAL CHILLEF	TRADITIONAL CEN
									Phase 1
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA	-		vith VFD	Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA			hiller	wer for Centrifugal Ch	500 Ton Cooling To
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA				HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA		OH)	@ 50' TD	s, 30 HP (1500 GPM (
\$650,00	\$650,000.00	\$300,000.00	\$350,000.00	LS					Piping and Accesso
\$113,20	\$5,660.00	\$735.00	\$4,925.00	EA					12" Butterfly Valves
\$29,70 \$67,50	\$2,475.00 \$75.00	\$500.00 \$30.00	\$1,975.00 \$45.00	EA LF				ad Cable & Conduit	8" Butterfly Valves 13.8 kV Undergroun
\$6,05	\$6,054.00	\$1,304.00	\$4,750.00	EA					Pad Mounted Trans
\$3,45	\$23.00	\$11.00	\$12.00	LF			SB.	duit, Secondary to MSE	
\$65,00	\$65,000.00	\$25,000.00	\$40,000.00	EA					1600A Main Switch
\$85,00	\$85,000.00	\$35,000.00	\$50,000.00	EA					Motor Control Cente
\$4,30	\$2,150.00	\$700.00	\$1,450.00	EA					Low Voltage Transfo
\$59,58	\$3,310.00	\$910.00	\$2,400.00	EA					Motor Starter Discor
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$700,00	\$700,000.00	\$300,000.00	\$400,000.00	LS				em	Digital Control Syste
\$1,500,00	\$200.00	\$75.00	\$125.00	SF	7500				Building
\$3,661,53		SUBTOTAL							
\$1,098,46		n Details - 30%	eveloped Desig	Une					
\$713,99		Overhead - 15%	Contractor C						
\$547,39		tor Profit - 10%	Contrac						
\$903,20		gineering - 15%	stration and Eng	Admi					
\$6,924,60		TOTAL COST							
\$6,920,00	=	LE COST USE	PROBAB						
									Phase 2
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA				Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA				wer for Centrifugal Ch	•
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA			<u> </u>	HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA)H)	@ 50' IL	s, 30 HP (1500 GPM (
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$377,75		SUBTOTAL							
		n Details - 30%	eveloped Desig	Uni					
\$113.32		Overhead - 15%		311					
		tor Profit - 10%							
\$73,66			stration and En	Admi					
\$113,32 \$73,66 \$56,47 \$93,18									i
\$73,66 \$56,47		TOTAL COST							

Stanley Consultants	DK.			Job No. Subject	24482-0 RCTC	01-00				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12	Subject	Chilled			CHILLERS (with	ı VFD)	
трріотов зу				(Quantity	-		Unit Cost		
	Item Descriptio	n		No. of Unit	U	OM	Material	Labor	Total Unit Cost	Total Cost
500 Ton Cooling T Primary Pumps, 6	al Centrifugal Chillers w Tower for Centrifugal Cl 0 HP (1200 GPM @ 13 ps, 30 HP (1500 GPM	niller 80' TDH)	DH)	·	I EA I EA I EA I EA 2 EA		\$232,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00	\$248,000.00 \$60,900.00 \$23,800.00 \$15,050.00 \$15,000.00	\$248,000 \$60,900 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$377,750
							Contractor C	n Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$113,325 \$73,661 \$56,474 \$93,181
								TOTAL COST		\$714,391
							PROBAE	BLE COST USE	=	\$710,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$8,340,000

				Job No.	24482	-01-00				
Stanley Consultants »c.				Subject	RCTC	00				
	Johnson	Date	12-Dec-12	-	Chilled	Water St				
Checked by		Date					CHILLERS			
Approved by		Date		1	OPTIC	N 3			<u> </u>	
l'	tem Description			Qı	uantity			Unit Cost		Total Cost
				No. of Unit	l	JOM	Material	Labor	Total Unit Cost	
ABSORPTION CHILLERS OPTION 3	į									
500 Ton Absorption Chiller 500 Ton Cooling Tower for Primary Pumps, 60 HP (12 Condenser Pummps, 30 H Piping and Accessories 12" Butterfly Valves 13.8 kV Underground Cabl Pad Mounted Transformer, 480V Cable & Conduit, Ser 1200A Main Switch Board Motor Control Center Low Voltage Transformer Motor Starter Disconnects Pump VFD Digital Control System Building	Centrifugal Chil 00 GPM @ 130 P (1500 GPM @ le & Conduit 13 kV/480V condary to MSB	' TDH) 9 50' TE	DH)	1 1 1 20 900 1 1550 1 1 2 2 18	EA LF EA EA EA EA LS		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$350,000.00 \$4,925.00 \$4,750.00 \$12.00 \$15,000.00 \$50,000.00 \$2,400.00 \$10,000.00 \$125.00	\$17,800.00 \$9,450.00 \$1,500.00 \$10,500.00 \$300,000.00 \$735.00 \$30.00 \$11,304.00 \$11.00 \$10,000.00 \$35,000.00 \$910.00 \$5,000.00 \$75.00	\$367,800.00 \$105,700.00 \$23,800.00 \$15,050.00 \$650,000.00 \$5,666.00 \$75.00 \$6,054.00 \$23.00 \$25,000.00 \$85,000.00 \$3,310.00 \$15,000.00 \$200.00	\$367,80 \$105,70 \$23,80 \$15,05 \$650,00 \$113,20 \$29,70 \$67,50 \$6,05 \$3,45 \$25,00 \$85,00 \$4,30 \$59,58 \$30,00 \$700,00
							Contraction and Eng	overhead - 15% tor Profit - 10% gineering - 15% TOTAL COST		\$4,126,13 \$1,237,84 \$804,59 \$616,85 \$1,017,81 \$7,803,24
							PROBAB	LE COST USE	=	\$7,800,00
Phase 2 500 Ton Absorption Chiller 500 Ton Cooling Tower for Primary Pumps, 60 HP (12 Condenser Pummps, 30 H Pump VFD	Centrifugal Chil 00 GPM @ 130	'TDH)	DH)	1 1 1	EA EA EA EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00	\$367,800.00 \$105,700.00 \$23,800.00 \$15,050.00 \$15,000.00	\$367,80 \$105,70 \$23,80 \$15,05 \$30,00
								SUBTOTAL		\$542,35
								verhead - 15% tor Profit - 10%		\$162,70 \$105,75 \$81,08 \$133,78
								TOTAL COST		\$1,025,67

Stanley Consultants	ĸ.			Job No. Subject	2448 RCT	32-01-00 C				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12		Chill	ed Water Str ORPTION C				
	lteres December			(Quanti			Unit Cost		Total Ocat
	Item Description	n		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
Primary Pumps, 60	n Chillers ower for Centrifugal Ch HP (1200 GPM @ 13 os, 30 HP (1500 GPM	0' TDH)	DH)	·	1 EA 1 EA 1 EA 1 EA 2 EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00	\$367,800.00 \$105,700.00 \$23,800.00 \$15,050.00 \$15,000.00	\$367,800 \$105,700 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$542,350
							Contractor C	gn Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$162,705 \$105,758 \$81,081 \$133,784
								TOTAL COST		\$1,025,679
							PROBAE	BLE COST USE	=	\$1,030,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$9,860,000

	Job No.	24482-0	1-00				
Stanley Consultants ac.	Subject	RCTC	1 00				
Computed by Kyle Johnson Date 12-Dec-12	,	Chilled V	Vater St	udv			
Checked by Date				ugh the Buildir	ng		
Approved by Date		Option A			-		
	Q	uantity			Unit Cost		
Item Description		, 				1	Total Cost
	No. of Unit	UC	M	Material	Labor	Total Unit Cost	
Distribution Through the Building - OPTION B PHASE 1							
12" Direct Buried AWWA Pipe	440) LF		\$13.69	\$16.89	\$30.58	\$13,455
12" AWWA LR Elbow	4	EA		\$184.00	\$126.00	\$310.00	\$1,240
12" Steel Pipe	745			\$89.00	\$68.78		\$117,546
12" Pipe Insulation with Jacket		i LF		\$20.50	\$8.95		\$21,940
6" Steel Pipe) LF		\$37.50	\$35.97		\$22,041
6" Pipe Insulation with Jacket	300			\$12.40	\$6.80		\$5,760
4" Steel Pipe	360			\$23.50	\$22.93		\$16,715
4" Pipe Insulation with Jacket		LF		\$9.95 \$17.20	\$6.20		\$5,814 \$5,041
3" Steel Pipe 3" Pipe Insulation with Jacket) LF) LF		\$17.20 \$8.65	\$19.93 \$5.95		\$5,941 \$2,336
12" Steel Elbow		EA		\$3,775.00	\$208.00		\$23,898
6" Steel Elbow		B EA		\$495.00	\$139.00		\$5,072
4" Steel Elbow		EA		\$315.00	\$100.00		\$1,660
3" Steel Elbow		EA		\$255.00	\$73.00		\$984
12"x12"x4" Steel Tee		EA .		\$5,875.00	\$415.00		\$37,740
12"x12"x8" Steel Tee	2	2 EA		\$5,875.00	\$415.00	\$6,290.00	\$12,580
6"x6"x3" Steel Tee	2	2 EA		\$950.00	\$208.00	\$1,158.00	\$2,316
12"x6" Steel Reducer		2 EA		\$3,825.00	\$179.00		\$8,008
Demo and Replace Lay-In Ceiling	6408			\$2.21	\$1.42		\$23,261
AHU (12.5 Tons, 5000 CFM)		EA		\$26,500.00	\$1,600.00		\$28,100
AHU (30 Tons, 12000 CFM)		EA		\$54,500.00	\$2,450.00		\$56,950
AHU (40 Tons, 16000 CFM)		EA		\$79,500.00	\$3,100.00		\$82,600
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)		EA		\$7,900.00	\$620.00		\$8,520
Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH)		EA EA		\$3,725.00	\$475.00		\$4,200
Secondary CHWP (Theater) 7.5 HP (206.25 GPM. 60' TDH) Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)		EA		\$3,725.00 \$3,725.00	\$475.00 \$475.00		\$4,200 \$4,200
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH)		EA		\$1,685.00	\$214.00		\$1,899
				SUBTO	OTAL PHASE 1	I	\$518,976
			Diffi	cult Workina C	onditions - 20%		\$103,795
					n Details - 30%		\$186,831
					Overhead - 15%		\$121,440
			Admins		ctor Profit - 10% gineering - 15%		\$93,104 \$153,622
			710111110		-		
					TOTAL COST		\$1,177,770
				PROBAE	BLE COST USE	•	\$1,178,000
PHASE 2							
12" Steel Pipe	420	LF		\$89.00	\$68.78	\$157.78	\$66,268
12" Pipe Insulation with Jacket	420			\$20.50	\$8.95		\$12,369
8" Steel Pipe	160	LF		\$55.50	\$44.82		\$16,051
8" Pipe Insulation with Jacket	160	LF		\$14.80	\$7.55	\$22.35	\$3,576
12"x12"x12" Steel Tee		EA .		\$5,875.00	\$415.00		\$37,740
12"x8" Steel Reducer		EA		\$3,825.00	\$179.00		\$8,008
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH)	2	2 EA		\$7,900.00	\$620.00	\$8,520.00	\$17,040
				SUBTO	OTAL PHASE 2	2	\$161,052
					onditions - 20%		\$32,210
			Unde		ın Details - 30%		\$57,979
					Overhead - 15%		\$37,686
					ctor Profit - 10%		\$28,893
			Admins	tration and En	gineering - 15%		\$47,673
					TOTAL COST	Ī	\$365,493
				PROBAE	BLE COST USE		\$365,000

				04400 04 00				
Stanley Consultants ***	c		Job No. Subject	24482-01-00 RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	Gubject	Chilled Water S	Study			
Checked by	rtyle dominaem	Date TE Bee 12			ough the Buildin	a		
Approved by		Date		Option A - Ph 1		3		
	Item Description	on.	C	Quantity		Unit Cost		Total Cost
	nom besonput		No. of Unit	UOM	Material	Labor	Total Unit Cost	Total Goot
PHASE 3								
8" Direct Buried AV	VWA Pipe		2365	i LF	\$11.85	\$15.25	\$27.10	\$64,092
8" AWWA LR Elbo			12	2 EA	\$144.00	\$99.00		\$2,916
8" Steel Pipe			160) LF	\$55.50	\$44.82	\$100.32	\$16,051
8" Pipe Insulation v	vith Jacket) LF	\$14.80	\$7.55		\$3,576
8" Steel Elbow				EA	\$855.00	\$156.00		\$4,044
12"x8" Steel Reduc				EA	\$3,825.00	\$179.00		\$8,008
Secondary CHWP	(SC) 15 HP (520 GP	M. 60' TDH)	2	? EA	\$9,625.00	\$780.00	\$10,405.00	\$20,810
					SUBTO	OTAL PHASE 3	3	\$119,497
				Und	developed Desig	n Details - 30%		\$35,849
					Contractor C	Overhead - 15%		\$23,302
						tor Profit - 10%		\$17,865
				Admir	nstration and Eng	gineering - 15%		\$11,552
						TOTAL COST	-	\$208,065
					PROBAB	LE COST USE	<u>_</u>	\$208,000
				TOTAL	- OPTION B (AL	L 3 PHASES)		\$1,751,000
				IOIAL	- Of Hone B (AL	L OT HAGES)		\$1,731,000

Computed by										
Comparison by Mark Library Date Library Date	Stanley Consultants ac.				00					
Checked by	Computed by Kylo Johnson	Data 12 Dag 12	Subject		tor Study					
Page						Ruildina				
Distribution Outside the Building - OPTION A										
Description Outside the Building - OPTION A PhASE	Ph		Qı	•	, ,-		Unit Cost			
Distribution Quiside the Building - OPTION A PHASE 12° Direct Buried AWWA Pipe 1025 LF \$13.69 \$16.89 \$30.58 \$31.345 Phase 20° Direct Buried AWWA Pipe 20° DF \$11.85 \$15.25 \$27.10 \$7.046 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.355 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.60 \$15.50 \$40.00 \$40.00 Promet Buried AWWA Pipe 20° LF \$26.40 \$20.91 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.00 \$1.00 Promet Buried AWWA Tree 20° LA \$24.00 \$24.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$24.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00	Item Descripti	on	No. of Unit	LION	Moto	riol	Labor	Total Unit Cost	Total Cost	
PHASE	E		No. of Unit	UOIV	i Mate	riai	Labor	Total Unit Cost		
8**Direct Buried AWWA Pipe** 1620 LF		PTION A								
8' Direct Buried AWWA Pipe 1620 LF	12" Direct Buried AWWA Pipe		1025	LF	\$	13.69	\$16.89	\$30.58	\$31,345	
4* Direct Buried AWWA Pipe 240 LF 98.54 st 313.52 \$20.06 \$8.1814 1**Z*12**AWWA Tee	8" Direct Buried AWWA Pipe		260	LF	\$	11.85	\$15.25	\$27.10	\$7,046	
12*12* AWWA Tee	6" Direct Buried AWWA Pipe		1620	LF	\$	10.64	\$14.27	\$24.91	\$40,354	
12-x4 NWNA Tec 2 EA	4" Direct Buried AWWA Pipe		240	LF		\$6.54	\$13.52	\$20.06	\$4,814	
8/st AWMA Tee	12"x12" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006	
876 MWA Tee	12"x4" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006	
81-86* AWWA Tee 2 EA \$40,00 \$154.00 \$394.00 \$788 6* AWWA LR Ebow 8 EA \$76,00 \$58.00 \$314.00 \$10,00 8 EA \$76,00 \$58.00 \$134.00 \$10,00 8 EA \$76,00 8 EA \$76,00 \$10,00 8 EA \$76,00 8 EA \$76	8"x4" AWWA Tee		2	EA	\$2	40.00	\$154.00	\$394.00	\$788	
12 AWMA LP Elbow	8"x6" AWWA Tee									
8 EA \$75.00 \$88.00 \$134.00 \$1.072 \$2.094 \$2.00 \$2.094 \$2.00 \$2.000 \$										
8 AWMA Direct Buried Valve 2 EA \$825.00 \$217.00 \$1,042.00 \$2.004 127.97 AWMA Pretucer 2 EA \$475.00 \$10.60 \$4.005 127.97 AWMA Reducer 2 EA \$475.00 \$10.60 \$4.005 197.67 AWMA Reducer 2 EA \$475.00 \$10.60 \$24.46 \$486 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$32.50 \$2.293 \$46.43 \$5.572 47 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$6.00 \$1.60.00 \$8.65.00 \$56.95.0										
12 MWA Direct Burled Valve										
12-x8f XMWA Reducer										
8'Af AWWA Reducer										
6° Sleel Pipe 6° Pipe Insulation with Jacket 40 LF 512-40 56° Pipe Insulation with Jacket 40 LF 512-40 58-80 513-20 578-84 58-81 58-97 578-47 58-99 58-99 58-90 58										
6° Pipe Insulation with Jacket 40 LF \$12.40 \$8.80 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$10 LF \$23.50 \$22.93 \$46.43 \$5.572 \$4° Pipe Insulation with Jacket 120 LF \$3.95 \$8.20 \$16.15 \$1.33 \$7.99 \$10 LF \$17.20 \$19.93 \$37.13 \$5.941 \$7.990 \$10 LF \$3.65 \$1.93 \$37.13 \$5.941 \$1.990 \$1.900 \$1.										
4" Sleel Pipe 4" Pipe Insulation with Jacket 120 LF \$23.50 \$22.93 \$46.43 \$5.572 4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1.938 3" Sleel Pipe 160 LF \$17.20 \$19.93 \$37.13 \$5.941 3" Pipe Insulation with Jacket 160 LF \$16.50 \$6.20 \$19.93 \$37.13 \$5.941 180 LF \$8.65 \$5.95 \$41.60 \$23.38 AHU (12.5 Tons, 5000 CFM) 1 EA \$26.500.00 \$1.600.00 \$26.100.00 \$26.100.00 AHU (30 Tons, 12000 CFM) 1 EA \$54.500.00 \$2.450.00 \$56.950 AHU (40 Tons, 16000 CFM) 1 EA \$79.500.00 \$2.100.00 \$26.100.00 Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH) 1 EA \$7.900.00 \$20.00 \$5.50.00 Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (H) 7.5 HP (202.25 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (H) 7.5 HP (202.25 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (H) 7.5 HP (202.25 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (H) 7.5 HP (202.25 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.80 \$16.89 \$30.58 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.80 \$16.89 \$30.58 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.80 \$16.89 \$30.58 Secondary CHWP (SH) 1 HP (362.5 GPM, 60' TDH) 1 EA \$1.80 \$16.80 \$1.00 \$	-									
4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1,938 \$1.50 \$10 LF \$17.20 \$19.30 \$3.71.31 \$5.941 \$10 LF \$1.50 \$19.30 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.30 \$1.30 \$1.30 \$2.450.00 \$2.450.00 \$2.250.00 \$2.250.00 \$2.250.00 \$1.30										
3" Stele Pipe 3" Stele Pipe 3" Pipe Insulation with Jacket 180 LF \$8.65 \$5.55 \$5.55 \$14.60 \$2.338 AHU (12.5 Tons, 5000 CFM) 1 EA \$6.6500.00 \$1.600.00 \$22,100.00 \$22,										
10 F										
AHU (12 5 Tons, 5000 CFM) 1 EA \$26,500.00 \$1,600.00 \$28,100.00 \$28,100 AHU (30 Tons, 12000 CFM) 1 EA \$35,500.00 \$2,450.00 \$56,950.00	3" Steel Pipe		160	LF	\$	17.20	\$19.93	\$37.13	\$5,941	
AHU (30 Tons, 12000 CFM) AHU (30 Tons, 15000 CFM) 1 EA \$45,500.00 \$2,450.00 \$56,950.00 \$2,600.	3" Pipe Insulation with Jacket		160	LF		\$8.65	\$5.95	\$14.60	\$2,336	
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00	AHU (12.5 Tons, 5000 CFM)		1	EA	\$26,5	00.00	\$1,600.00	\$28,100.00	\$28,100	
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00			1	EA						
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)	AHU (40 Tons, 16000 CFM)		1	EA						
Secondary CHWP (CF) 7.5 HP (312.5 GPM. 60' TDH)		PM 60' TDH)								
Secondary CHWP (Theater) 7.5 IHP (206.25 GPM, 60' TDH)										
Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)										
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH) 1 EA										
SUBTOTAL PHASE 1										
Undeveloped Design Details - 30%	Secondary CHWP (SH) 2 HP (50 GPM	. 60' TDH)	1	EA	\$1,6	85.00	\$214.00	\$1,899.00	\$1,899	
Contractor Overhead - 15%					:	SUBTOT	AL PHASE 1		\$309,014	
Contractor Profit - 10% Adminstration and Engineering - 15% \$76,226					Undeveloped	Design I	Details - 30%		\$92,704	
Adminstration and Engineering - 15% \$76,226 TOTAL COST \$584,399 PROBABLE COST USE \$584,000 PROBABLE COST USE \$584,000 PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 "Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1.084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1.006 \$8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4.013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60" TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$7.594 Contractor Overhead - 15% Contractor Overhead - 15% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					Contr	actor Ove	erhead - 15%		\$60,258	
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 \$30.68 \$10.00 \$					C	Contracto	r Profit - 10%		\$46,198	
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% F0244 TOTAL COST \$447,873				А	dminstration a	ind Engin	eering - 15%		\$76,226	
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% TOTAL COST \$47,873						Т	OTAL COST		\$584,399	
12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"X8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"X8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873					PR	OBABLE	COST USE	_	\$584,000	
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	PHASE 2									
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	12" Direct Buried AWWA Pinc		10	l E	ď	13.60	¢16 00	¢20 E0	¢20c	
12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873										
12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$25,314 \$100.00 \$100								·		
8" Steel Pipe										
8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 \$										
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$4,936 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244										
SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873										
Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873	Secondary CHWP (ST) 10 HP (362.5 G	GPM. 60' TDH)	2	EA	\$7,9	00.00	\$620.00	\$8,520.00	\$17,040	
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					:	SUBTOT	AL PHASE 2		\$25,314	
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					Undeveloped	Design I	Details - 30%		\$7 504	
Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873										
Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873										
				А						
PROBABLE COST USE \$48.000						Т	OTAL COST		\$47,873	
					PR	OBABLE	COST USE		\$48,000	

			Job No.	24482-01-00				
Stanley Consultants :	c		Subject	RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	,	Chilled Water	Study			
Checked by		Date			tside the Building	g		
Approved by	•	Date		Option B - Ph				
	Item Description	on	C	Quantity		Unit Cost		Total Cost
DUMOE 0		-	No. of Unit	UOM	Material	Labor	Total Unit Cost	
PHASE 3								
8" Direct Buried AV 8" AWWA Reducer 8" Steel Pipe 8" Pipe Insulation v	VWA Pipe		2800) LF	\$11.85	\$15.25	\$27.10	\$75,880
8" AWWA Reducer	r) EA	\$234.00	\$10.60		\$2,446
8" Steel Pipe) LF	\$55.50	\$44.82		\$4,013
8" Pipe Insulation v	vith Jacket) LF	\$14.80	\$7.55		\$894
Secondary CHWP	(SC) 15 HP (520 GP	M. 60' TDH)	2	2 EA	\$9,625.00	\$780.00	\$10,405.00	\$20,810
					SUBTO	OTAL PHASE 3		\$104,043
				Un	developed Desig			\$31,213
						Overhead - 15% ctor Profit - 10%		\$20,288 \$15,554
				Admi	nstration and En			\$25,665
						TOTAL COST		\$196,763
					PROBAB	LE COST USE	_	\$197,000
				TOTAL	- OPTION A (AI	L 3 PHASES):		\$829,000

HEAPR MANUAL Phase I & II Main Campus Building Domestic Water Piping Replacement

Rochester Community and Technical College

Req. No.: 13

Date: December 2020

Campus/Building	Main Campus Buildin	<u>g</u>
Project Location	Rochester, MN	
General Classifica	ation of All Work: (Provide e	est. construction costs by "classification of work")
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$837,800	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Security	(Fire alarm systems, public address, building security)
\$837,800	Total	

General Description of Existing Conditions and All Work

Institution

A large majority of domestic hot and cold water piping systems on the Main Campus were originally constructed with galvanized steel piping. These 40+-year old piping systems are showing signs of significant rust and deterioration resulting in leaks, breaks and poor drinking water quality. This project will replace the domestic hot and cold water piping systems (and fixtures) with copper piping or other code/MnState-approved, economically viable materials (such as stainless steel for larger pipe diameters).

Added 18% cost escalation to original 2014 estimate to mid-year 2020.

Project Title - Phase I & II Main Campus Building Domestic Water Piping Replacement Priority Project(s) and General Work Description: (Provide estimated construction costs for specific priority project with general description) \$837,800 Phase I & II Main Campus Building Domestic Water Piping Replacement \$ \$837,800 Total Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus: Project will reduce the Main Campus FCI from 0.09 to 0.08.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 Cost Estimate - TKDA

Main Campus Domestic Water Replacement		La	bor & Mate	rial	
Description	Quantity	Unit	Unit Cost		Total
1966 Area Phase I					
Demolition					
Piping and Fixtures	86	EA	\$ 500.00	\$	43,000.00
Replacement					
Lavs and Service Sinks, Fixture and Piping	20	EA	\$ 3,000.00	\$	60,000.00
Urinals and Water Clostets, Fixture and Piping	46	EA	\$ 4,000.00	\$	184,000.00
Mech Room Piping (2 sets of W.H.'s in separate rooms)	2	EA	\$ 10,000.00	\$	20,000.00
Mechanical Construction Subtotal				\$	307,000
Removal and reinstallation of ceilings	1	LS	\$ 10,000.00	\$	10,000.00
Patching and Misc Repairs	1	LS	\$ 20,000.00	\$	20,000.00
Construction Subtota				\$	317,000
20% Undeveloped design cost				\$	31,700
25% Contractor OH&P and General Conditions				\$	79,250
2% Occupied Facility/Difficulty Factor				\$	6,340
Subtota				\$	434,290
10% Owner's Contingency				\$	43,429
Construction Tota				\$	480,000

Engineering, Cx, other Soft Costs 10% $\$ TOTAL $\$ 48,000.00

528,000.00

Inflation to Midpt Construction 2014 7.5% \$
TOTAL PROJECT BUDGET \$ 39,600.00 570,000.00

1968 Area Phase II				
Demolition				
Piping and Fixtures	14	EA	\$ 500.00	\$ 7,000.00
Replacement				
Lavs and Service Sinks, Fixture and Piping	6	EA	\$ 3,000.00	\$ 18,000.00
Urinals and Water Clostets, Fixture and Piping	8	EA	\$ 4,000.00	\$ 32,000.00
Mech Room Piping	1	EA	\$ 10,000.00	\$ 10,000.00
Mechanical Construction Subtotal				\$ 67,000
Removal and reinstallation of ceilings	1	LS	\$ 2,500.00	\$ 2,500.00
Patching and Misc Repairs	1	LS	\$ 5,000.00	\$ 5,000.00
Construction Subtotal				\$ 69,500
20% Undeveloped design cost				\$ 6,950
25% Contractor OH&P and General Conditions				\$ 17,375
2% Occupied Facility/Difficulty Factor				\$ 1,390
Subtotal				\$ 95,215
10% Owner's Contingency				\$ 9,522
Construction Total				\$ 110,000

Engineering, Cx, other Soft Costs 10% \$ 11,000.00

121,000.00 TOTAL \$

Inflation to Midpt Construction 2014 7.5% \$ 9,075.00

TOTAL PROJECT BUDGET \$ 140,000.00

Main Campus Domestic Water Replacement		Labor & Material				
Description	Quantity	Unit	Unit Cost	Total		

1970 Area Phase III					
Demolition					
Piping and Fixtures	70	EA	\$	500.00	\$ 35,000.00
Replacement					
Lavs and Service Sinks, Fixture and Piping	30	EA	\$ 3,	00.00	\$ 90,000.00
Urinals and Water Clostets, Fixture and Piping	40	EA	\$ 4,	000.00	\$ 160,000.00
Mech Room Piping	1	EA	\$ 10,	00.000	\$ 10,000.00
Mechanical Construction Subtotal					\$ 295,000
Removal and reinstallation of ceilings	1	LS	\$ 10,	00.000	\$ 10,000.00
Patching and Misc Repairs	1	LS	\$ 20,	00.000	\$ 20,000.00
Construction Subtotal					\$ 305,000
20% Undeveloped design cost					\$ 30,500
25% Contractor OH&P and General Conditions					\$ 76,250
2% Occupied Facility/Difficulty Factor					\$ 6,100
Subtotal					\$ 417,850
10% Owner's Contingency					\$ 41,785
Construction Total					\$ 460,000

Engineering, Cx, other Soft Costs 10% \$ 46,000.00

TOTAL \$

506,000.00

Inflation to Midpt Construction 2014 7.5% \$ 37,950.00 TOTAL PROJECT BUDGET \$ 550,000.00

1972 Area Phase IV				
Demolition				
Piping and Fixtures	14	EA	\$ 500.00	\$ 7,000.00
Replacement				
Lavs and Service Sinks, Fixture and Piping	10	EA	\$ 3,000.00	\$ 30,000.00
Urinals and Water Clostets, Fixture and Piping	4	EA	\$ 4,000.00	\$ 16,000.00
Mech Room Piping	1	EA	\$ 10,000.00	\$ 10,000.00
Mechanical Construction Subtotal				\$ 63,000
Removal and reinstallation of ceilings	1	LS	\$ 2,500.00	\$ 2,500.00
Patching and Misc Repairs	1	LS	\$ 5,000.00	\$ 5,000.00
Construction Subtotal				\$ 65,500
20% Undeveloped design cost				\$ 6,550
25% Contractor OH&P and General Conditions				\$ 16,375
2% Occupied Facility/Difficulty Factor				\$ 1,310
Subtotal				\$ 89,735
10% Owner's Contingency				\$ 8,974
Construction Total				\$ 100,000

Engineering, Cx, other Soft Costs 10% \$ 10,000.00

TOTAL \$

110,000.00

Inflation to Midpt Construction 2014 7.5% \$ 8,250.00 TOTAL PROJECT BUDGET \$ 120,000.00

TOTAL ALL BUILDINGS \$ 1,380,000.00

HEAPR MANUAL Phase III & IV Main Campus Domestic Water Piping Replacement

Rochester Community and Technical College

Req. No.: 14

Date: December 2020

Campus/Building Main Campus Building **Project Location** Rochester, MN General Classification of All Work: (Provide est. construction costs by "classification of work") **\$ Exterior Envelope** (exterior roof, walls, windows, exterior doors) \$ Building Interior (ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors) **\$ Fire Suppression** (sprinkler systems, components, piping, equipment) \$790,600 Plumbing (plumbing systems, components, piping, fixtures, equipment) \$ HVAC (HVAC systems, components, piping, equipment, heating & cooling plants) \$ Electrical (Electrical systems, power distribution, lighting, equipment) Life Safety and Security (Fire alarm systems, public address, building security) \$790,600 Total

General Description of Existing Conditions and All Work

Institution

A large majority of domestic hot and cold water piping systems on the Main Campus were originally constructed with galvanized steel piping. These 40+-year old piping systems are showing signs of significant rust and deterioration resulting in leaks, breaks and poor drinking water quality. This project will replace the domestic hot and cold water piping systems (and fixtures) with copper piping or other code/MnState-approved, economically viable materials (such as stainless steel for larger pipe diameters).

Added 18% cost escalation to original 2014 estimate to mid-year 2020.

Project Title - Phase III & IV Main Campus Domestic Water Piping Replacement Priority Project(s) and General Work Description: (Provide estimated construction costs for specific priority project with general description) \$790,600Phase III & IV Main Campus Domestic Water Piping Replacement \$ \$ \$ \$790,600 Total Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus: Project will reduce the Main Campus FCI from 0.09 to 0.08.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 Project Cost Estimate - TKDA

Main Campus Domestic Water Replacement	Labor & Material				
Description	Quantity	Unit	Unit Cost		Total
1966 Area Phase I					
Demolition					
Piping and Fixtures	86	EA	\$ 500.00	\$	43,000.00
Replacement					
Lavs and Service Sinks, Fixture and Piping	20	EA	\$ 3,000.00	\$	60,000.00
Urinals and Water Clostets, Fixture and Piping	46	EA	\$ 4,000.00	\$	184,000.00
Mech Room Piping (2 sets of W.H.'s in separate rooms)	2	EA	\$ 10,000.00	\$	20,000.00
Mechanical Construction Subtota				\$	307,000
Removal and reinstallation of ceilings	1	LS	\$ 10,000.00	\$	10,000.00
Patching and Misc Repairs	1	LS	\$ 20,000.00	\$	20,000.00
Construction Subtota	I			\$	317,000
20% Undeveloped design cost				\$	31,700
25% Contractor OH&P and General Conditions				\$	79,250
2% Occupied Facility/Difficulty Factor				\$	6,340
Subtota	ı 📗 💮			\$	434,290
10% Owner's Contingency				\$	43,429
Construction Total	I			\$	480,000

Engineering, Cx, other Soft Costs 10% \$
TOTAL \$ 48,000.00

528,000.00

Inflation to Midpt Construction 2014 7.5% \$ 39,600.00 TOTAL PROJECT BUDGET \$ 570,000.00

1968 Area Phase II				
Demolition				
Piping and Fixtures	14	EA	\$ 500.00	\$ 7,000.00
Replacement				
Lavs and Service Sinks, Fixture and Piping	6	EA	\$ 3,000.00	\$ 18,000.00
Urinals and Water Clostets, Fixture and Piping	8	EA	\$ 4,000.00	\$ 32,000.00
Mech Room Piping	1	EA	\$ 10,000.00	\$ 10,000.00
Mechanical Construction Subtotal				\$ 67,000
Removal and reinstallation of ceilings	1	LS	\$ 2,500.00	\$ 2,500.00
Patching and Misc Repairs	1	LS	\$ 5,000.00	\$ 5,000.00
Construction Subtotal				\$ 69,500
20% Undeveloped design cost				\$ 6,950
25% Contractor OH&P and General Conditions				\$ 17,375
2% Occupied Facility/Difficulty Factor				\$ 1,390
Subtotal				\$ 95,215
10% Owner's Contingency				\$ 9,522
Construction Total				\$ 110,000

Engineering, Cx, other Soft Costs 10% \$ 11,000.00

TOTAL \$ 121,000.00

Inflation to Midpt Construction 2014 7.5% \$ 9,075.00

TOTAL PROJECT BUDGET \$ 140,000.00

Main Campus Domestic Water Replacement		Labor & Material				
Description	Quantity	Unit	Unit Cost	Total		

1970 Area Phase III				
Demolition				
Piping and Fixtures	70	EA	\$ 500.00	\$ 35,000.00
Replacement				
Lavs and Service Sinks, Fixture and Piping	30	EA	\$ 3,000.00	\$ 90,000.00
Urinals and Water Clostets, Fixture and Piping	40	EA	\$ 4,000.00	\$ 160,000.00
Mech Room Piping	1	EA	\$ 10,000.00	\$ 10,000.00
Mechanical Construction Subtotal				\$ 295,000
Removal and reinstallation of ceilings	1	LS	\$ 10,000.00	\$ 10,000.00
Patching and Misc Repairs	1	LS	\$ 20,000.00	\$ 20,000.00
Construction Subtotal				\$ 305,000
20% Undeveloped design cost				\$ 30,500
25% Contractor OH&P and General Conditions				\$ 76,250
2% Occupied Facility/Difficulty Factor				\$ 6,100
Subtotal				\$ 417,850
10% Owner's Contingency				\$ 41,785
Construction Total				\$ 460,000

Engineering, Cx, other Soft Costs 10% \$ 46,000.00

TOTAL \$ 506,000.00

Inflation to Midpt Construction 2014 7.5% \$ 37,950.00 TOTAL PROJECT BUDGET \$ 550,000.00

1972 Area Phase IV				
Demolition				
Piping and Fixtures	14	EA	\$ 500.00	\$ 7,000.00
Replacement				
Lavs and Service Sinks, Fixture and Piping	10	EA	\$ 3,000.00	\$ 30,000.00
Urinals and Water Clostets, Fixture and Piping	4	EA	\$ 4,000.00	\$ 16,000.00
Mech Room Piping	1	EA	\$ 10,000.00	\$ 10,000.00
Mechanical Construction Subtotal				\$ 63,000
Removal and reinstallation of ceilings	1	LS	\$ 2,500.00	\$ 2,500.00
Patching and Misc Repairs	1	LS	\$ 5,000.00	\$ 5,000.00
Construction Subtotal				\$ 65,500
20% Undeveloped design cost				\$ 6,550
25% Contractor OH&P and General Conditions				\$ 16,375
2% Occupied Facility/Difficulty Factor				\$ 1,310
Subtotal				\$ 89,735
10% Owner's Contingency				\$ 8,974
Construction Total				\$ 100,000

Engineering, Cx, other Soft Costs 10% \$ 10,000.00

TOTAL \$ 110,000.00

Inflation to Midpt Construction 2014 7.5% \$ 8,250.00

TOTAL PROJECT BUDGET \$ 120,000.00

TOTAL ALL BUILDINGS \$ 1,380,000.00

HEAPR MANUAL

College Center Second Floor Toilet Room Renovations and Accessibility Upgrades

Req. No.: 15

Date: December 2020

Institution Rochester Community and Technical College

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classification of All Work: (Provide est. construction costs by "classification of work") \$ Exterior Envelope (exterior roof, walls, windows, exterior doors) **\$ Building Interior** (ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors) **\$ Fire Suppression** (sprinkler systems, components, piping, equipment) \$300,000 Plumbing (plumbing systems, components, piping, fixtures, equipment) \$ HVAC (HVAC systems, components, piping, equipment, heating & cooling plants) \$ Electrical (Electrical systems, power distribution, lighting, equipment) Life Safety and Security (Fire alarm systems, public address, building security) \$300,000 Total

General Description of Existing Conditions and All Work

The second floor Toilet Room is the final remaining Toilet Room in the College Center to be upgraded and will be renovated to match the first and third floors above and below.

Project Title - College Center Second Floor Toilet Room Renovations and Accessibility Upgrades

<u>Priority Project(s) and General Work Description</u>: (Provide estimated <u>construction</u> costs for specific priority project with general description)

\$300,00 Main Campus – College Center 2nd Floor Toilet Room Renovations \$300,000

\$

\$300,000 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Students, faculty and visitors with disabilities currently are not served adequately with toilet fixtures. To relieve the inequality within the confines of existing buildings, the addition of accessible unisex toilet rooms scattered throughout the building would help resolve these inequities with minimal impact. The Federal Americans with Disabilities Act is enforceable legally. To date the campus has not been sued for inequity, but it is a potential risk the campus is taking. In addition, the exclusion of potential students and faculty with mobility issues is considered discrimination and reduces potential revenue of the campus in serving this population. This item has not yet appeared on the Deferred Maintenance list, but would become a high priority if a complaint were filed.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

HEAPR MANUAL Art Hall AHU Replacement & Heating System Conversion

Req. No.: 18

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classificat	tion of All Work (Provid	e est. construction costs by "classification of work")
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$590,000	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Security	(Fire alarm systems, public address, building security)
\$590,000	Total	

General Description of Existing Conditions and All Work

Art Hall is served by two air handling units. Air Handling Unit AH-1 is a constant volume, chilled water cooling and electric preheat unit located in the west mechanical room on the third floor and serves the west half of the building with four electric duct-mounted reheat coils. AH-2 is a constant volume, chilled water cooling and electric preheat unit located in the east mechanical room on the third floor and serves the east half of the building with four electric duct-mounted reheat coils. Both air handling units will be replaced with new VAV units with chilled water cooling and hot water heating coils. Duct-mounted electric reheat coils will be replaced with new VAV boxes with hot water reheat coils. New chilled water and hot water piping systems will be installed to serve the new AHUs and VAV boxes. All associated energy management systems will be upgraded to direct digital controls and integrated into the existing campus Building Automation System.

Added 18% cost escalation to original 2014 estimate to mid-year 2020.

Project Title - Hill Theatre and Art Hall Heating System Conversion								
<u>Priority Project(s) and General Work Description</u> : (Provide estimated <u>construction</u> costs for specific priority project with general description)								
\$590,000 Art Hall AHU Replacement & Heating System Conversion								
<u> </u>								
<u> </u>								
\$590,000 Total								
Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:								

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 2013 Project Cost Estimate - TKDA

University Center Conversion	Labor & Material				
Description	Quantity	Unit	Unit Cost		Total
Art Hall Conversion					
Demolition					
Remove electrical duct coils	8	EA	\$ 150.00	\$	1,200.00
Remove air handling units	2	EA	\$ 890.00	\$	1,780.00
Remove misc. ductwork	1500	LBS	\$ 1.36	\$	2,040.00
Branch Piping					
3"HS & 3"HR, sch. 40 blk stl	350	LF	\$ 48.25	\$	16,887.50
1-1/2" thick fiberglass insulation w/ASJ	350	LF	\$ 10.00	\$	3,500.00
2"HS & 2"HR, sch. 40 blk stl	400	LF	\$ 29.60	\$	11,840.00
1-1/2" thick fiberglass insulation w/ASJ	400	LF	\$ 9.00	\$	3,600.00
1"HS & 1"HR, sch. 40 blk stl	150	LF	\$ 19.80	\$	2,970.00
1-1/2" thick fiberglass insulation w/ASJ	150	LF	\$ 8.00	\$	1,200.00
Equipment					
Air handling unit w/chilled wtr cooling and hot water heating	2	EA	\$ 25,000.00	\$	50,000.00
VAV box with hot water reheat coil	8	EA	\$ 4,650.00		37,200.00
Ductwork	1500	LBS	\$ 9.27	\$	13,905.00
AHU controls	72	PTS	\$ 800.00	\$	57,600.00
Mechanical Construction Subtotal				\$	203,723
Electrical Work (Assume 20% of Mechanical Subtotal)				\$	40,745
Removal and reinstallation of ceilings	8500	SF	\$ 2.00	\$	17,000.00
Construction Subtotal				\$	261,467
10% Undeveloped design cost				\$	26,147
25% Contractor OH&P and General Conditions				\$	65,367
2% Occupied Facility/Difficulty Factor				\$	5,229
Subtotal				\$	358,210
Inflation cost (7.5% - Assumes mid 2014 Construction)				\$	26,866
Subtotal				\$	385,076
10% Owner's Contingency				\$	38,508
Total Budget			·	\$	430,000

Engineering, Cx, other Soft Costs 15% \$ 64,500.00

TOTAL PROJECT BUDGET \$ 500,000.00

HEAPR MANUAL College Center AHU & Heating System Conversion

Req. No.: 19

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classification of All Work		ovide est. construction costs by "classification of work")
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$1,746,000	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Secur	ity (Fire alarm systems, public address, building security)
\$1,746,000	Total	

General Description of Existing Conditions and All Work

Air-handling Units CC-1 and CC-2 (CC-2 is not currently used) are located in the first floor mechanical room and serve the first floor with 10 electric duct-mounted reheat coils. Units CC-3 and CC-4 are located in the second floor mechanical room and serve the second and third floors with 11 electric duct-mounted reheat coils. Units CC-5 and CC-6 are located in the fourth floor mechanical room and serve the fourth floor with 9 electric duct-mounted reheat coils.

All air handling units are constant volume with electric preheat coils and chilled water cooling coils. There are seven electric cabinet unit heaters on the second and third floors. All air handling units will be replaced with new Variable Air Volume (VAV) units with hot water heating and chilled water cooling coils. Electric reheat coils will be replaced with new VAV boxes with hot water reheat coils. New hot water distribution piping systems will be installed to serve the new AHUs and VAVs. Existing chilled water piping systems will be re-used to serve the new AHUs. All associated energy management systems will be upgraded to direct digital controls and integrated into the existing campus Building Automation System.

Added 18% cost escalation to original 2014 estimate to mid-year 2020.

Priority Project(s) and General Work Description: (Provide estimated construction costs for specific priority project with general description) \$1,746,000 College Center Heating System Conversion \$1,746,000 Total Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 2013 Project Cost Estimate - TKDA

University Center Conversion		Lal	bor & Mate	erial	
Description	Quantity	Unit	Unit Cos	t	Total
College Center Conversion					
Demolition					
Remove electrical duct coils	30	EA	\$ 150.0		4,500.00
Remove first floor air handling units	2	EA	\$ 890.0		1,780.00
Remove second and third floor air handling units	4	EA	\$ 890.0	\$	3,560.00
Remove misc. ductwork	6000	LBS	\$ 1.3	\$	8,160.00
Branch Piping					
4"HS & 4"HR, sch. 40 blk stl	400	LF	\$ 57.6	\$	23,040.00
1-1/2" thick fiberglass insulation w/ASJ	400	LF	\$ 12.0	\$	4,800.00
3"HS & 3"HR, sch. 40 blk stl	100	LF	\$ 48.2		4,825.00
1-1/2" thick fiberglass insulation w/ASJ	100	LF	\$ 10.0		1,000.00
2-1/2"HS & 2-1/2"HR, sch. 40 blk stl	800	LF	\$ 39.7		31,800.00
1-1/2" thick fiberglass insulation w/ASJ	800	LF	\$ 10.0	\$	8,000.00
2"HS & 2"HR, sch. 40 blk stl	400	LF	\$ 29.6	\$	11,840.00
1-1/2" thick fiberglass insulation w/ASJ	400	LF	\$ 9.0	\$	3,600.00
1"HS & 1"HR, sch. 40 blk stl	400	LF	\$ 19.8	\$	7,920.00
1-1/2" thick fiberglass insulation w/ASJ	400	LF	\$ 8.0	\$	3,200.00
Equipment					
First Floor Air handling unit w/chilled wtr cooling and hot water heating	2	EA	\$ 25,000.0	\$	50,000.00
Second Floor Air handling unit w/chilled wtr cooling and hot water heating	2	EA	\$ 25,000.0	\$	50,000.00
Fourth Floor Air handling unit w/chilled wtr cooling and hot water heating	2	EA	\$ 25,000.0	\$	50,000.00
VAV box with hot water reheat coil	30	EA	\$ 4,650.0	\$	139,500.00
Ductwork	6000	LBS	\$ 9.2	\$	55,620.00
AHU controls	200	PTS	\$ 800.0	\$	160,000.00
Mechanical Construction Subtotal				\$	623,145
Electrical Work (Assume 20% of Mechanical Subtotal)				\$	124,629
Removal and reinstallation of ceilings	20000	SF	\$ 2.0	\$	40,000.00
Construction Subtotal				\$	787,774
10% Undeveloped design cost				\$	78,777
25% Contractor OH&P and General Conditions				\$	196,944
2% Occupied Facility/Difficulty Factor				\$	15,755
Subtotal				\$	1,079,250
Inflation cost (7.5% - Assumes mid 2014 Construction)				\$	80,944
Subtotal				\$	1,160,194
10% Owner's Contingency				\$	116,019
Total Budget				\$	1,280,000

Engineering, Cx, other Soft Costs 15% \$ 192,000.00

TOTAL PROJECT BUDGET \$ 1,480,000.00

HEAPR MANUAL East Hall Entrance Vestibule Remodel and Addition

Req. No.: 21

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Main Campus Building

Project Location Rochester, MN

General Classification of All Work		e est. construction costs by "classification of work")
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$320,000	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$0	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Security	(Fire alarm systems, public address, building security)
\$320,000	Total	

General Description of Existing Conditions and All Work

Existing vestibule area functions as a dual-purpose entrance air-lock and holding/waiting area for students and faculty. Current footprint is inadequate for number of occupants, particularly in winter, waiting for transportation and the predominantly all glass envelope is in need of replacement. Minor expansion of footprint area and modified envelope is desirable to improve function and energy performance. Project would add approximately 400 sq. ft. addition and related upgrades.

Project Title -East Hall Entrance Vestibule Remodel and Addition

<u>Priority Project(s) and General Work Description</u>: (Provide estimated <u>construction</u> costs for specific priority project with general <u>description</u>)

\$320,000 East Hall Entrance Vestibule Remodel and Addition

\$
\$
\$320,000 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 Color Photos

SPORTS FACILITIES

HEAPR MANUAL

Sports Facilities - Rochester Regional Sports Center Water Heater Replacement

Req. No.: 07

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Rochester Regional Sports Center

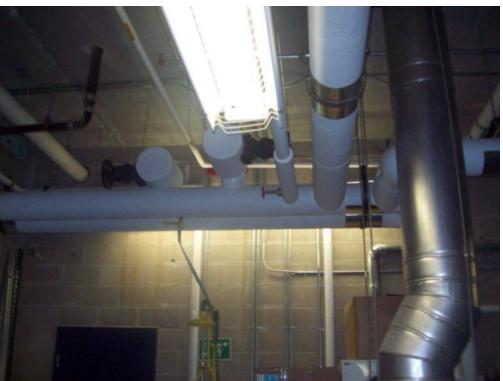
Project Location Rochester, MN

General Classification of All Work: (Provide est. construction costs by "classification of work")				
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)		
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)		
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)		
\$225,000	Plumbing	(plumbing systems, components, piping, fixtures, equipment)		
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)		
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)		
\$	Life Safety and Security	(Fire alarm systems, public address, building security)		
\$225,000	Total			

General Description of Existing Conditions and All Work

The Recreation and Sports Center is served domestic hot water by two A.O. Smith natural gas-fired water heaters rated at approximately 1,000,000 Btu/hr input. These units were installed with the original building. According to reports from Facilities/Maintenance staff and DMC Plumbing & Heating, these units are oversized for their application resulting in stagnant brown water discharge with a bad smelling odor when the building heating load is low. DMC Plumbing & Heating has performed several maintenance projects on the systems, but the problems persist.

This project will replace the natural gas-fired water heaters with new systems producing domestic hot water from the steam served to the building by the Olmsted County Waste-to-Energy Facility. The new systems will be water-to-water heat exchangers connected to the boiler header pipe, allowing hot water production from either the steam-to-hot water heat exchanger or the existing gas-fired boilers in the event of a shutdown of steam service.


Added 18% cost escalation to original 2014 estimate to mid-year 2020.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

- 1 Water Heater Color Photos
- 2 Cost Estimate TKDA

UCR Domestic Water Heater Replacement		Labor & Material				
Description			Unit Unit Cost		Total	
Demolition						
Water Heaters and Associated Systems		2	EA	\$ 1,000.00	\$	2,000.00
New						
Water-to-water heat exchangers		2	EA	\$ 30,000.00	\$	60,000.00
Storage tank		1	LS	\$ 15,000.00	\$	15,000.00
Piping, supports, valves and insulation		1	LS	\$ 5,000.00	\$	5,000.00
Mechanical Construction	n Subtotal				\$	82,000
Electrical		1	LS	\$ 5,000.00	\$	5,000.00
Instrumentation and Controls		1	LS	\$ 10,000.00	\$	10,000.00
Construction	n Subtotal				\$	97,000
20% Undeveloped design cost					\$	9,700
25% Contractor OH&P and General Conditions					\$	24,250
2% Occupied Facility/Difficulty Factor					\$	1,940
	Subtotal				\$	132,890
10% Owner's Contingency					\$	13,289
Constructi	ion Total				\$	150,000

Engineering, Cx, other Soft Costs 15% \$
TOTAL \$ 22,500.00

172,500.00

Inflation to Midpt Construction 2014 7.5% \$
TOTAL PROJECT BUDGET \$ 12,937.50 190,000.00

HEAPR MANUAL Rochester Regional Sports Center Fieldhouse Floor Replacement

Req. No.: 17

 Institution
 Rochester Community and Technical College
 Date: December 2020

 Campus/Building
 Sports Facilities

 Project Location
 Rochester, MN

General Classification of All Work:		e est. construction costs by "classification of work")
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$456,900	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Security	(Fire alarm systems, public address, building security)
\$456,900	Total	
Conoral Description	of Evicting Conditions on	d All Work

General Description of Existing Conditions and All Work

Sports floor is, chipping, stained with acid spots, and in need of major repair. Replicate track, striping, and existing markings to continue to use the building for current functions. Rather than textured floor surface, the users prefer a smoother finish, similar to St. Cloud State. Entire surface will need to be removed, leveled and reinstalled. Current floor-mounted equipment will need to be removed, salvaged, stored, and reinstalled in the same locations.

Project Title - Sports Facilities Rochester Regional Sports Center Fieldhouse Floor Replacement Priority Project(s) and General Work Description: (Provide estimated construction costs for specific priority project with general description) \$456,900 Sports Facilities - Replace Rochester Regional Sports Center Fieldhouse Floor \$456,900 Total Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus: Flooring failure has impact on students and the community being able to use part or the entire space. Potential for

tripping hazard and injury. In order to maintain usage of space for competitive sports, it is critical the floor be in good

shape and not lead to potential career-ending injury.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 Color Photos

HEAPR MANUAL

Phase III Central Chiller Plant Upgrades & Extension to Rochester Regional Sports Center

Req. No.: 20

Institution	Rochester Community and Technical College	Date: December 2020
Campus/Building	Sports Facilities	
Project Location	Rochester, MN	

General Classification of All Work (Provide est. construction costs by "classification of work")				
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)		
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)		
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)		
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)		
\$1,382,600	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)		
\$	Electrical	(Electrical systems, power distribution, lighting, equipment)		
\$	Life Safety and Security	(Fire alarm systems, public address, building security)		
\$1,382,600	\$1,382,600 Total			
General Description of Existing Conditions and All Work				
Phase III of the project includes expansion of the Central Chiller Plant system capacity. Work includes a new 500 ton chiller and cooling tower; pumps; and buried distribution legs to the Rochester Regional Sports Center and related interior piping work.				

Original 2012 Study estimate for Phase 3 increased 24% to mid-year 2020.

Project Title - Phase III Central Chilled Plant Upgrades and System Extension to Rochester Regional Sports Center

Priority Project(s) and General Work Description: (Provide estimated construction costs for specific priority project with general description)

\$1,382,600 \$ \$ \$1,382,600 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Will reduce the Campus FCI from 0.09 to 0.03.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

- 1 2012 Draft Chilled Water Study - Stanley Consultants, Inc.
- 2 Cost Information | Appendix D of Study - Stanley Consultants, Inc.

Chilled Water Study

Rochester Community and Technical College

Rochester, Minnesota

Draft

December 17, 2012

A Stanley Group Company Engineering, Environmental and Construction Services - Worldwide

Chilled Water Study

Rochester Community and Technical College Rochester, Minnesota

Draft

December 17, 2012

hereby certify that this plan, specification, or report was prepared by me or under my direct personal supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.					
Signature:	Typed or Printed Name:				
Date:	Reg. No.:				

	Executive Summary
WILL BE PROVIDED WITH FINAL SUBMITTAL	
24482 RCTC Chilled Water Study i	Stanley Consultants

Table of Contents

Section 1	
Introduction	1-1
Introduction	1-1
Existing Conditions	1-1
Main Building – West	1-1
Main Building – East	1-2
Hill Theater	1-2
East Hall (Winona State University Addition)	1-2
Singley Hall	1-2
Science and Technology	
Sports Complex	1-3
Health Sciences	
Electrical	1-3
Load Analysis	1-4
Existing Loads	1-4
Future Loads	
Distribution System Temperature Difference (ΔT)	1-4
Section 2	
Chilled Water System Considerations	2-1
General	
Available Chiller Technologies	
Absorption Chillers	
Centrifugal Chillers	
Magnetic Bearing Centrifugal Chillers.	
Additional Plant Enhancements	
Thermal Storage	2-3
Sensible Change Systems	
Phase Change Systems	
Free Cooling	2-5

Heat Transfer Fluid	2-5
Treated Water	2-5
Glycol Solution	2-5
Energy Savings	2-6
Climate Commitment	2-6
Section 3	
Study Options	3-1
General	3-1
Planning Criteria	3-1
Chilled Water Plant Options	
Option 1 – Constant Speed Centrifugal Chiller	
Option 2 – Magnetic Bearing Variable Speed Centrifugal Chiller	
Option 3 – Double Effect Steam Absorption Chiller	3-3
Distribution System Options	
Option A – Interior Distribution System	3-3
Option B – Exterior Distribution System	
Electrical Service to the New Chiller Plant	3-4
Section 4	
Cost Estimates and Life Cycle Cost Analysis	4-1
Opinions of Probable Construction Cost Estimate	
Electrical Rebates	
Life Cycle Cost Analysis	
Energy Costs	
Present Value Analysis	
Section 5	
Conclusions and Recommendations	5_1
Conclusions	
Recommendations	
Recommendations	
TABLES	
Table 1-1 Existing Chilled Water Loads	1-4
Table 4-1 Summary of Opinion of Probable Costs Central Plant	
Table 4-2 Summary of Opinion of Probable Costs Distribution System	
· · · · · · · · · · · · · · · · · · ·	
Table 4-3 Summary of Chiller Rebates	
Table 4-4 Total 25-Year Present Value Cost Comparison 4% Discount Rate	4-3
Table 4.5. Total 25 Veer Present Value Cost Comparison 8% Discount Pate	13

FIGURES

Figure 3-1 – Typical RPU Junction Cabinet	3-4
Figure 3-2 – Typical RPU Transformer	3-5
Figure 3-3 – Typical Building Switchboard	3-5
Figure A-1 – Existing Chiller in CF133	A-2
Figure A-2 – Existing Chiller in CF133	4-2
Figure A-3 – Existing Chillers in Mechanical Room ST006	4-3
Figure A-4 – Distance from Main Campus to Sports Complex and Location for Underground Pipe	A- 3
Figure A-5 – View from Parking Lot to Proposed Southeast Chiller Plant Location	A-4
APPENDICES	
Appendix A Photos and Existing Equipment Information	A-1
Appendix B Data Sheets for Proposed Equipment	B-1
Appendix C Utility Information	C-1
Appendix D Opinion of Probable Cost Information	D-1
Appendix E Life Cycle Cost Analysis I	E-1
Appendix F Drawings	F-1

Introduction

Introduction

Rochester Community and Technical College (RCTC) has requested Stanley Consultants, Inc. to perform a study of the chilled water systems at the main campus. Some of these systems are nearing the end of their useful life and will need to be replaced soon. The following is a list of the existing chillers serving the main campus that would be consolidated into a central chilled water plant. The list is also summarized in the appendices with the model numbers and GPMs.

Existing Conditions

The existing conditions of the chilled water systems were documented during site visits to the college in 2008 and 2012. The existing chillers range in age from 1967 to 2006. A summary of the existing chillers is included in Appendix A.

Main Building - West

The West portion of the main building (Coffman Hall, Endicott Hall, Singley Hall Goddard Library, and Memorial Hall) is served by a 200- ton Trane water cooled Centrifugal chiller located in Room CF 133. This unit cools the majority of the spaces on the west side of the main campus. These spaces include classrooms, labs, and admin spaces. The pumps are constant volume and all the valves in the system are 3-way valves. The chiller is rated at 0.862 kW/Ton with a 56 degree F entering water temperature and a 44 degree F leaving water temperature. The chiller was installed in 1967 and uses R-11 refrigerant. The cooling tower is located outside on grade to the southwest of the building. The cooling tower is a Marley Model # AV 245132 A1. Per the 2011 ASHRAE Handbook HVAC Applications Chapter 37 Table 4 (Included in Appendix A) The estimated service life for a centrifugal chiller is approximately 25 years, and the estimated service life of a cooling tower is approximately 20 years. Based on these values this chiller and cooling tower have exceeded their recommended service life.

Main Building – East

The East portion of the main building (College Center, Student Services, Art Hall, and Plaza Hall) is served by a 125-ton Carrier water cooled Centrifugal chiller located in Room CC 105. This unit cools the majority of the spaces on the east side of the main campus including classrooms, labs, and admin spaces. The pumps are constant volume and all the valves in the system are 3-way valves. The cooling tower is located to the southeast of the building. The cooling tower is a Baltimore Aircoil Company Model # 15227. The chiller was installed in 1970 and uses R-11 refrigerant. Based on the estimated service life values from ASHRAE this chiller and cooling tower have exceeded their recommended service life.

Hill Theater

Hill Theater is served by three direct expansion (DX) Carrier air-cooled units. These units were installed in 1971, total 82.5 tons, and use R-22 refrigerant. These units are located on the north side of the building, are enclosed by a fence, and serve the theater area and supporting offices. Per Table 4 of 2011 ASHRAE Handbook HVAC Applications Chapter 37 the estimated service life for air cooled condensing units is approximately 20 years. Based on this value these units have passed their expected service life. These units could be retrofitted with chilled water coils and added to the proposed chilled water system.

East Hall (Winona State University Addition)

East Hall is served by a 93-ton McQuay air-cooled chiller located outside of the east side of the main building. This unit cools classrooms, labs, and admin spaces. This chiller was installed in 1986 and uses R-22 refrigerant. The chiller is rated at 1.25 KW/ton. It has constant speed distribution pumps and the system has all 3-way valves. Per Table 4 of 2011 ASHRAE Handbook HVAC Applications Chapter 37 the estimated service life for air cooled condensing units (Similar to an air cooled chiller) is approximately 20 years. Based on the estimated service life values from ASHRAE this chiller has exceeded its recommended service life.

Singley Hall

The second floor of Coffman Hall (CF) is served by a 20-ton McQuay air-cooled chiller located on the roof of Singley Hall. This unit cools classrooms and offices. This chiller was installed in 1989 and uses R-22 refrigerant. Per Table 4 of 2011 ASHRAE Handbook HVAC Applications Chapter 37 the estimated service life for air cooled condensing units (Similar to an air cooled chiller) is approximately 20 years. Based on the estimated service life values from ASHRAE this chiller has exceeded its recommended service life.

Science and Technology

Science and Technology is served by two York water cooled screw chillers located in Mechanical Room ST 006. These units are 206 tons each and serve the ITV, classroom, offices, and computer labs in this building. The cooling towers are located on the roof. The distribution pumps are 20 HP with 80 feet of head, constant volume and there are 3-way valves in the system. These chillers were installed in 1992 and are using R-22 refrigerant. These chillers have not yet meet their expected service life, but will need to be replaced in the near future. Although these units do not need to be replaced at this time, their capacity will

be included in the size of the proposed chiller plant so the loads they serve can be connected in the future when replacement is needed.

Sports Complex

Two Carrier air-cooled chillers are located outside of the Sports Complex. These units were installed in 2000. Each unit is 240 tons and both units serve the entire Sports Complex consisting of a gym, workout areas, and offices. These units have an entering water temperature of 54 degrees F and a leaving water temperature of 44 degrees F. There are two pumps that each are 25 HP with 60 feet of head and have a variable frequency drive (VFD) and there are 2-way and 3-way valves in the system. Based on ASHRAE Data These chillers will pass their expected service life in 2026. Although the chillers have 14 years of expected service and are a great distance from the main campus, they will be included in the proposed chilled water plant, due to current and ongoing compressor failures.

Health Sciences

There is a York water cooled screw chiller located in Mechanical Room ST 006. This unit is 34 tons and serves the entire Heath Science addition, including office, classroom, and lab space. The cooling tower is located on the roof and the pump has a VFD with 2-way and 3-way valves in the system. This chiller was installed in 2006 and uses R-22 refrigerant. This chiller will pass its expected service life in 2029. Although this chiller should perform adequately and will not need to be replaced, it will be included in the overall size of the central chilled water plant to allow for this area of campus to be connected in the future.

Electrical

The College currently has a project that is funded and currently under contract to redo the existing campus medium voltage distribution. This study will be prepared as if this work is complete. The work is expected to be complete in June of 2013.

The main campus is served by Rochester Public Utilities (RPU) via an overhead 13.8kV line routed along the south side of the main campus building. The overhead RPU line has two 13.8kV electrical service connections. One is located outside of College Center and the second is located outside of Coffman Hall directly next to Memorial Hall. The medium voltage service is looped between these two electrical utility connections with specific building services coming from this loop. See Drawing E1 in Appendix F for the existing 13.8kV distribution one-line drawing.

The existing chillers throughout the UCR are service locally by the nearest building service. Chillers are currently served by the Coffman electrical service, College Center electrical service, Science & Technology electrical service in the main building. The chillers at the Sports Center are served by its electrical service.

Load Analysis

Existing Loads

Existing drawings and site data was reviewed to determine the existing building loads that would be served by the proposed chilled water system. The chiller located in Coffman hall serves what is considered the Main-Building West (Coffman hall, Endicott Hall, Singley Hall Goddard Library, and Memorial Hall). The chiller located in College Center basement serves what is considered the Main building East (College Center, Student Services, Art Hall, and Plaza Hall) Table 1-1 summaries the chilled water loads by each area of the building.

Table 1-1 Existing Chilled Water Loads

Area	Tons		
Main Building -West	200		
Main Building -East	125		
Hill Theater	83		
East Hall (WSU)			
Coffman Hall (2nd Floor)	20		
Science and Technology	412		
Sports complex	480		
Health Sciences	34		
Total	1447		

Source: Stanley Consultants

Future Loads

The Master plan for the college includes planning in the long term for additional academic spaces. The present master plan indicates these buildings would be located between the UCR and the Regional Sports Center. There are also plans for renovations of some of the existing spaces in the UCR. At the time of this study the requirements for these remodels and additions have not been finalized and will not be included in the loads for the initial plant sizing. Provisions will be made in sizing of piping and equipment to allow for future expansion of the central plant to accommodate these additions.

Distribution System Temperature Difference (ΔT)

The existing chillers operate at a ΔT of between 10°F and 15°F with an average of around 12°F. Most of the systems appear to be sized for 42–44°F chilled water temperature. The proposed chilled water plant will be based on a design condition of 42°F chilled water supply temperature and a 12°F ΔT .

Chilled Water System Considerations

General

This section describes some of the available technologies and strategies that could be used as part of the central plant. It also discusses common items to all of the study options.

Available Chiller Technologies

Several different types of chiller technologies are reviewed in this study. The following section gives a brief description of each type of technology and lists pros and cons for each.

Absorption Chillers

Absorption chillers utilize an absorber and generator in place of a compressor to produce chilled water. In the absorber high temperature, low pressure saturated refrigerant (usually water) combines with a liquid absorbent (typically a lithium bromide solution). This liquid mixture is then pumped to a generator where thermal energy (steam in this case) is used to heat the mixture and vaporize the refrigerant. The refrigerant vapor is than directed to the condenser where is cooled and condensed. Once cooled, the refrigerant vapor is passed through an orifice to reduce the pressure. This pressure reduction flashes some of the refrigerant and cools the remaining refrigerant to the temperature corresponding to the evaporator pressure. In the evaporator, the liquid refrigerant is boiled off by the chilled water return and becomes a gas. The refrigerant gas is directed to the absorber and the process begins again.

Absorption chillers can be either single effect or double effect. Double effect machines utilize two generators and are typically more efficient, but require a higher pressure steam than single effect machines. Efficiency for absorption chillers is listed as coefficient of performance (COP). Coefficient of performance is defined as the cooling load in BTU/hr

divided by the energy input In BTU/Hr. Efficiency for an absorption chiller is relatively constant regardless of load or condenser water temperature.

In addition to the steam required to generate cooling, the electrical requirements for the condenser pumps and cooling towers is higher for absorption chillers as the condenser water flow is higher. This cost does not include the cost of treatment chemicals and make up water in generating steam.

• Pros:

- Can utilize steam as energy source.
- Low noise levels.
- Fewer rotating parts within chiller.

• Cons:

- Leaving water temperature limited to 42 F.
- Larger physical size than other types of chillers.
- Lower efficiency than Centrifugal machines.
- Higher capital cost.
- Higher operating cost.
- Larger cooling tower required.
- More maintenance required to ensure proper cooling fluid chemistry in system.

Centrifugal Chillers

Centrifugal chillers utilize a centrifugal compressor driven by an electric motor to produce chilled water. The compressor compresses refrigerant vapor and directs it to the condenser where it is cooled and condensed into a liquid. A metering device reduces the pressure of the refrigerant and in the process reduces the temperature. The Refrigerant is converted from a liquid to a gas in the evaporator and the process begins again. Efficiency for centrifugal chillers is typically listed in kw/ton. The efficiency changes based on load and condenser water temperature.

• Pros:

- Lower operating cost.
- Lower capital cost.
- Can provide chilled water down to 39 F leaving water temperature.
- Potentially lower maintenance costs.
- May have smaller footprint.
- Smaller cooling tower.
- Smaller condenser pumps.

Cons:

- Does not use steam as energy source.
- High noise levels.

Magnetic Bearing Centrifugal Chillers.

Magnetic bearing centrifugal chillers are similar to traditional centrifugal chillers with two main differences. The first difference is the unit does not use traditional bearings, but uses magnetic levitation technology for the compressor rotating components. This improves chiller efficiency slightly. The second difference is the unit includes a variable frequency drive for the compressor. This enables the much better efficiency at part loads compared to a traditional chiller. The full load efficiency is roughly the same as for a traditional centrifugal chiller.

• Pros:

- Better part load efficiency than other types of chillers.
- Less noise than traditional centrifugal.
- Small footprint.
- Potentially lower maintenance costs.
- Lower operating costs.
- Can provide chilled water down to 39 F leaving water temperature.
- Small cooling tower.

• Cons:

- Does not use steam as energy source.
- Higher capital cost than traditional centrifugal.
- Electrical power quality important.

Additional Plant Enhancements

Central plant performance can be enhanced by addition of thermal storage and free cooling systems. These systems are described in detail below.

Thermal Storage

Thermal storage is the storage of chilled water or ice to act as a chiller. The main goal of thermal storage is to offset either demand energy costs or potentially capital costs for a new chiller. Thermal storage is operated in three basic modes; Load leveling, and load shifting.

In Load leveling operation the storage tank acts as a chiller during the peak portion of the day to offset the capital cost of installing chillers. To accomplish this chillers typically operate at full capacity all day. When load exceeds chiller capacity thermal energy system discharges,

when the load is below the chiller capacity the thermal energy system is recharged. This mode of operation minimizes chiller capacity and thermal system size.

In load shifting the entire on peak cooling load is handled by the thermal storage system. Chillers operate at off peak conditions to charge the system. This mode of operation has the highest chiller costs and thermal storage costs.

In demand limiting operation the thermal storage system is used to reduce the demand energy costs of operating chillers during the peak chilled water load. To accomplish this chillers are operated at off peak times to charge the thermal storage tank and then during the on-peak times the chillers are operated at reduced load and the thermal storage tank is discharged. Demand savings and equipment costs are higher than load leveling, and lower than load shifting.

Two types of systems exist: sensible change systems and phase change systems. Sensible change systems utilize water as the storage fluid, where phase change systems storage energy in ice.

Sensible Change Systems. Sensible change systems are classified as into two types of systems. Stratified chilled water storage systems and density depressed chilled water storage systems. Both systems consist of a large tank to store water. The stratified system uses only chilled water and relies a thermocline between the hot chilled water return and cool chilled water supply of the hot and cold liquid to separate the water available for the cooling load from the water that needs to be cooled. Density depressed systems are similar but use an additive to the chilled water to allow the water to be stored below the freezing point.

• Pros:

- Uses standard chillers.
- Efficient operation of chillers.
- Economical for most system especially larger systems.
- Reliable and simple.

• Cons:

- Low energy density.
- Potential space constraints.
- Most economical (smaller tank size) at high system temperature difference.

Phase Change Systems. Phase change systems use ice as the thermal storage medium. Ice storage systems require chillers to operate using glycol as the chilled water temperature needed to produce ice is below the freezing point of water. Different types of ice systems are available both all the systems have similar operation and efficiencies

• Pros:

- Capable of high discharge rate.
- Separate production and storage.
- Allows for cold air distribution.

• Cons:

- Complex system.
- High chiller cost.
- Chiller efficiency is reduced to create cooler charging temperature.
- Requires glycol in chilled water loop or dedicated chiller.

Free Cooling

Free cooling is the use of a heat exchanger on the chilled water system to make cooled water directly from condenser water without the use of mechanical refrigeration. Typically used in cold weather climates where internal cooling loads exist year round. This allows for relative low cost production of chilled water when the cooling tower can produce low temperature water. If installed in series with the chillers can be used to precool the chilled water and reduce the load on the chiller.

Heat Transfer Fluid

The heat transfer fluid for central chilled water plants is the fluid that is distributed throughout the distribution system to the end users. Typically, this fluid consists of either treated water or a glycol solution.

Treated Water. Treated water, consisting of water from the local water utility with rust, microbial, and scale inhibitors is commonly used as the heat transfer medium in central plants. Treated water is less costly than glycol systems and has a specific heat of 1 btu/lb-°F. The disadvantage of treated water is the freezing point of water is above the ambient temperatures expected to be seen during the winter months. To protect coils from freezing, additional controls (face and bypass dampers, coil pump, heat exchanger to glycol fluid, etc.) are required. Freezing is typically not an issue in the distribution system or the chiller at the central plant.

Glycol Solution. Glycol solutions consisting of either a 40–50% glycol and water mixture is used as the heat transfer medium in central plants. Glycol solutions are more costly than treated water. The specific heat of glycol solutions range from 0.80 btu/lb-°F–0.93 btu/lb-°F. This lower specific heat requires larger heat transfer areas at coils and at chillers. Glycol solutions typically do not need any special controls or provisions to prevent freezing as the percentages are selected to prevent freezing. Glycol solutions have freezing points ranging from -8°F to -29°F.

Energy Savings

There are multiple ways that energy will be saved by the implementation of the proposed chilled water plant. One will be from the installation of higher efficiency equipment versus the lower efficiency older equipment currently is use. Another will be from the optimization of the chillers. This will occur because the chiller use will be able to better match the current load; and therefore, will get a better difference in supply and return chilled water temperature. There will also be less energy used by the pumps because they will have VFDs and there will be 2-way valves in the system. This will reduce the amount of required pumping power during non-peak time periods.

Climate Commitment

Through our work with other higher education clients, we have become familiar with the American College and University Presidents Climate Commitment. We understand RCTC's President, Donald Supalla, has signed on to this commitment. This commitment means that RCTC will be developing short-term and long-term action items in an effort to make the campus more climate neutral. Therefore, the motivation to act on a project such as a central chilled water plant has probably never been greater. A central chilled water plant will reduce RCTC's greenhouse gas emissions on several levels: reduction in the type and quantity of refrigerants on campus (prevent/minimize leakages); elimination of ozone depleting HCFC refrigerants on campus (R-11 has been phased out and R-22 also will be phased out of production by 2030); and a significant reduction in electrical energy usage (purchased power from RPU's primarily coal-fired plant).

Study Options

General

The majority of the chilled water system equipment serving the Main Campus building has surpassed the expected service life. Other equipment is nearing the end or the service life or is experiencing maintenance issue. In the near future RCTC will be required to replace components of four chilled water systems and three DX systems. This study investigates adding a single central plant to campus in lieu of replacing individual equipment.

Planning Criteria

To develop the study options several items were discussed with RCTC staff and the following planning criteria were identified.

- Sufficient chilled water capacity shall be provided to serve the entire UCR building and the Sports Complex. Total plant capacity after completion will be 1500 tons.
- The plant will be completed in three phases. Each phase will install a nominal 500-ton chiller and associated equipment. The phases are based on age of installed equipment and replacing the oldest equipment as part of phase 1. The phase 1 chiller may operate above its rated conditions for short periods of time as the chillers identified in phase 1 total 546 tons. The phases will include the following:
 - Phase 1 will replace the chillers located in Main Hall East, Main Hall West, East Hall, and Singley Hall. Hill Theater DX equipment will be replaced as part of phase 1 and connected to the chilled water system. This phase will include the chiller building and chiller building piping and valves for phase 2 and phase3.
 - Phase 2 will replace the chillers located in Science and Technology
 - Phase 3 will replace the chillers at the Sports Complex.

- The plant location will be to the southeast of the UCR building. In the spot presently occupied by the storage garages
- Plant will include space for storage for campus building maintenance and work area for maintenance staff.
- The existing DX equipment serving Hill Theater will be replaced with chilled water systems. Costs for this replacement are included in the distribution system costs.
- At locations of existing chillers and pumps existing pump will be replaced and a decoupler loop added to install a primary secondary chilled water system. Coils served by new building pumps will have 3-way valves replaced with 2-way valves. Secondary chilled water pumps serving building coils will be provided with VFDs.

Chilled Water Plant Options

Option 1 – Constant Speed Centrifugal Chiller

Option 1 consists of creating a new chilled water plant to serve the UCR, and Sports Center. This plant will utilize traditional constant speed, water-cooled, centrifugal compressor, electric chillers with primary pumps located at the central plant. Cooling towers will be on grade adjacent to the plant building.

- Phase 1 will include installation of a 500-ton chiller and installation of distribution systems to Main Building East, Main Building West, East Hall, Singley Hall, and Hill Theater. A 60 horsepower (Hp) distribution pump, 30 Hp condenser water pump and 40 Hp cooling tower will be added. In addition this phase will include the construction of the central plant building and electrical and piping infrastructure for the full plant build-out.
- Phase 2 will include installation of a 500-ton chiller and installation of distribution systems to Science and Technology and Health Science. A 60 horsepower (Hp) distribution pump, 30 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase
- Phase 3 will include installation of a 500-ton chiller and installation of distribution systems to the sports complex. A 60 horsepower (Hp) distribution pump, 30 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase.

Option 2 – Magnetic Bearing Variable Speed Centrifugal Chiller

Option 2 is the same as option 1, but utilizes magnetic bearing centrifugal compressor, electrical chillers with variable speed drives.

• Phase 1 will include installation of a 500-ton chiller and installation of distribution systems to Main Building East, Main Building West, East Hall, Singley Hall, and Hill Theater. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 40 Hp cooling tower will be added. In addition this phase will include the construction of the central plant building and electrical and piping infrastructure for the full plant build-out.

- Phase 2 will include installation of a 500-ton chiller and installation of distribution systems to Science and Technology and Health Science. A 60 horsepower(Hp) distribution pump, 40 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase
- Phase 3 will include installation of a 500-ton chiller and installation of distribution systems to the sports complex. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 40 Hp cooling tower will be added as part of this phase.

Option 3 – Double Effect Steam Absorption Chiller

Option 3 consists of a single chilled water plant to serve the UCR and Sports Center. This plant will utilize absorption chillers with primary pumps located in the central plant. Steam from the "Green Pipes" project will be utilized as an energy source for the absorption chillers. Cooling towers will be on grade adjacent to the plant building.

- Phase 1 will include installation of a 500-ton chiller and installation of distribution systems to Main Building East, Main Building West, East Hall, Singley Hall, and Hill Theater. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 50 Hp cooling tower will be added. In addition this phase will include the construction of the central plant building and electrical and piping infrastructure for the full plant build-out.
- Phase 2 will include installation of a 500-ton chiller and installation of distribution systems to Science and Technology and Health Science. A 60 horsepower(Hp) distribution pump, 40 Hp condenser water pump and 50 Hp cooling tower will be added as part of this phase
- Phase 3 will include installation of a 500-ton chiller and installation of distribution systems to the sports complex. A 60 horsepower (Hp) distribution pump, 40 Hp condenser water pump and 50 Hp cooling tower will be added as part of this phase.

Distribution System Options

Two options are available for connecting the proposed chilled water plant to the existing loads. Options are evaluated on a capital cost basis only and are not included in the economic analysis for the proposed central plant.

Option A – Interior Distribution System

This option routes the majority of the distribution system through the existing building. Piping will be routed from the proposed central plant to the College Center Mechanical room (CC105) via direct buried piping. From this point the distribution system will be routed throughout the building to connect to the existing loads. To serve the sports complex direct buried piping will be routed from the Science and Technology Addition.

Option B – Exterior Distribution System

This option routes the majority of the distribution system outside the building in a direct buried piping system.

Costs are included in both options to upgrade control valves (replace 3 way valves with 2 way valves) replace building pumps, and to replace the existing DX equipment serving the Hill Theater.

Electrical Service to the New Chiller Plant

Regardless of the Option above, the new chiller plant will require a separate RPU electrical service transformer and service meter. Because RCTC has gone forward with changing the campus electrical distribution system to a 'loop' arrangement, the new chiller plant can be added to the existing distribution loop without any power disruption to other facilities.

The nearest RPU owned junction cabinet does not have a spare circuit connection available and therefore a new junction cabinet will be required to serve the new chiller plant transformer. During construction, the College will be required to install all medium voltage conduits, transformer pad, and prepare the junction cabinet base. RPU typically provides the medium voltage conductors, terminations, junction cabinet, and transformer.

The transformer will be an outdoor, pad-mount, oil-filled transformer provided by RPU. The expected transformer size will likely be between 1000kVA and 1500kVA and should be determined based on the actual design loads once this project progresses to that stage. If the absorber chiller option is chosen, the transformer and service size will be much smaller. See Drawing E2 in Appendix F for electrical service connection to the new chiller plant. The photos below represent a typical RPU junction cabinet and transformer that will be located outside the chiller plant.

Typical RPU Junction Cabinet Figure 3-1

Typical RPU Transformer Figure 3-2

The RPU transformer will serve a new building switchboard. The switchboard will contain a main service breaker along with breakers for each chiller and building panelboards. The main electrical gear will be located along dedicated wall space in the chiller equipment room for the purposes of this study. All proposed new chiller plant equipment, including chillers, cooling towers, thermal storage, and the garage spaces will be served from this new service. The existing switchboard should be provided with an electrical power meter that has a communication protocol to speak with the building automation system. The switchboard should also have a transient voltage surge protection device. The photo below represents a typical building electrical service switchboard that would be located in the chiller plant.

Typical Building Switchboard Figure 3-3

Cost Estimates and Life Cycle Cost Analysis

Opinions of Probable Construction Cost Estimate

Probable construction cost estimates were developed for a conceptual level with equipment vendor quotes used for chillers and cooling towers and industry data used for other costs. As these estimates are conceptual in nature 30% was added to each cost for undeveloped design details. Contractor overhead was included as 15% and Contractor Profit were included as 10%. The costs also include 15% to cover administration and engineering costs.

The costs estimates are based on Current costs at the time of the study. The cost estimates are conceptual in nature and based on the information available at the time of the estimate without a complete detailed design and equipment selections. The final costs will depend on actual labor and material costs, actual site conditions, productivity, competitive market conditions, final project scope, project schedule and other variable factors. Therefore the final project costs may vary somewhat from the estimates presented.

Table 4-1 shows the summary of opinion of probable construction costs for the three central plant options included in this study. Copies of the opinion of probable cost estimates are included in Appendix D. This table shows the costs associated for each option. Each option is divided into three phases and shows costs for each phase and the total for all three phases. All costs are based on 2012 dollars.

Table 4-1 Summary of Opinion of Probable Costs Central Plant

Option	Phase 1	Phase 2	Phase 3	Total
Option 1 – Constant Speed Centrifugal Chillers	\$6,810,000	\$600,000	\$600,000	\$8,010,000
Option 2 – Magnetic Bearing Centrifugal Chillers	\$6,920,000	\$710,000	\$71,000	\$8,340,000
Option 3 – Double Effect Steam Absorption Chillers	\$7,800,000	\$1,030,000	\$1,030,000	\$9,860,000

Source: Stanley Consultants 2012

Table 4-2 shows the summary of opinion of probable construction costs for the two distribution options that are included in this study.

Table 4-2 Summary of Opinion of Probable Costs Distribution System

Option	Phase 1	Phase 2	Phase3	Total
Option A – Interior Distribution System	\$1,178,000	\$365,000	\$365,000	\$1,751,000
Option B – Exterior Distribution System	\$584,000	\$48,000	\$48,000	\$829,000

Source: Stanley Consultants 2012

Electrical Rebates

The electrical utility, Rochester Public Utilities (RPU), offers for efficiency improvements on water chillers. Based on the information provided by the manufacturers, the chillers would qualify for rebates as outlined in Table 4-3.

Table 4-3 Summary of Chiller Rebates

Option	Chiller Rebate
Option 1 – Constant Speed Centrifugal Chillers	\$34,575
Option 2 – Magnetic Bearing Centrifugal Chillers	\$120,675

Additional rebates for motors and VFD for pumps may be available, but since these are the same for all three options have not been included in the analysis.

Life Cycle Cost Analysis

For each of the central plant options detailed in Section 3 of this study, capital costs, electrical costs, and steam costs are compared. These items are the major cost drivers of the central plant. The difference in operational and maintenance costs between the three options is a small percentage of the Energy costs and has not been included in this analysis.

Energy Costs

The energy costs for each option were calculated using the Peak anticipated load and Bin weather data for Minneapolis, Minnesota. A computer program was used to determine the operating costs for each option. The electrical costs are based on RPU Large General Service Rate Schedule. This rate schedule is included in Appendix C. Steam costs are based on rates from the Olmstead Waste-to-Energy Facility. The present steam rate is \$17.64 per 1,000 pounds of steam.

Present Value Analysis

The present Value analysis has been performed using a discount rate of 4% and a discount rate of 8%. Costs were discounted to 2012 dollars and the total 25-year present value was compared for three options.

The following table summarizes the present value costs with a 4% discount rate.

Table 4-4 Total 25-Year Present Value Cost Comparison 4% Discount Rate

Option	Total 25-Year Present Value
Option 1 Constant Speed Centrifugal Chillers	\$16,829,609
Option 2 Magnetic Bearing Centrifugal Chillers	\$16,573,690
Option 3 Double Effect Steam Absorption Chillers	\$23,886,953

The following table summarizes the present value costs with a 8% discount rate.

Table 4-5 Total 25-Year Present Value Cost Comparison 8% Discount Rate

Option	Total 25-Year Present Value
Option 1 Constant Speed Centrifugal Chillers	\$13,997,290
Option 2 Magnetic Bearing Centrifugal Chillers	\$13,917,772
Option 3 Double Effect Steam Absorption Chillers	\$16,751,456

Conclusions and Recommendations

Conclusions

Based on the review of existing data and life cycle cost analysis the following conclusions are provided

- Free cooling at central plant will provide low cost chilled water for areas with year round cooling.
- The present utility rate does not allow for an on-peak and off peak energy rate and does not provide any benefit for a thermal storage system utilized for load shifting or demand limiting.
- Thermal storage could be used to offset capital costs for installation of a chiller at the central plant.
- Distribution system efficiency could be improved if existing chilled water coils are replaced with new coils sized for higher system ΔT and design chilled water temperature.
- Capital costs for Option 3 (absorption chillers) are the highest.
- Capital costs for Option 1 (Constant Speed Centrifugal Chillers) are the lowest.
- Energy costs for Option 3 (Absorption chillers) are the highest.
- Energy costs for Option 2 (Magnetic Bearing Centrifugal Chillers) are the lowest.
- Life cycle costs are lowest for Option 2 at both discount rates when utility rebate for chillers is included.
- The difference in life cycle costs at an 8% discount rate between Option 1 and Option 2 is negligible.

Recommendations

Based on the life cycle costs, capital costs and other factors addressed in this study the following recommendations are offered for replacing the existing chillers serving the RCTC campus:

- Design replacement cooling system for system temperature difference (DT) of 14°F or higher. (May required coils in air handling units to be designed for a higher DT than fan coil units or other terminal devices on the chilled water system.)
- Use treated water in chilled water distribution system. Where freeze protection is required, install small glycol system or other freeze protection controls.
- Provide free cooling as part of the central plant.
- Route the Distribution system as shown in Option B –Exterior Distribution System.
- Replace chillers as they exceed the useful life. As noted in the study, Coffman Hall, chiller, College Center chiller, East Hall, and Singley Hall chiller have all exceeded their useful life. Additionally, chillers serving the Science and Technology area will exceed their useful life within the next five years. Chillers serving the sports complex are expected to reach the end of their useful life in the next five to ten years.
- Replace existing chillers in phases as outlined in Option 2 Magnetic Bearing Centrifugal Chillers.

Appendix A

Photos and Existing Equipment Information

Existing Chiller in CF133 Figure A-1

Existing Chiller in CF133 Figure A-2

Existing Chillers in Mechanical Room ST006 Figure A-3

Distance from Main Campus to Sports Complex and Location for Underground Pipe Figure A-4

View from Parking Lot to Proposed Southeast Chiller Plant Location Figure A-5

	Existing Chillers									
Building	Rm #	Tons	Manuf	Model #	Date Installed	GPM	Pipe Size	GPM/ton	Series#	Notes
CF	133	225	Trane	PCV-2C-C1-D2	1967	450	6"	2.00	8589	
CC	105	125	Carrier	19DH2142CD	1970	312.5		2.50		
Theater	Outside	13	Carrier	38AD014600	1971	31.25		2.50	499360	
Theater	Outside	30	Carrier	38AD034600	1971	75		2.50	J496679	
Theater	Outside	40	Carrier	38AD044600	1971	100		2.50	J495501	
wsu	Outside	93	McQuay	ALR145C	1986	232.5	4"	2.50	5RJ0705200	
SH	Roof	20	McQuay	ALP032C	1989	50		2.50	STL0506700	
ST	Room 006	200	York	YCCH163L0110YB	1992	320	10"	1.60		Chiller #1
ST	Room 006	200	York	YCCH163L0124YB	1992	320	10"	1.60		Chiller #2
sc	Outside	240	Carrier	30GTR255B—620AH	2000	520	8"	2.17	0301F57383	Chiller #2
sc	Outside	240	Carrier	30GTR255B—620AH	2000	520	8"	2.17	0301F57399	Chiller #1
ST	Room 006	34	York	YCWS0120SC46ZAADB	2006	85		2.50	RNRM017050	Chiller #3
	Total	1459.5				3016.25		2.07		

If not connecting Sports Complex Ton of cooling 980

*.*1 INVOICE BATE BILL OF LABING NO. THE TRANE COMPANY. T3-0847 HD, MINORES, CONTROL ERMS-30 DATE HET | F. D. R. HEAT TRANSFER EQUIPMENT LAX FRT. ALLD. NET 30 Mark Packages P.O. 2497 ROCHESTER JUNIOR COLLEGE COLLEGT PREPAI PREPAID SHIP VIA Customers Aterest No. CUBIOMICES OFFER NO. ORDEH WATE TRUCK CALL TRAFFIC FOR ROUTHING 73-44-4825-8 2447 KIRCKOF PLUMBING AND HEATING KIRCKOF PLUMBING AND HEATING ğ C/O NEW ROCHESTER JUNIOR COLLEGE P.O. BOX 198 ROCHESTER, MINNESOTA 8589 ROCHESTER, MINNESULA PROGUET COOK CTV 47 CENTRAVAC 04513-7102 Approval Dag WATER CHILLER JOB AND PLACE NEW ROCHESTER STATE JUNIOR COLLEGE , ROCHESTER MEMBERING NO. MEM QUAN. MODEL 29.5 4,36 PCV-2C A Comp Mean Day E4513-2019 Dent Des 045 14-500 44 LAT. COMP. OWG. CYT. EVAP. OWG. ZXT. CONO. OWO. C-1 0-EXT. IMPELLER IPGY ONLTI EKT. WATER CONN. IPCV ONLY 70550281 AMP 480 leds and APM LA(POLX 54590) 257 COMPRESSOR 70558008 HARP TEO INDO 1000 RPM CENT. E48YT OIL PUMP 1/4 HP 1153601 1800 RPH 225 TONS REQUIREME..... MURILIARY CHILLED WATER REQUIREMENT GPM эмтис Дмоо PRESSURE OROP CHIERING LH 2 PA\$5 ,0005 16FT. 450 44°F 58 °P EVAP. LH 2 PA\$5; .0005 85 °r 12 FT 675 9426 ACCESSORIES & SPECIAL FEATURES MCDONNELL-MILLER E-2 FLOW SWITCH 13840034 B CONTROL TRANSFORMER, 2 KVA, 488 PRIMARY, 128 13085400 C 1 SECONDARY JOHNSON SERVICE T-900 TEMPERATURE CONTROLLER D DIRECT ACTING, GRADUAL ACTION, STYLE B NO. 4 BULB 15 FOOT CAPILLARY, DIAL RANGE, -- 10 F., TO 13171800 125 F WITH WELL 13080014 PPD, TRAHB SPECS. OX D HOLD FOR APPROVAL SHIPMENT WANTED PAPERMORK ENTERES G OR SOONER PRINTS REQUIRED I NOT BEFORE 180 O APPROVAL HOT REQ! U HOLD UNTIL DATE CONFIRMED SALES ONDER HUMBER AMBUNT DAR OR PERMIT REMEE TANK BING NEWLESSEL GIVINES

24482 | RCTC Chilled Water Study

FIRE SALES

SILLING

The set they

20.552 -{ 166)

ROCHESTER 65%

STONE

THIN CITIES 35%

O"BRIEN

1 3 6 8 JUN 30 1967

7 3- 0 8 4 7

13- SPECIMENTIONS 2275

SHEET_LOF2 __

Appendix B

Data Sheets for Proposed Equipment

YK MAXE CHILLER PERFORMANCE SPECIFICATION

Unit Tag	Qty	Model No.	Net Capacity (tons)	Power	Refrigerant
Plant 2 - Case					
2-CS	3	YKECEQQ7-EPGS	500	460/3/60	R-134A

Unit Data	Evaporator	Condenser
EWT (°F):	56.00	85.00
LWT (°F):	42.00	94.29
Flow Rate (gpm):	854	1500
Pressure Drop (ft):	15.0	22.6
Fluid Type (%):	WATER	WATER
Circuit No. of Passes:	2	2
Fouling Factor (ft ² °F hr / Btu):	0.00010	0.00025
Tube No. / Description:	373 - 0.035" Turbo-ESP Copper (3/4")	262 - 0.035" CSL Enhanced Copper
Design Working Pressure (psig):	150	150
Entering Water Nozzle @ Location:	2	12
Leaving Water Nozzle @ Location:	3	13
Water Box Weight, ea (lb)(2):	429	391
Cover Plate Weight, ea (lb):	500	349
Return Head Weight (lb):	176	144
Water Weight (lb):	1340	1264
Water Volume(gal):	161	152

Performa	nce Data	Electrical Data	ì	Other	
KW:	295	FLA:	420	Operating Wt. (lb):	23757
KW/Ton:	0.590	LRA:	3111	Per Isolator (lb):	5939
NPLV (1):	0.507	Inrush Amps:	1399	Refrigerant Wt. (lb):	1033
Gear Code:	WU	Min Circuit Amp. (Amps):	525	Oil Charge (gal):	10
Shaft HP:	378	Max Fuse/Breaker:	800	Motor Wt. (lb):	1881
OptiSound Cntrl:	YES	Oil Pump Volts:	460/3/60	Compressor Wt. (lb):	3500
Isolation Valves:	YES	Oil Pump FLA:	3.60	Starter Wt. (lb):	200
Oil Cooler Type:	Standard			Ship Wt (lb):	21153
Condenser Inlet:	Standard				
		Type Starter: Solid State Star	ter		

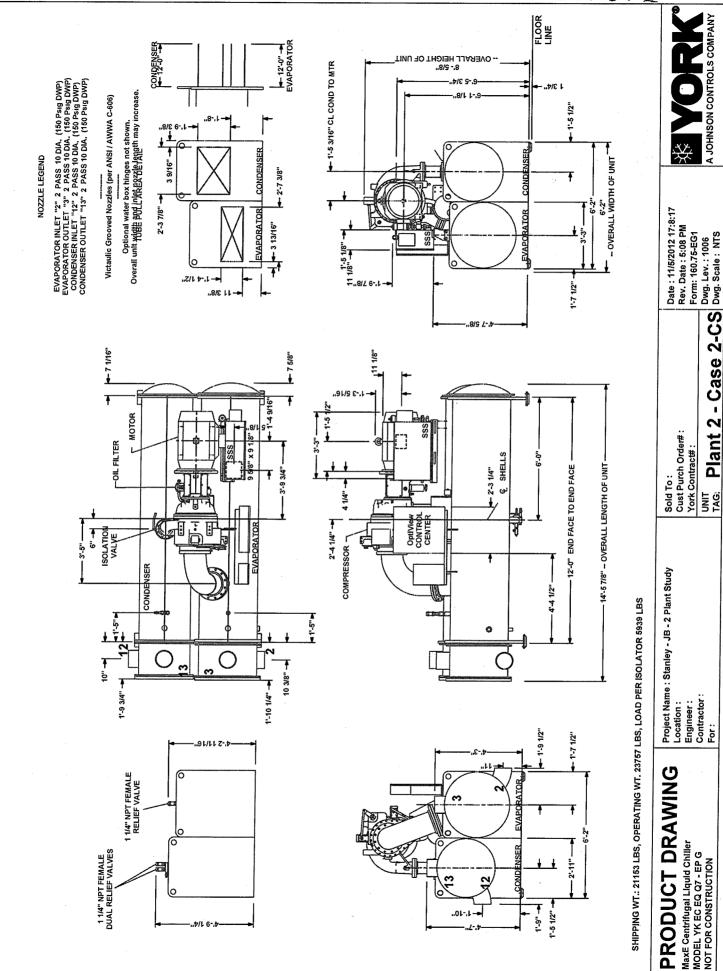
Notes:	

Project Name: Stanley - JB - 2 Plant Study

Printed: 11/5/2012 at 17:08 Unit Folder: PLANT-2C 24482 | RCTC Chilled Water Study

 $v1_126.idd$

B-2


Plant 2 - Case 2-CS Performance

York Contract No.:

⁽¹⁾ Chiller NPLV value calculated to AHRI Standard 550/590 equation.

⁽²⁾ Not including cover plate on marine water boxes.

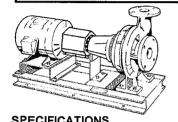
OPTION 1

SUBMITTAL

B-229.3F

JOB: RCTC CHILLER STUDY

REPRESENTATIVE:


OPTION 1

CHILLED WATER PUMP

UNIT TAG:
ENGINEER:
SUBMITTED BY:
APPROVED BY:

DATE: 12/13/2012

DATE:
DATE:
DATE:

5G Series 1510

Centrifugal Pumps - Base Mounted

SECI	FICATIONS		
FLOW _	1000	HEAD _	130
HP	50 00	RPM	1750
VOLTS		460	
CYCLE	60	PHASE	3
ENCLOS	SURE	ODP	
APPROX WEIGHT		1135	
SPECIA	_s		

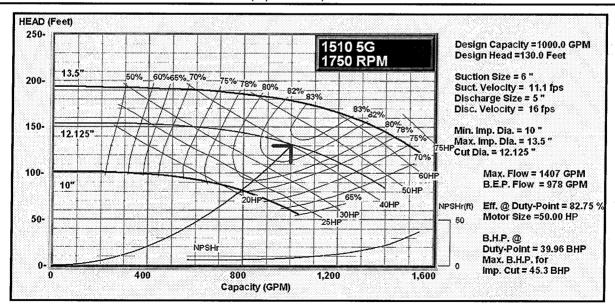
Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

FEATURES

- ANSI/OSHA Coupling Guard
- Center Drop Out Spacer Coupling

☐ BRONZE FITTED ☐ ALL IRON

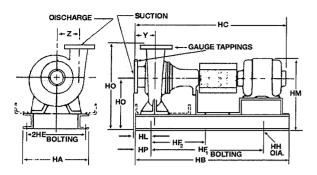

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P w/125# ANSI flange drilling
- 250 psi (17 bar) W.P. w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic)
- Requires external water source

 1510 -PF Stuffing Box Construction w/
 - (Graphite Impregnated Teflon)



ESPONLINE 3 0 © COPYRIGHT 2012 Xylem Inc

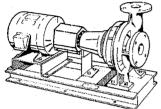
Bell & Gossett

Series 1510 5G Centrifugal Pump Submittal

B-229.3F

FLANGE DIMENSIONS IN INCHES (MM)							
	SIZE	THICKNESS	O.D.				
Discharg e	5" (127)	1-3/8 (35)	10-3/4 (273)				
Suction	6" (152)	1-7/16 (37)	12-1/8 (308)				

FLANGES ARE: 125# ANSI - STANDARD 250# ANSI - AVAILABLE


DIMENS	IONS - Ir	iches (mn	1)		s	TANDARI	SEAL 15	510, 1510)-F					
MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	HP	Υ	Z
FRAME	"L" !	FRAME			_									
254T	24 (610)	56 (1422)	47-1/8 (1197)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
256T	24 (610)	56 (1422)	48-7/8 (1241)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
284T	24	56	49-7/8	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1267)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
286T	24 (610)	56 (1422)	51-3/8 (1305)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
324T	24	56	53-3/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1356)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
326T	24	56	54-7/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1394)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	57-1/8	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1451)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24 (610)	56 (1422)	58-1/8 (1476)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
					STUFF	ING BOX	1510-PF,	1510-S, 1	1510-D					
MOTOR	НА	НВ	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	HP	Υ	Z
FRAME	"L" F	RAME			•					'		•		·
254T	24	56	49-1/2	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1257)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
256T	24	56	51-1/4	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1302)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
284T	24	56	52-1/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1327)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
286T	24	56	53-3/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1365)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
324T	24	56	55-3/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1416)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
326T	24	56	57-1/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1454)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	59-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1511)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24	56	60-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1537)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)

SUBMITTAL

B-225.7D

JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 1		
CONDENSER WATER PUMP		
UNIT TAG:	ORDER NO.	DATE: 11/8/2012
ENGINEER:	SUBMITTED BY:	DATE:
CONTRACTOR:	APPROVED BY:	DATE:
· ·		

1500

6BC Series 1510

Centrifugal Pumps - Base Mounted

CDEC		A T		
SPEC	ırıc	A 1:	ICJN	

FLOW _	1500	HEAD	50
HP	30.00	RPM	1770
VOLTS		460	
CYCLE	60	_ PHASE _	3
ENCLOS	URE	ODP	
APPROX	WEIGHT	8	55
SPECIAL	.s		

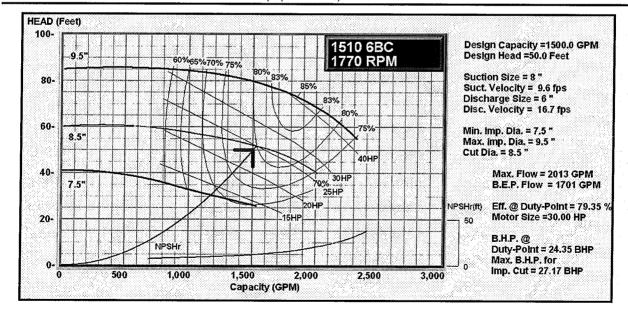
Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

☐ BRONZE FITTED ☐ ALL IRON

FEATURES

- □ Center Drop Out Spacer Coupling
- □ Fabricated Heavy Duty Baseplate

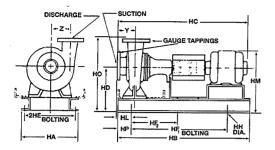

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P. w/125# ANSI flange drilling
- 250 psi (17 bar) W.P. w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- ☐ 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic)
- Requires external water source

 1510 -PF Stuffing Box Construction w/
- Packing (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc

Bell & Gossett

Series 1510 6BC Centrifugal Pump Submittal

B-225.7D

FLANGE DIMENSIONS IN INCHES (MM)							
	SIZE	THICKNESS	O.D.				
Discharg e	6" (152)	1-7/16" (37))	12- 1/8" (308)				
Suction	8" (203)	1-5/8" (41)	14- 3/4" (375)				

FLANGES ARE 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENSIONS - Inches (mm)

STANDARD SEAL 1510, 1510-F

			-7		_		OLAL ID	.0, .0.0	-,					
MOTOR	1	НВ	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	НР	Y	Z
FRAME	"L" 1	FRAME			•	•						1		
254T	16	46-1/2	50-5/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1286)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
256T	16	46-1/2	52-3/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1330)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
284T	16	51-3/4	53-1/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1349)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	54-5/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1387)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	56-7/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1445)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	58-3/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1483)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

STUFFING BOX 1510-PF, 1510-S, 1510-D

MOTOR	HA	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	нм мах	но	HP	Y	Z
FRAME		"L" F	RAME				l		•	· · · · · · · · · · · · · · · · · · ·			1	
254T	16	51-3/4	53	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1346)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
256T	16	51-3/4	54-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1391)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
284T	16	51-3/4	55-1/2	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1410)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	57	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1448)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	59-1/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1505)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	60-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1543)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

UPDATE™ Version 4.14.9

Product Data: 5/31/2012 (Current)

© 2012 SPX Cooling Technologies, Inc. 11/8/2012 10:05:12 AM

Job Information -

Stanley Consultants 1 cell 1500 GPM 95-85-78

Selected By

DPT Mechanical Jason Beeghly 10202 Douglas Avenue Tel 515-471-1902 Urbandale, IA 50322 Fax 515-727-0778 ibeeqhly@dptmechanical.com

Cooling Tower Definition -

Manufacturer	Marley	Fan Motor Speed	1800 rpm
Product	NC Steel	Fan Motor Capacity per cell	40.00 BHp
Model	NC8405TAN1	Fan Motor Output per cell	40.00 BHp
Cells	1	Fan Motor Output total	40.00 BHp
CTI Certified	Yes	Air Flow per cell	137600 cfm
Fan	9.000 ft, 6 Blades	Air Flow total	137600 cfm
Fan Speed	433 rpm, 12243 fpm	Static Lift	12.338 ft
Fans per cell	1	Distribution Head Loss	0.000 ft
•		ASHRAE 90.1 Performance	46.9 gpm/Hp

Model Group

Standard Low Sound (A)

Sound Pressure Level 77 dBA (Single Cell), 40.000 ft from Air Inlet Face. See sound report for details.

Conditions

Conditions ———			
Tower Water Flow	1500 gpm	Air Density In	0.07094 lb/ft ³
Hot Water Temperature	95.00 °F	Air Density Out	0.07093 lb/ft ³
Range	10.00 °F	Humidity Ratio In	0.01712
Cold Water Temperature	85.00°F	Humidity Ratio Out	0.03071
Approach	7.00 °F	Wet-Bulb Temp. Out	89.54 ° F
Wet-Bulb Temperature	78.00 °F	Estimated Evaporation	15 gpm
Relative Humidity	50.0%	Total Heat Rejection	7473700 Btu/h
Capacity	103.0%	•	

· This selection satisfies your design conditions.

Weights & Dimensions -

_	Per Cell	Total
Shipping Weight	8640 l b	8640 lb
Heaviest Section	8640 l b	
Max Operating Weight	20650 l b	20650 lb
Width	19.920 ft	19.920 ft
Length	9.900 ft	9.900 ft
Height	11.996 ft	

Minimum Enclosure Clearance -

Clearance required on air inlet sides of tower without altering performance. Assumes no air from below tower.

552 ft
908 ft

Weights and dimensions do not include options; refer to sales drawings. For CAD layouts refer to file 8405_ALN.dxf

Cold Weather Operation -

Heater Sizing (to prevent freezing in the collection basin during periods of shutdown)

Heater kW/Cell 7.5 18.0 15.0 12.0 9.0 6.0 4.5 Ambient Temperature °F 3.22 13.39 18.47 23.56 28.64 -17.12 -6.95

Job Name: Date:

Version:

MN Project 10/30/2012 08.02

Submitted By:

Jake J Vorac

Unit Description:

McQuay Model Number:

WME0500SSM2R/E3012-CE-2**/C2612-DNYY-2****/R134-BAAAPAB

Approval:

ETL Listed / ETL Listed to Canadian Safety Standards (ETL Label) ETLc Label)

Chiller Data:

Unit:

Compressor Type / Quantity - Size: Centrifugal / 1 - 0500 496.2

Capacity (ton):

Capacity Control:

VFD / Inlet guide vanes R134a

Refrigerant: Refrigerant Charge (lb): Oil Cooler Type:

1,067 None

857.1

42.0

2

ASHRAE 90.1 Compliancy: LEED EA Credit 4:

'04, '07 & '10 Pass

Evaporator:

Flow (gpm): LWT (°F): Number of Passes: Fouling Factor (°F.ft2.h/Btu): Tube Material:

0.00010 Cu Tube Wall Thickness (in): 0.025 Percentage of Water: 100 Minimum Flow (gpm): (see note 3) 268.1 Flow (gpm): 1,500.0

Condenser:

EWT (°F): 85..0 Number of Passes: Fouling Factor (°F.ft2.h/Btu): 0 00025 Tube Material: Cu Tube Wall Thickness (in): 0.028 Percentage of Water: 100

Motor/Starter:

Starter Type: VFD/UM Unit Voltage (V/Hz/Ph): 460/60/3 Approval Listing: ETL, ETLc

RLA per Compressor (A): (see note 4) 402 LRA per Compressor (A): 442

Enclosure Type: NEMA 1 gasketed Starter Location: Unit mounted Control Circuit Transformer: Included Power Connection: Single point Power Factor: 0.91 MCA (A) / MOCP (A): (see note 4) 505/706 Motor Protection: Standard Line Reactors: Yes

Ground Fault: None Short Circuit Current Rating: 35 kA EMI Filter: None

Circuit Breaker: 35 KAIC with door mounted handle Harmonic Distortion: Standard Transformer Type: N/A Power Meter: None

Design I	Design Performance rated at AHRI Condenser Relief:										
								Evapo	rator	Cond	enser
Capacity	Input	Performance	RLA	NPLV	75% Load	50% Load	25 % Load	PD	EWT	· PD	LWT
(ton)	(kW)	(kW/ton)	(A)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(ft H₂O)	(°F)	(ft H₂O)	(°F)
496.2	291.2	0.587	402	0.343	0.429	0.290	0.327	17.8	55.9	33.0	94.3

Performance Points rated at AHRI Condenser Relief:

Unit Tag: 500T

Page 1 of 2

DAIKIN MCQUAY

© McQuay International 2012, www.daikinmcquay.com

CENTRIFUGAL CHILLER TECHNICAL DATA SHEET

						Evaporator					Conc	lenser	
Point #	%Load Request	Capacity (ton)	Input Power (kW)	Performance (kW/ton)	RLA (A)	Flow (gpm)	EWT (°F)	LWT (°F)	PD (ft H₂O)	Flow (gpm)	EWT (°F)	LWT (°F)	PD (ft H₂O)
1	100.0	496.2	291.2	0.587	402	857.1	55.9	42.0	17.8	1,500.0	85.0	94.3	33.0
2	90.0	446.6	232.3	0.520	329	857.1	54.5	42.0	17.9	1,500.0	81.0	89.2	33 6
3	80.0	397.0	182.2	0.459	262	857.1	53.1	42.0	17.9	1,500.0	77.0	84.2	34.1
4 .	70.0	347.3	137.9	0.397	207	857.1	51.7	42.0	17.9	1,500.0	73.0	79.2	34.7
5	60.0	297.7	101.7	0.342	160	857.1	50.3	42.0	18.0	1,500.0	69.0	74.3	35.3
6	50.0	248.1	71.9	0.290	116	857.1	48.9	42 0	18.0	1,500.0	65.0	69.3	35.9
7	40.0	198.5	58.6	0.295	96	857.1	47.6	42.0	18.1	1,500.0	65.0	68.5	36.0
8	30.0	148.9	46.6	0.313	77	857.1	46.2	42.0	18.1	1,500.0	65.0	67.6	36.1
9	20.0	99.2	40.6	0.409	69	857.1	44.8	42.0	18.1	1,500.0	65.0	66.8	36.1
10	10.0	49.6	27.9	0.563	49	857.1	43.4	42.0	18.2	1,500.0	65.0	66.0	36.2

Sound Pres	sure:	· · · · · · · · · · · · · · · · · · ·						
63Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz	Overall (dBA)
41.0	59.0	68.0	73.0	74.0	72.0	84.0	72.0	86.3
							75% Load	80.6
							50% Load	79.6
							25% Load	81.4
Sound Pressu	ire (with Sound	Insulation) (dE	3) measured in	accordance wi	th ANSI/AHRI S	Standard 575-2	008 (A-weighte	ed)

	*****************************	**************************************	<u></u>			Evaporator			Condenser		
Point #	Refrig Charge (lb)	LRAD (A)	PD Capacity (lb)	Superheat (Δ °F)	Subcooling (Δ°F)	Temp (°F)	Pressure (psig)	Velocity (ft/s)	Temp (°F)	Pressure (psig)	Velocity (ft/s)
1	1,067	442	1,869	1.0	8.7	40.7	35.8	6.7	96.5	117.0	9.9
2	1,067	442	1,869	1.0	7.9	40.8	35.9	6.7	91.2	106.7	9.9
3	1,067	442	1,869	1.0	7.1	41.0	36.0	6.7	86.0	97.1	9.9
4	1,067	442	1,869	1.0	6.3	41.1	36.1	6.7	80.8	88.1	9.9
5	1,067	442	1,869	1.0	5.6	41.2	36.2	6.7	75.7	79.8	9.9
6	1,067	442	1,869	1.0	4.7	41.3	36.4	: 6.7	70.5	71.9	9.9
7	1,067	442	1,869	1.0	3.9	41.5	36.5	6.7	69.5	70.3	9.9
8	1,067	442	1,869	1.0	3.1	41.6	36.6	6.7	68.4	68.8	9.9
9	1,067	442	1,869	1.0	2.2	41.7	36.8	6.7	67.3	67.3	9.9
10	1,067	442	1,869	1.0	1.2	41.9	36.9	6.7	66.2	65.7	9.9

Certification:

Notes:

1. Above RLA, MCA and MOCP values are per Compressor and are for input amps.

2. Performance kW values are total kW, unless noted otherwise.

3. Minimum flow is based upon standard condenser water relief and not increased lift due to constant condenser water temperature.

4. The field wiring must be sized in accordance with the MCA and not the RLA as some selections may be below the minimum required protection.

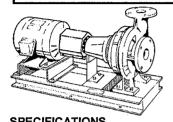
5 Motor overload settings determined by motor amps. Refer to unit nameplate for proper settings.

6. The USGBC bases it's LEED EA credit 4 calculations for Enhanced Refrigerant Management on the default values for a water cooled centrifugal chiller with a 25-year life, 10% end of life loss and 2% annual leak rate. The gross ARI cooling capacity for the unit is at least 343 tons, and the refrigerant charge is 1067 lbs

7. The LEED result above considers the chiller only. When applying this information for credit or prerequisite compliance the entire building must be considered.

Unit Tag: 500T
© McQuay International 2012,
www.daikinmcquay.com

Page 2 of 2


DAIKIN MCQUAY

SUBMITTAL

B-229.3F

JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 2		
CHILLED WATER PUMP		
UNIT TAG:	ORDER NO.	DATE: 12/13/2012
ENGINEER:	SUBMITTED BY:	DATE:
CONTRACTOR:	APPROVED BY:	DATE:

5G Series 1510

Centrifugal Pumps - Base Mounted

SPECIF	FICATIONS		
FLOW _	1000	HEAD	135
HP	50 00	RPM	1750
VOLTS		460	_
CYCLE	60	PHASE	3
ENCLOS	URE	ODP	
APPROX	. WEIGHT	11	135
SPECIAL	.s		
	_		•

Note: Equipped with NEOPRENE coupling

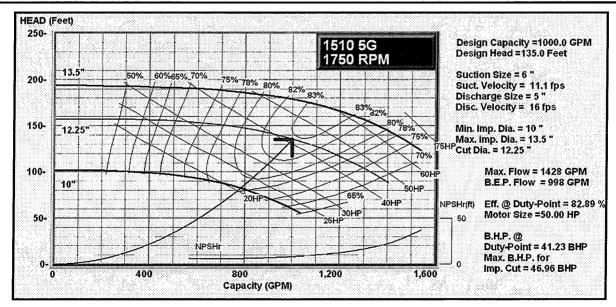
MATERIALS OF CONSTRUCTION

FEATURES

ANSI/OSHA Coupling Guard

☐ BRONZE FITTED ☐ ALL IRON

- □ Center Drop Out Spacer Coupling
- ☐ Fabricated Heavy Duty Baseplate

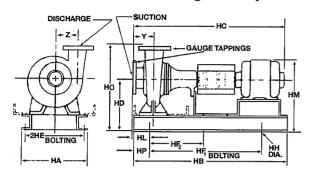

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P. w/125# ANSI flange drilling
- 250 psi (17 bar) W.P w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- ☐ 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic) Requires external water source
- 1510 -PF Stuffing Box Construction w/ Packing

(Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc

Bell & Gossett

Series 1510 5G Centrifugal Pump Submittal

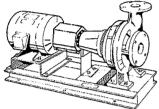
B-229.3F

FLANGE DIMENSIONS IN INCHES (MM)								
	SIZE	THICKNESS	O.D.					
Di s charge	5" (127)	1-3/8 (35)	10-3/4 (273)					
Suction	6" (152)	1-7/16 (37)	12-1/8 (308)					

FLANGES ARE: 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMEN	SIONS	- Incl	hes (mm)		S	TANDARE	SEAL 15	10, 1510	-F					•
MOTO		\	нв	нс мах	HD	2HE	HF ₁	HF ₂	НН	HL	нм мах	. но	НР	Y	Z
FRAN	IE .,	L" FR	AME		·										
2547	- 24 (610		56 (1422)	47-1/8 (1197)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
2567	24 (610		56 (1422)	48-7/8 (1241)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
2847	- 24 (610		56 (1422)	49-7/8 (1267)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
2861	- 24 (610))	56 (1422)	51-3/8 (1305)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
3241	- 24 (610		56 (1422)	53-3/8 (1356)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	25-5/8 (651)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
7 326T	. 24 (610))	56 (1422)	54-7/8 (1394)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	25-5/8 (651)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
364T	. 24 (610)) (56 (1422)	57-1/8 (1451)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
365T	. 24 (610)) (56 (1422)	58-1/8 (1476)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)

STUFFING BOX 1510-PF, 1510-S, 1510-D


MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	НО	HP	Y	Z
FRAME	"L"	FRAME					·····							
254T	24	56	49-1/2	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1257)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
256T	24	56	51-1/4	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1 <i>[</i> 2	6	6	9
	(610)	(1422)	(1302)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
284T	24	56	52-1/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1327)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
286T	24	56	53-3/4	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1365)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
324T	24	56	55-3/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6.	6	9
	(610)	(1422)	(1416)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
326T	24	56	57-1/4	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1454)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	59-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1511)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24	56	60-1/2	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1537)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)

SUBMITTAL

B-225.7D

JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 2		
CONDENSER WATER PUMP		
UNIT TAG:	ORDER NO.	DATE: 11/8/2012
ENGINEER:	SUBMITTED BY:	DATE:
CONTRACTOR:	APPROVED BY:	DATE:

6BC Series 1510

Centrifugal Pumps - Base Mounted

SP	ECI	FI	CΔ	TI	OI	26
JГ		г.	-		u	٧J

FLOW _	1500	HEAD	60	_
HP	40.00	RPM	1770	_
VOLTS		460		
CYCLE	60	_ PHASE _	3	_
ENCLOS	URE	ODP		
APPROX	WEIGHT	9:	95	_
SPECIAL	s			

Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

П	BRONZE	FITTED		IDON
	DRUNZE	FILED	II ALL	. IKUN

FEATURES

- ANSI/OSHA Coupling Guard
- □ Center Drop Out Spacer Coupling
- ☐ Fabricated Heavy Duty Baseplate

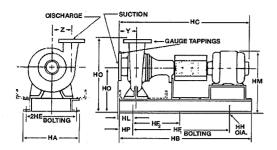

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P w/125# ANSI flange drilling
- 250 psi (17 bar) W.P. w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic)
- Requires external water source

 1510 -PF Stuffing Box Construction w/
 Packing
 - (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc.

Bell & Gossett

Series 1510 6BC Centrifugal Pump Submittal

B-225.7D

FLANGE DIMENSIONS IN INCHES (MM)											
	SIZE	E THICKNESS O.									
Discharge	6" (152)	1-7/16" (37))	12- 1/8" (308)								
Suction	8" (203)	1-5/8" (41)	14- 3/4" (375)								

FLANGES ARE 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENSIONS - Inches (mm)

STANDARD SEAL 1510, 1510-F

			-,		_			,	-					
MOTOR	НА	НВ	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	HM MAX	но	HP	Y	Z
FRAME	"L" I	FRAME	•							· · · · · · · · · · · · · · · · · · ·	•			
254T	16	46-1/2	50-5/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1286)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
256T	16	46-1/2	52-3/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1330)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
284T	16	51-3/4	53-1/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1349)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	54-5/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1387)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
⁷ 324T	16	51-3/4	56-7/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1445)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	58-3/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1483)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

STUFFING BOX 1510-PF, 1510-S, 1510-D

MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	нм мах	но	HP	Υ	Z
FRAME		"L" F	RAME							•				
254T	16	51-3/4	53	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1346)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
256T	16	51-3/4	54-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1391)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
284T	16	51-3/4	55-1/2	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1410)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	57	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1448)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	59-1/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1505)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	60-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1543)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

UPDATE™ Version 4.14.9

Product Data: 5/31/2012 (Current)

© 2012 SPX Cooling Technologies, Inc. 11/8/2012 10:05:12 AM

Job Information -

Stanley Consultants 1 cell 1500 GPM 95-85-78

Selected By-

DPT Mechanical 10202 Douglas Avenue Urbandale, IA 50322 jbeeghly@dptmechanical.com

Jason Beeghly Tel 515-471-1902 Fax 515-727-0778

Cooling Tower Definition -

Manufacturer	Marley	Fan Motor Speed	1800 rpm
Product	NC Steel	Fan Motor Capacity per cell	40.00 BHp
Model	NC8405TAN1	Fan Motor Output per cell	40.00 BHp
Cells	1 .	Fan Motor Output total	40.00 BHp
CTI Certified	Yes	Air Flow per cell	137600 cfm
Fan	9.000 ft, 6 Blades	Air Flow total	137600 cfm
Fan Speed	433 rpm, 12243 fpm	Static Lift	12.338 ft
Fans per cell	1	Distribution Head Loss	0.000 ft
		ASHRAE 90.1 Performance	46.9 gpm/Hp

Model Group

Standard Low Sound (A)

Sound Pressure Level 77 dBA (Single Cell), 40.000 ft from Air Inlet Face. See sound report for details.

Conditions

Conditions			
Tower Water Flow	1500 gpm	Air Density In	0.07094 lb/ft ³
Hot Water Temperature	95.00 °F	Air Density Out	0.07093 lb/ft ³
Range	10.00 °F	Humidity Ratio In	0.01712
Cold Water Temperature	85.00 °F	Humidity Ratio Out	0.03071
Approach	7.00 °F	Wet-Bulb Temp. Out	89.54 °F
Wet-Bulb Temperature	78.00 °F	Estimated Evaporation	15 gpm
Relative Humidity	50.0%	Total Heat Rejection	7473700 Btu/h
Capacity	103.0%	•	

• This selection satisfies your design conditions.

Weights & Dimensions -

_	Per Cell	Total
Shipping Weight	8640 lb	8640 lb
Heaviest Section	8640 lb	
Max Operating Weight	20650 lb	20650 lb
Width	19.920 ft	19.920 ft
Length	9.900 ft	9.900 ft
Height	11.996 ft	

Minimum Enclosure Clearance -

Clearance required on air inlet sides of tower without altering performance. Assumes no air from below tower.

4.5

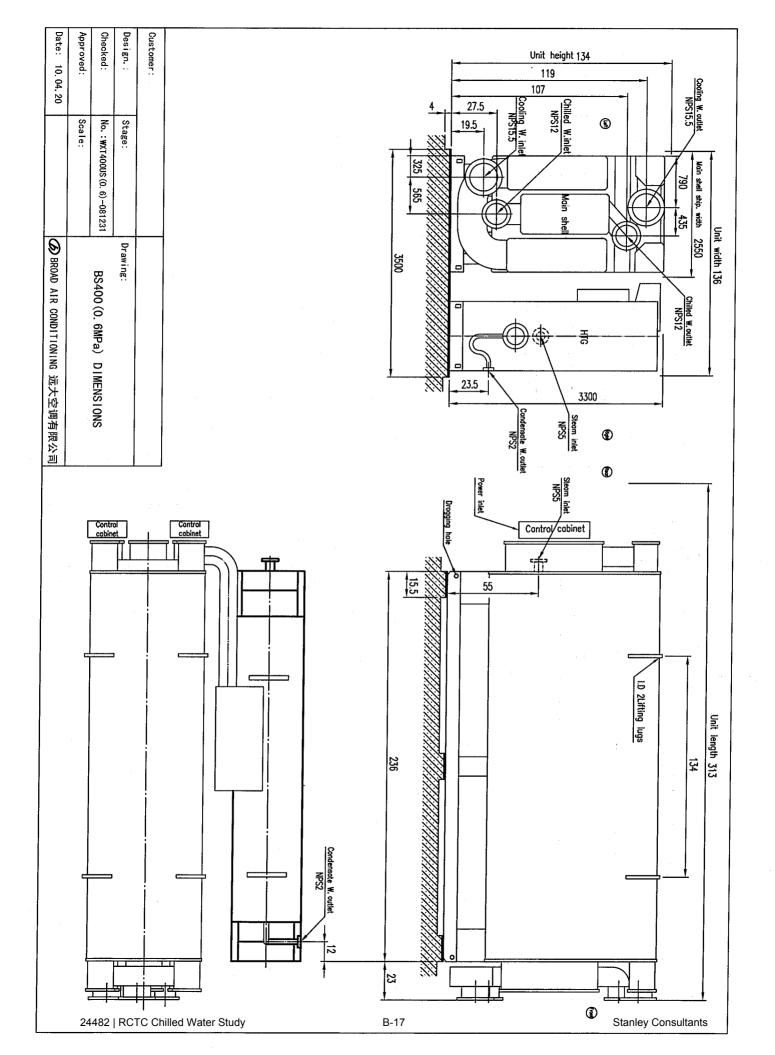
Solid Wall 7.552 ft 50 % Open Wall 5.908 ft

6.0

Weights and dimensions do not include options; refer to sales drawings. For CAD layouts refer to file 8405_ALN.dxf

Cold Weather Operation -

Heater Sizing (to prevent freezing in the collection basin during periods of shutdown)

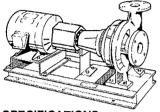

Heater kW/Cell 18.0 15.0 12.0 9.0 7.5 Ambient Temperature °F -17.12 -6.95 3.22 13.39 18.47 23.56 28.64

Chiller Performance Data

Our Reference No.: Date: Nov. 2nd. 2012 Project Name: Chiller Model: BS400

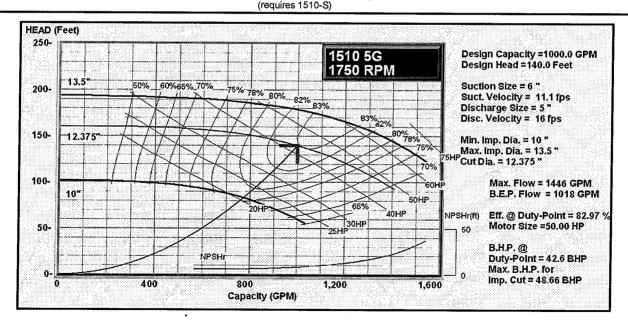
Date. NOV. 2110, 2012		Chille Model, 55400					
		Customer's Request	BROAD Proposition				
Model			BS151X0.34-37.8/29.4-5.6/13.3-B3-400				
Quantity			1				
Cooling capacity	RT	500	500				
Cooling capacity	kW		1759				
Cooling capacity	10⁴kcal/h		151				
Chilled water							
Chilled W. outlet temp.	°F	42	42				
Chilled W. inlet temp.	°F	56	56				
Flowrate	GPM		863				
Working pressure	psig		116				
Pressure drop	ftH2O		25				
Fouling factor	hr ft2 °F/Btu		0.0001				
Cooling water							
Cooling W. outlet temp.	۴	85	85				
Cooling W. inlet temp.	°F	100	100				
Flowrate	GPM		1409				
Working pressure	psig		116				
Pressure drop	ftH2O		35				
Fouling factor	hr ft2 °F/Btu		0.00025				
Steam source							
Steam pressure	psig	50	50				
Flowrate	lb/s		4,063				
Others							
Power			460V/60Hz/3P/4wire				
Chiller Power Consumption	kW		13.2				
Rated COP For Exhaust Heat Source	COP		1.28				
Unit ship. Wt.	klbs		49				
Operation wt.	klbs		105				
Unit ship. Wt. Operation wt.							

This selection is based on information provided by inquirer, reference only, product specifications subject to change



SUBMITTAL

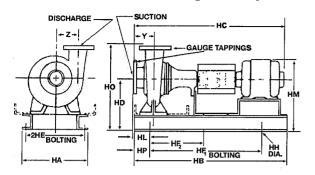
B-229.3F


JOB: RCTC CHILLER STUDY	REPRESENTATIVE:	
OPTION 3		
CHILLED WATER PUMP		
UNIT TAG: ENGINEER: CONTRACTOR:	ORDER NO. SUBMITTED BY: APPROVED BY:	DATE: 12/13/2012 DATE: DATE:

5G Series **1510**

Centrifugal Pumps - Base Mounted

SPECIFICATIONS		MATERIALS OF CONSTRUCTION	TYPE OF SEAL
FLOW 1000	HEAD140 1750	_ ☐ BRONZE FITTED ☐ ALL IRON	☐ 1510 Standard Seal (Buna-Carbon/Ceramic)
VOLTS	RPM 1750 460	FEATURES	1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
CYCLE 60 ENCLOSURE	_ PHASE3 ODP		☐ 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
APPROX. WEIGHT SPECIALS	1135	_ MAXIMUM WORKING PRESSURE	☐ 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic)
Note: Equipped with N	IEOPRENE coupling	175 psi (12 bar) W.P. w/125# ANSI flange drilling 250 psi (17 bar) W.P. w/250# ANSI flange drilling	Requires external water source 1510 -PF Stuffing Box Construction w/ Packing (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc.

Bell & Gossett

Series 1510 5G Centrifugal Pump Submittal

B-229.3F

FLANGE DIMENSIONS IN INCHES (MM)									
	SIZE	THICKNESS	O.D.						
Dis c harge	5" (127)	1-3/8 (35)	10-3/4 (273)						
Suction	6" (152)	1-7/16 (37)	12-1/8 (308)						

FLANGES ARE: 125# ANSI - STANDARD 250# ANSI - AVAILABLE

IMENSI	ONS - Ir	iches (mm	1)	•	s	TANDAR	SEAL 15	10, 1510	-F					
	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	HM MAX	но	НР	Y	Z
FRAME	"L"	FRAME								•				
254T	24	56	47-1/8	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1197)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
256T	24	56	48-7/8	16-1/2	21-1/2	44	22	1	5-7/16	23-3/8	29-1/2	6	6	9
	(610)	(1422)	(1241)	(419)	(546)	(1118)	(559)	(25)	(138)	(594)	(749)	(152)	(152)	(229)
284T	24	56	49-7/8	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6	6	9
	(610)	(1422)	(1267)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
286T	24	56	51-3/8	16-1/2	21-1/2	44	22	1	5-7/16	24-1/2	29-1/2	6.	6	9
	(610)	(1422)	(1305)	(419)	(546)	(1118)	(559)	(25)	(138)	(622)	(749)	(152)	(152)	(229)
324T	24	56	53-3/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1356)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
326T	24	56	54-7/8	16-1/2	21-1/2	44	22	1	5-7/16	25-5/8	29-1/2	6	6	9
	(610)	(1422)	(1394)	(419)	(546)	(1118)	(559)	(25)	(138)	(651)	(749)	(152)	(152)	(229)
364T	24	56	57-1/8	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1451)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
365T	24	56	58-1/8	16-1/2	21-1/2	44	22	1	5-7/16	26-3/4	29-1/2	6	6	9
	(610)	(1422)	(1476)	(419)	(546)	(1118)	(559)	(25)	(138)	(679)	(749)	(152)	(152)	(229)
					STUFF	ING BOX	1510-PF,	1510-S, 1	1510-D					
	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	НН	HL	нм мах	но	HP	Y	Z
	254T 256T 284T 286T 324T 326T 364T	MOTOR HA FRAME "L" 254T 24 (610) 256T 24 (610) 284T 24 (610) 324T 24 (610) 324T 24 (610) 326T 24 (610) 364T 24 (610) 365T 24 (610)	MOTOR HA HB FRAME "L" FRAME 254T 24 56 (1422) 256T 24 56 (1422) 284T 24 56 (1422) 284T 24 56 (1422) 286T 24 56 (1422) 324T 24 56 (1422) 324T 24 56 (1422) 326T 24 56 (1422) 326T 24 56 (1422) 364T 24 56 (1422) 365T 24 56 (1422) 365T 24 56 (1422) 365T 4610) (1422)	### TRAME 254T 24	MOTOR FRAME HA HB HC MAX HD 254T 24 (610) 56 (1422) 47-1/8 (197) 16-1/2 (419) 256T 24 (610) 56 (1422) 48-7/8 (16-1/2 (1241) 16-1/2 (419) 284T 24 (610) 56 (122) 49-7/8 (16-1/2 (1267) 16-1/2 (419) 286T 24 (610) 56 (132) 51-3/8 (16-1/2 (1305)) 16-1/2 (419) 324T 24 (610) 56 (132) 53-3/8 (16-1/2 (1356)) 16-1/2 (419) 326T 24 (610) 56 (1422) 54-7/8 (1394) 16-1/2 (419) 364T 24 (610) 56 (1422) 57-1/8 (16-1/2 (1451)) 16-1/2 (419) 365T 24 (610) 56 (1422) 58-1/8 (1451) 16-1/2 (419) 365T 24 (610) 56 (1422) 58-1/8 (1451) 16-1/2 (419) MOTOR HA HB HC MAX HD	MOTOR FRAME HA HB HC MAX HD 2HE 254T 24 (610) 56 (1422) 47-1/8 (197) 16-1/2 (419) 21-1/2 (546) 256T 24 (610) 56 (1422) 48-7/8 (16-1/2 (419)) 16-1/2 (546) 21-1/2 (546) 284T 24 (610) 56 (1422) 49-7/8 (16-1/2 (1267)) 16-1/2 (419) 21-1/2 (546) 286T 24 (610) 56 (1422) 51-3/8 (16-1/2 (1305)) 16-1/2 (419) 21-1/2 (546) 324T 24 (610) 56 (1422) 53-3/8 (16-1/2 (1394)) 16-1/2 (21-1/2 (546)) 21-1/2 (546) 326T 24 (610) 56 (1422) 54-7/8 (1394) 16-1/2 (419) 21-1/2 (546) 364T 24 (610) 56 (1422) 57-1/8 (149) 16-1/2 (21-1/2 (546)) 365T 24 (610) 56 (1422) 58-1/8 (149) 16-1/2 (21-1/2 (546)) 365T 24 (610) 56 (1422) 58-1/8 (149) 16-1/2 (21-1/2 (546)) 365T 45 (610) 1422) 1476) 1419) (546)	MOTOR FRAME HA HB HC MAX HD 2HE HF1 254T 24 (610) 56 (1422) 47-1/8 (197) 16-1/2 (546) 21-1/2 (546) 44 (1118) 256T 24 (610) 56 (1422) 48-7/8 (1241) 16-1/2 (194) 21-1/2 (546) 44 (1118) 284T 24 (610) 56 (1422) 49-7/8 (16-1/2) 21-1/2 (186) 44 (1118) 286T 24 (610) 56 (1422) 51-3/8 (1305) 16-1/2 (194) 21-1/2 (118) 324T 24 (610) 56 (1422) 53-3/8 (194) 16-1/2 (194) 21-1/2 (194) 324T 24 (610) 56 (1422) 53-3/8 (194) 16-1/2 (194) 21-1/2 (194) 326T 24 (610) 56 (1422) 54-7/8 (194) 16-1/2 (194) 21-1/2 (194) 364T 24 (610) 56 (1422) 57-1/8 (194) 16-1/2 (194) 21-1/2 (194) 364T 24 (610) 56 (1422) 57-1/8 (194) 16-1/2 (194) 21-1/2 (194) 365T 24 (610) 56 (194) 58-1/8 (194) 16-1/2 (194) 21-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOTOR HA HB HC MAX HD 2HE HF ₁ HF ₂ HH HL	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HA	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MOTOR HA HB HC MAX HD 2HE HF ₁ HF ₂ HH HL HM MAX HO HP Y Y TRAME

					STUF	FING BOX	1510-PF,	1510-S,	1510-D					
MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	нм мах	но	НР	Y	z
FRAME	"L" I	FRAME												
254T	24 (610)	56 (1422)	49-1/2 (1257)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
256T	24 (610)	56 (1422)	51-1/4 (1302)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	23-3/8 (594)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
284T	24 (610)	56 (1422)	52-1/4 (1327)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
286T	24 (610)	56 (1422)	53-3/4 (1365)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	24-1/2 (622)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
324T	24 (610)	56 (1422)	55-3/4 (1416)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	25-5/8 (651)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
326T	24 (610)	56 (1422)	57-1/4 (1454)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	25-5/8 (651)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
364T	24 (610)	56 (1422)	59-1/2 (1511)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)
365T	24 (610)	56 (1422)	60-1/2 (1537)	16-1/2 (419)	21-1/2 (546)	44 (1118)	22 (559)	1 (25)	5-7/16 (138)	26-3/4 (679)	29-1/2 (749)	6 (152)	6 (152)	9 (229)

SUBMITTAL

B-225.7D

JOB: RCTC CHILLER STUDY

REPRESENTATIVE:

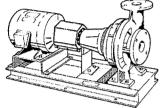
OPTION 3

CONDENSER WATER PUMP

UNIT TAG:

ENGINEER:

SUBMITTED BY:


APPROVED BY:

REPRESENTATIVE:

DATE: 11/8/2012

DATE: 11/8/2012

DATE: DATE:

6BC Series 1510

Centrifugal Pumps - Base Mounted

SPECIFICATIONS

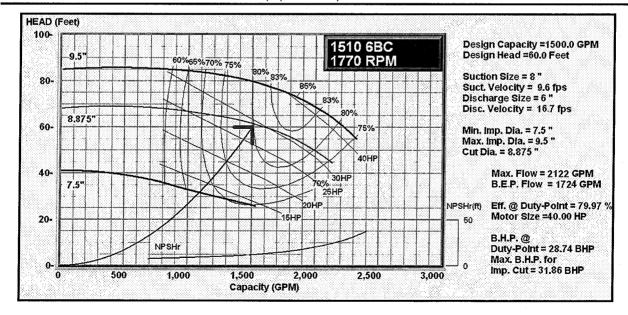
FLOW _	1500	_ HEAD _	60
HP	40.00	RPM	1770
VOLTS		460	
CYCLE	60	PHASE	3
ENCLOS	URE	ODP	
APPROX	WEIGHT	9	95
SPECIAL	.s		

Note: Equipped with NEOPRENE coupling

MATERIALS OF CONSTRUCTION

BRONZE	FITTED	IRON

FEATURES

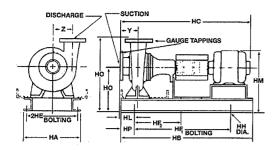

- ANSI/OSHA Coupling Guard
- □ Center Drop Out Spacer Coupling
- ☐ Fabricated Heavy Duty Baseplate

MAXIMUM WORKING PRESSURE

- 175 psi (12 bar) W.P. w/125# ANSI flange drilling
- 250 psi (17 bar) W P w/250# ANSI flange drilling (requires 1510-S)

TYPE OF SEAL

- 1510 Standard Seal (Buna-Carbon/Ceramic)
- 1510 -F Standard Seal w/ Flush Line (Buna-Carbon/Ceramic)
- 1510 -S Stuffing Box construction w/ Flushed Mechanical Single Seal (EPR-Tungsten Carbide/Carbon)
- 1510 -D Stuffing Box construction w/ Flushed Double Mechanical Seal (EPR-Carbon/Ceramic) Requires external water source
- 1510 -PF Stuffing Box Construction w/ Packing (Graphite Impregnated Teflon)



ESPONLINE 3.0 © COPYRIGHT 2012 Xylem Inc.

Bell & Gossett

Series 1510 6BC Centrifugal Pump Submittal

B-225.7D

FLA	FLANGE DIMENSIONS IN INCHES (MM)							
	SIZE	THICKNESS	O.D.					
Discharge	6" (152)	1-7/16" (37))	12- 1/8" (308)					
Suction	8" (203)	1-5/8" (41)	14- 3/4" (375)					

FLANGES ARE 125# ANSI - STANDARD 250# ANSI - AVAILABLE

DIMENS	IONS -	Inches	(mm)

STAND	ADD	 1540	4 E 4 A E

DIMENSI	0149 - 11	icnes (min	7		3	IANDAKI) SEAL 15	10, 1510	-r					
MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	HM MAX	НО	HP	Υ	Z
FRAME	"L" I	FRAME				•				*	·····	·		•
254T	16	46-1/2	50-5/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1286)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
256T	16	46-1/2	52-3/8	15	14	36-1/2	18-1/4	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1181)	(1330)	(381)	(356)	(927)	(464)	(22)	(213)	(556)	(648)	(127)	(178)	(210)
284T	16	51-3/4	53-1/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1349)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	54-5/8	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1387)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
-7 324T	16	51-3/4	56-7/8	15	14	41 - 3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1445)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	58-3/8	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1483)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

STUFFING BOX 1510-PF, 1510-S, 1510-D

MOTOR	НА	нв	HC MAX	HD	2HE	HF ₁	HF ₂	нн	HL	HM MAX	но	НР	Y	z
FRAME		"L" F	RAME	•	•			•	•			•	•	
254T	16	51-3/4	53	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1346)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
256T	16	51-3/4	54-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	21-7/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1391)	(381)	(356)	(1060)	(530)	(22)	(213)	(555)	(648)	(127)	(178)	(210)
284T	16	51-3/4	55-1/2	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(4 06)	(1314)	(1410)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
286T	16	51-3/4	57	15	14	41-3/4	20-7/8	7/8	8-3/8	23	25-1/2	5	7	8-1/4
	(406)	(1314)	(1 44 8)	(381)	(356)	(1060)	(530)	(22)	(213)	(584)	(648)	(127)	(178)	(210)
324T	16	51-3/4	59-1/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1505)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)
326T	16	51-3/4	60-3/4	15	14	41-3/4	20-7/8	7/8	8-3/8	24-1/8	25-1/2	5	7	8-1/4
	(406)	(1314)	(1543)	(381)	(356)	(1060)	(530)	(22)	(213)	(613)	(648)	(127)	(178)	(210)

UPDATE™ Version 4.14.9

Product Data: 5/31/2012 (Current)

© 2012 SPX Cooling Technologies, Inc. 11/8/2012 2:43:54 PM

Job Information ————

Selected By -

Bovenkamp Jon

225 Iowa Ave.

Tel (563) 264-6490

Muscatine, IA 52761

bovenkampjon@stanleygroup.com

SPX Cooling Technologies Contact -

The RS Stover

3809 S. Center St.

Tel 641-753-5557

Marshalltown, Iowa 50158

Fax 641-752-7977

dan.hampton@rsstover.com

Cooling Tower Definition -

Occining Foreit D	Cililition		
Manufacturer	Marley	Fan Motor Speed	1800 rpm
Product	NC Steel	Fan Motor Capacity per cell	50.00 BHp
Model	NC8409UAN1	Fan Motor Output per cell	49.62 BHp
Cells	1	Fan Motor Output total	49.62 BHp
CTI Certified	Yes	Air Flow per cell	196600 cfm
Fan	12.00 ft, 6 Blades	Air Flow total	196600 cfm
Fan Speed	273 rpm, 10292 fpm	Static Lift	12.34 ft
Fans per cell	1	Distribution Head Loss	0.00 ft
•		ASHRAE 90.1 Performance	52.5 gpm/Hp

Model Group Sound Pressure Level Standard Low Sound (A)

81 dBA (Single Cell), 5.00 ft from Air Inlet Face. See sound report for details.

Conditions -

Conditions —			
Tower Water Flow	1500 gpm	Air Density In	0.07094 lb/ft³
Hot Water Temperature	100.00°F	Air Density Out	0.07085 lb/ft³
Range	15.00 °F	Humidity Ratio In	0.01712
Cold Water Temperature	85.00 °F	Humidity Ratio Out	0.03124
Approach	7.00 °F	Wet-Bulb Temp. Out	90.06°F
Wet-Bulb Temperature	78.00 °F	Estimated Evaporation	23 gpm
Relative Humidity	50.0 %	Total Heat Rejection	11205000 Btu/h
Capacity	116.5 %		

• This selection satisfies your design conditions.

Weights & Dimensions -

	Per Cell	Total
Shipping Weight	13120 lb	13120 lb
Heaviest Section	13120 l b	
Max Operating Weight	32010 lb	32010 lb
Width	22.42 ft	22.42 ft
Length	13.90 ft	13.90 ft
Height	12.02 ft	

Minimum Enclosure Clearance -

Clearance required on air inlet sides of tower without altering performance. Assumes no air from below tower.

Solid Wall 8.40 ft 50 % Open Wall 6.37 ft

Weights and dimensions do not include options; refer to sales drawings. For CAD layouts refer to file 8409_ALN.dxf

Cold Weather Operation -

Heater Sizing (to prevent freezing in the collection basin during periods of shutdown)

Heater kW/Cell 30.0 24.0 18.0 15.0 12.0 9.0 7.5 Ambient Temperature °F -21.50 -8.40 4.71 11.26 17.81 24.36 27.64

Appendix C

Utility Information

ROCHESTER PUBLIC UTILITIES (RPU)

RATE SCHEDULE LGS SHEET 1 OF 2

LARGE GENERAL SERVICE

AVAILABILITY:

At all locations for loads where the measured demand is at least 1,000 kW or more for three or more billing periods in a given calendar year, but less than 10,000 kW, and where facilities of adequate capacity and suitable voltage are adjacent to the premises to be served. For loads where the service desired by the customer is not adjacent to the premises to be served, additional contract arrangements may be required prior to service being furnished.

APPLICATION:

To commercial, industrial, and governmental customers with all service taken at one point and measured through one meter. Also applicable to temporary service in accordance with RPU's published Electric Service Rules and Regulations. Not applicable to standby service.

CHARACTER OF SERVICE:

Three phase, 60 Hertz, alternating current at any one of the standard secondary service voltages as described in RPU's published Electric Service Rules and Regulations.

RATE:

Demand Charge:

\$16.463 per kW

Energy Charge:

5.261¢ per kWh

POWER SUPPLY ADJUSTMENT:

Bills computed under this rate schedule are subject to adjustment in accordance with the Power Supply Adjustment (PSA).

POWER FACTOR ADJUSTMENT:

The customer agrees to maintain an average power factor of 0.95 or greater for the billing period and to prevent a leading power factor. If the customer's average power factor is less than 0.95 for the billing period, the billing demand will be determined by multiplying the measured demand by 0.95 and dividing the results by the customer's average power factor. The average power factor is defined to be the quotient obtained by dividing the kWh used during the month by the square root of the sum of the squares of the kWh used and the lagging reactive kilovoltampere-hours supplied during the same period. The customer's average power factor will be determined by means of permanently installed meters.

PRIMARY METER DISCOUNT:

Customers approved for metering at 13.8 kV will receive a discount of 1.25% on base rate charges for measured demand and energy.

TRANSFORMER OWNERSHIP CREDIT:

Customers owning transformers will receive a credit of \$.20 per kW on each month's measured demand.

ROCHESTER PUBLIC UTILITIES (RPU)

RATE SCHEDULE LGS SHEET 2 OF 2

LARGE GENERAL SERVICE (Cont.)

DETERMINATION OF DEMAND:

Measured demand is defined as the maximum rate at which energy is used for any period of fifteen consecutive minutes during the billing period. The billing demand shall be the greater of the measured demand for the billing period adjusted for power factor, or 75% of the maximum measured demand for the most current June - September billing periods adjusted for power factor. Billing periods may not coincide with calendar months.

MINIMUM BILL:

The minimum bill shall not be less than the billing demand, as provided above, whether or not energy is used.

PAYMENT:

Payments are due on or before the due date.

CONDITIONS OF DELIVERY:

- 1. Service furnished under this rate schedule is subject to applicable provisions of RPU's published Electric Service Rules and Regulations.
- 2. Unless authorized by separate written agreement, standby electric generating equipment installed by the customer shall not be interconnected or operated in parallel with the RPU system. Customer shall own, install, operate, and maintain electrical interlocking equipment, which will prevent parallel operation, and such equipment shall be approved by RPU prior to installation.
- 3. RPU shall not be liable for any damage or loss sustained by customer resulting from interruptions, deficiencies, or imperfections of service provided under this rate.
- 4. Energy furnished under this rate shall not be resold.
- 5. A separate electric service agreement may be required for service under this rate schedule.

Approved by Rochester Public Utility Board: Effective Date:

December 12, 2008 January 1, 2009

COMMERCIAL COOLING EQUIPMENT REBATE APPLICATION

Account Name		Doing Bus	iness As (if differer	t from Accou	nt Name)
Installation Address		City		State	Zip Code
		0.09			_,,,
Mailing Address (if different from above) (rebate check will be m	ailed here)	City		State	Zip Code
Account Number		☐ Send u	s a rebate check.	☐ Apply I	ebate to our account.
	Grocery 🔲	Health	☐ Industrial	☐ Lod	oing
- ''	·	Retail	School	Othe	-
How did you hear about CONSERVE & SAVE®?	Chamber of Com	merce 🗀	Contractor 🔲 Ne	wspaper [☐ Radio
☐ Retailer/Vendor ☐ TV ☐ Utility Mailing ☐ Utility New	sletter 🔲 Utility	Representativ	e 🔲 Utility Web	Site 🔲 Othe	er
2. CONTACT INFORMATION (please print)/C	USTOMER S	IGNATUR	RE :		
ATTENTION: ALL INVOICES OR RECEIPTS					
YOUR FULLY-COMPLETED ANI	D SIGNED APP	LICATION	OR APPLICAT	TION WILL	. BE RETURNED.
<u> </u>			()		
Contact Name (rebate check will be mailed to contact)			Daytime Phone	Number	
Email					
I certify that all the information in the application (including any to the Terms and Conditions on the back of this application boo purchased, or installed before approval from The Utility is received.	kiet. I understand t	hat if any equ	lipment in conjunct	ion with this	. I have read and agree application is ordered,
Customer's Signature					
Customer's Signature			Date		
☐ Check here If you DO NOT give us permission to use your bu	ısiness name in adv	ertising our		° programs.	
☐ Check here If you DO NOT give us permission to use your bu		ertising our		[®] programs.	
		ertising our		° programs.	
☐ Check here If you DO NOT give us permission to use your bu		ertising our		[®] programs.	
Check here if you DO NOT give us permission to use your but 3. CONTRACTOR/VENDOR INFORMATION Company Name		110, 14			
☐ Check here If you DO NOT give us permission to use your bu 3. CONTRACTOR/VENDOR INFORMATION		City		programs. State	Zip Code
Check here if you DO NOT give us permission to use your but 3. CONTRACTOR/VENDOR INFORMATION Company Name		110, 14		State	Zip Code
Check here If you DO NOT give us permission to use your but 3. CONTRACTOR/VENDOR INFORMATION Company Name Address		110, 14	CONSERVE & SAVE	State	Zip Code
Check here if you DO NOT give us permission to use your but 3. CONTRACTOR/VENDOR INFORMATION Company Name Address Contact Name Email	(please print)	City	CONSERVE & SAVE	State	Zip Code
Company Name Address Contact Name		City	CONSERVE & SAVE	State	Zip Code
Check here if you DO NOT give us permission to use your but 3. CONTRACTOR/VENDOR INFORMATION Company Name Address Contact Name Email	(please print)	City SE ONLY	CONSERVE & SAVE	State	Zip Code
Check here If you DO NOT give us permission to use your but 3. CONTRACTOR/VENDOR INFORMATION Company Name Address Contact Name Email	(please print) OFFICE U:	City SE ONLY	() Daytime Phone	State	

4. REBATE INFORMATION – ROOFTOP, PACKAGED, AND CONDENSING A/C UNITS

☐ NEW CONSTRUCTION

☐ RETROFIT

Project Type:

Q R Bonus Bon	99 99 99 99
B A T E	
Eligible Bonus S. Ton (J) (Table 1)	
Eligible Bonus (/ - //)	
ш	
Sisse Sisse	9 69
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9 69
Equipment Cost	
K L Cob. Amual E Cob. Amual E Coperation Coperation S S S S S S S S S)
	O SEER
Minimum Minimum Minimum (Table 1) 9 (Table 1)	
STEM HINDER Minimum Actual AHRI Minimum Actual A	
S Y C G G G G G G G G G G G G G G G G G G	
I Worker Number	
Manufacturer Name	
Unit Code (Table 1.)	
(if applicable) A B C Unit Existing 00. Size SEER* Trons. or EER* 1.	
(if app (if ap	9

OLING HOURS	Estimated Hou	632	786	+00	828	756	00.1	1,408	1.193	0011	902	298	00
TABLE 2 - GUIDELINES FOR COOLING HOURS	Business Type	Education - Community College	Education - Secondary School		Education - University	Health/Medical - Clinic		Health/Medical – Hospital	Lodging	2000	OTTICE	Retail	
	Base Rebate Efficiency Bonus Rebate**	3/101	\$2	\$5	ı.	Ω	\$2	L +	C#	\$5		£2	
	Base Rebate	IIOI/¢	G/\$	\$75	÷15	C/A	\$75	\$75	0/4	\$75	I I	3/2	
ULE	Minimum	4.4.0.0 PTD	14.0 SEEK*	10.8 EER*	40.7 EFD*	TO.1 CER.	10.2 EER*	0 6 550*	S.O. LEN	10.8 EER*	4000	IU.O EER*	
TABLE 1 – QUALIFYING EFFICIENCIES AND REBATE SCHEDULE	Qualifying Equipment	less than or police to RE OOO DTII thous		65,001 - 134,999 BTU/hour	135.000 - 239 999 BTII /hour	mon /ora coologa coologa	240,000 - 759,999 BTU/hour	760.000 BTII/hour and greater		Packaged Terminal A/C Units (all sizes)	Dackaged Terminal Host Dum Haite (all circa)	de de la sizes)	
TABLE 1 -	Unit	117-1	;	UT-2	UT-3		UT-4	UT-5		PTAC	PTHP		*1*

43

TOTAL

2

*In Columns B and J, please enter Existing and Actual SEER or EER value, respectively, and then check SEER or EER. SEER=Seasonal Energy Efficiency Rating, EER=Energy Efficiency Rating

**Efficiency Bonus Rebate provides an additional incentive for each .1 SEER/EER above the Minimum Efficiency.

Qualifying unitary A/C units must have been rated in accordance with the most recent version of AHRI Standard 210/240 if under 65,000 BTU/hour and AHRI 340/360 if above 65,000 BTU/hour, and have nameplate data stamped with the SEER/EER. If equipment is larger than the AHRI Standard certification process, it must be listed as a standard combination in manufacturer's literature.

A copy of the manufacturer's applicable unit rating must accompany this application. The AHRI directory and standards are located at www.ahridirectory.org. Note:

5. REBATE INFORMATION -- CENTRAL CHILLERS

☐ NEW CONSTRUCTION

- RETROFIT

Project Type:

	V	↔	₩	₩	€9	₩	49
	P Q R S T U V Base Base Eligible Bonus Water Cooled Air Cooled Total Rebate Rebate Efficiency Rebate Bonus Rebate Bonus Rebate Rebate S/Ton (H × M × P) Bonus S/Ton (R × S) x (R × S) x (Q+T) Table 3 (H × M) × 100 (H × M) × 100 (Q+U)	₩	₩		€	₩	49
ATE	T Water Cooled Sonus Rebate (R x S) x H x M) x 100						
REBATE	e* Boy	↔	↔	↔	₩	↔	€9
	S Bonus Rebate* \$/Ton (Table 3)	€9	\$	6 9	↔	↔	€9
	R Eligible Efficiency Bonus (K-L)						
	P Q Base Base Rebate Rebate \$\sum{5.Ton}{(H \times M \times P)} (Table 3)	↔	⇔	\	₩	₩	₩
		⇔	↔	₩.	↔	₩	↔
	Gost	↔	↔	\$	€\$	₩.	₩
	Annual E						
	∑ġ						
	Rated IPLV						
	F. E. Table 3						
	A K Rated IPLV Full Eff.						
SYSTEM	Full Full Full Full Full Full Full Full						
SYS	S) LC						
NEX	H Size (Tons)						
~	G Model Number						
	<u>\$</u>						
	Manufactures Name		į				
	E Unit Code (Table 3)						
EM	ΔŞ̈́						
EXISTING SYST (if applicable)	A B C D Unit Unit Existing Qty. Code Size kW/Ton (Table 3) (Tons)						
TING appli	Unit Size (Tons)						
	A Unit Code (Table 3)	17	73	ကံ	4.	ດ້	ە C-6
2448	2 RCTC Chilled V	Vater Stu	ıdy				C-6

اء اء

3 — QUALIFYING EFFICIENCIES AND REBATE SCHEDULE					101	TOTAL
Qualifying Equipment (Water or Air Cooled)	Full-Load Efficiency	IPLV Efficiency	Base Rebate \$/Ton	Efficiency Bonus* Rebate (\$/Ton)		
Water-Cooled Screw/Scroll Chiller - Less than 150 Tons	0.74 kW per Ton	0.63 kW per Ton	\$15	\$3,50/IPLV		
Water-Cooled Screw/Scroll Chiller - 150 to 299 Tons	0.67 kW per Ton	0.58 kW per Ton	\$15	\$3.50/IPLV	TABLE 4 - GUIDELINES FOR COOLING H	OLING H
Water-Cooled Screw/Scroll Chiller - 300 Tons and Greater	0.59 kW per Ton	0.52 kW per Ton	\$15	\$3.50/IPLV	Business Type	Estimat
Water-Cooled Centrifugal Chiller – Less than 150 Tons	0.69 kW per Ton	0.65 kW per Ton	\$15	\$3.50/IPLV	Education - Community College	9
Water-Cooled Centrifugal Chiller – 150 to 299 Tons	0.62 kW per Ton	0.58 kW per Ton	유 고 1	\$3 50/IDIV	Education – Secondary School	9 6
Water-Cooled Centrifugal Chiller - 300 Tons and Greater	0.56 kW per Ton	0.53 kW ner Ton	\$15 212	\$3.50/III.V	Edication - University	° °
Air-Cooled Chiller (all types)	9.7 EER	12.0 EER	8\$	\$2.25/IPLV	Health/Medical - Clinic	0 ^
ncy Bonus Rebate provides additional incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive for each .01 kW per Ton helow the Minimum IDIV Efficient (working and incentive	W per Ton below the	Minimum IPIV Efficie		42.20/ II LV	Health/Medical - Hospital	4
each 0.1 EER above the minimum IPLV efficiency (air-cooled chillers).	hillers).		icy (water-coole	d cilliers),	Lodging	र्न

Efficiency Bonus Rebat or for each 0.1 EER abo

IPLV - Integrated Part Load Value; EER - Energy Efficiency Rating

Qualifying chillers must meet both full load and IPLV minimum efficiency requirements shown in Table 3 above to be eligible and have kW per Ton ratings stamped on the nameplate. **Documentation is required.** This can be a printout from the AHRI directory (www.ahridirectory.org) or if the chiller has not been tested by AHRI, manufacturer documentation must show the rated capacity (tons), and the IPLV efficiency and full-load efficiency at AHRI standard 550/590 rating conditions. Note:

The motors and/or variable speed drives in chiller units <u>are not</u> independently eligible for additional rebates offered under the Commercial Motor and Variable Speed Drive Rebate Program.

Estimated Hours JOLING HOURS 1,408 1,193 632 384 828 756 902 867 Office Retail

43

TABLE 3 - QUALIFYING

Code Ce

۲<u>.</u> 6 ဗ 94 | | 9-0

5

6. TERMS AND CONDITIONS

1. ELIGIBILITY

Rebates are available to non-residential electric customers of Austin Utilities, Owatonna Public Utilities, and Rochester Public Utilities (herein referred to as The Utility). All products must be in use in facilities in The Utility service territory.

2. APPLICATION

Program is offered January 1 through December 31 of the respective calendar year. Due to limited funding, this rebate offer can be changed or withdrawn at any time without notice and is available on a first-come, first-serve basis. The entire rebate application must be read and filled out completely or application will be returned.

3. INSPECTION AND VERIFICATION

The Utility reserves the right to inspect the customer's facility through on-site visits before and after new equipment installation to verify rebate eligibility.

4. INSTALLATION AND REBATE AMOUNTS

Qualifying energy-efficient equipment installed and operational within six (6) months of the date of purchase are eligible for rebate. Additional time may be granted subject to The Utility's pre-approval. In no case will the rebate paid by The Utility exceed the purchase price of the equipment. The maximum rebate amount is \$100,000 per customer location per technology per year. The Utility can, at its sole discretion, increase rebate amounts.

5. INVOICE AND PAYMENT

Following inspection and verification (see #3) and completed installation, the customer must notify The Utility and submit original invoices specifying the quantity and price of all materials purchased, the date ordered, installation costs, and applicable taxes. Additionally, SEER/EER (Rooftop, Packaged, and Condensing A/C Units) certification data or manufacturer's kW per Ton (Central Chillers) is required to be submitted with invoices. After satisfactory review of the application and invoices, a rebate check or bill credit will be issued to the customer. Please allow 6-10 weeks from the date of application submission for delivery of rebate check or bill credit.

6. EQUIPMENT ELIGIBILITY REQUIREMENTS

Eligible high-efficiency cooling equipment must be new and meet or exceed The Utility's minimum efficiency requirements as identified in Tables 1 and 3 according to its respective characteristics. Eligible high-efficiency cooling units must replace units of lesser efficiencies and of equivalent or greater capacity (Tons or Btu's/hour) to qualify for a rebate.

Rooftop, Packaged, and Condensing A/C Units: Qualifying unitary A/C units must have been rated in accordance with the most recent version of AHRI Standard 210/240 if under 65,000 BTU/hour and AHRI 340/360 if above 65,000 BTU/hour, and have nameplate data stamped with the SEER/EER. If equipment is larger than the AHRI Standard certification process, it must be listed as a standard combination in manufacturer's literature. A copy of the manufacturer's applicable unit rating must accompany this application. The AHRI directory and standards are located at www.ahridirectory.org.

Central Chillers: Qualifying chillers must meet the efficiency requirements shown in Table 3 to be eligible and have kW per Ton ratings stamped on the nameplate. Documentation is required. This can be a printout from the AHRI directory (www.ahridirectory.org) or if the chiller has not been tested by AHRI, manufacturer documentation must show the rated capacity (tons), and the IPLV efficiency and the full-load efficiency at AHRI standard 550/590 rating conditions:

- 44° F leaving chilled water temperature
- 85° F entering condenser water temperature (for water cooled chillers)
- 95° F entering condenser air temperature (for air cooled chillers)

7. TAX INFORMATION

The Utility will not be responsible for any tax liability imposed as a result of the rebate payment(s). Customers are advised to consult their tax advisors for details.

8. DISCLAIMER

The Utility does not guarantee that the implementation of energy-efficient measures or use of the equipment purchased or installed pursuant to this program will result in energy or cost savings. The Utility makes no warranties, expressed or implied, with respect to any equipment purchased or installed including, but not limited to, any warrant of merchantability or fitness for purpose. In no event shall The Utility be liable for any incidental or consequential damages. Customers are solely responsible for the proper disposal of existing equipment. Consult the Minnesota Pollution Control Agency (MPCA) office for details at (800) 657-3864.

9. ENDORSEMENT

The Utility does not endorse any particular vendor, manufacturer, product, or system in promoting this rebate program. Listing a vendor or product does not constitute an endorsement, nor does it imply that unlisted vendors or products are deficient or defective in any way.

10. PRIVACY

Information contained in this rebate application may be shared with the Minnesota Department of Commerce and our co-op partners and also may be used in our advertising efforts with your permission as granted in Section 2 of this rebate application.

RETURN COMPLETED APPLICATION AND REQUIRED DOCUMENTATION TO YOUR UTILITY PROVIDER:

Austin Utilities

Attn: Rebate Processing 400 - 4th Street NE Austin, MN 55912 (507) 433–8886 (507) 433–5045 fax www.austinutilities.com Owatonna Public Utilities

Attn: Rebate Processing P.O. Box 800 Owatonna, MN 55060 (507) 451–2480 (507) 451–4940 fax www.owatonnautilities.com **Rochester Public Utilities**

Attn: Rebate Processing 4000 East River Road NE Rochester, MN 55906-2813 (507) 280-1500 (507) 280-1542 fax www.rpu.org

C-7

8/15/2012

OWEF - Solid Waste Division 2122 Campus Dr. SE Rochester MN, 55904

Customer:

2370

ROCHESTER COMMUNITY COLLE

851 30TH AVENUE SE ROCHESTER, MN 55904 The following charges are for July

Please call Justin @ 328-7057 with any questions.

DATE:	DESCRIPTION:	QUANTITY:	UNIT PRICE:	TOTAL:
7/31/2012	Previous Statement Balance		0	\$7,995.18
7/31/2012	Payment - ITACH073012WR		0	(\$7,995.18)
7/31/2012	Steam Sales Firm - Heintz	57.10	14.64	\$835.94
7/31/2012	Steam Sales Firm - UCR	138.20	14.64	\$2,023.25
7/31/2012	Steam Sales Firm - Sports Center	16.50	14.64	\$241.56
7/31/2012	Meter Service Charge	3.00	2.1	\$6.30
7/31/2012	BTU Meter Serv Chg	3.00	21	\$63.00
7/31/2012	Steam Gas Rate - Sports Center	16.50	4.4808	\$73.93
7/31/2012	Steam Gas Rate - Heintz	57.10	4.4808	\$255.85
7/31/2012	Steam Gas Rate - UCR	138.20	4.4808	\$619.25
7/31/2012	Steam Interrupt Rate - Sports Center	16.50	4	(\$66.00)
7/31/2012	Steam Interrupt Rate - Heintz	57.10	4	(\$228.40)
7/31/2012	Steam Interrupt Rate - UCR	138.20	4	(\$552.80)
Payment Due \$3,271.88	Current Previous Balance \$3,271.88 \$0.00			

C. Kellas

8.9>

9/21/2012 steam

OWEF - Solid Waste Division

2122 Campus Dr. SE

Rochester MN, 55904

The following charges are for August

Please call Justin @ 328-7057 with any questions.

Customer: 2370

ROCHESTER COMMUNITY COLLE

851 30TH AVENUE SE ROCHESTER, MN 55904

DATE:	DESCRIPTION:	QUANTITY:	UNIT PRICE:	TOTAL Y
8/31/2012	Previous Statement Balance	QOAMIII.	ONLI PRICE:	TOTAL: \$3,271.88
8/31/2012	Payment - TACH082912WR		0	(\$3,271.88)
8/31/2012	Meter Service Charge	3.00	2.1	\$6.30
8/31/2012	BTU Meter Serv Chg	3.00	21	\$63.00
Payment Due \$69.30	Current Previous Balar \$69.30 \$0.			

10.4.

SEP 2 4 2012

Appendix D

Opinion of Probable Cost Information

Total Unit Cos 186,000.0 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$5,660.0 00 \$5,660.0 00 \$2,475.0 00 \$650,000.0 00 \$650,000.0 00 \$650,000.0 00 \$85,000.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$700,000.0 00 \$200.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$186,000.0 00 \$23,800.0 00 \$56,000.0 00 \$5,660.0 00 \$75.0 00 \$6,054.0 00 \$65,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$2,000.0 00 \$2,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$60,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$33.3 00 \$15,000.0 00 \$3,3310.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$60,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$33.3 00 \$15,000.0 00 \$3,3310.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
000 \$6,054.0 00 \$23.0 000 \$65,000.0 000 \$85,000.0 000 \$2,150.0 000 \$3,310.0 000 \$15,000.0 000 \$700,000.0 000 \$200.0	00 \$6,05 00 \$3,45 00 \$65,00 00 \$85,00 00 \$4,30 00 \$59,58 00 \$30,00 00 \$700,00
00 \$700,000.0 00 \$200.0	0 \$700,00
AL	
	\$3,599,53
9% 5% 5%	\$1,079,86 \$701,90 \$538,13 \$887,91
ST	\$6,807,34
SE	\$6,810,00
00 \$186 000 0	0 \$186,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0	0 \$60,90 0 \$23,80 0 \$15,05
AL	\$315,75
5% 0%	\$94,72 \$61,57 \$47,20 \$77,88
ST.	\$597,13
SE .	\$600,00
- 30 - 15 - 10 - 15 - 10	000.00 \$186,000.0 100.00 \$60,900.0 500.00 \$23,800.0 150.00 \$15,050.0 100.00 \$15,000.0 **TOTAL - 30% - 15% - 10% - 15% COST **T USE

Stanley Consultants acc	Kyle Johnson	Date	12-Dec-12	Job No. Subject	RCT	32-01-00 C ed Water Sti	udy		_	
Checked by Approved by		Date Date			TRA			CHILLERS (NO	VFD)	
	Item Description			(Quanti	ty		Unit Cost		Total Cost
	item bescription	ı		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
Phase 3										
Primary Pumps, 60	Centrifugal Chillers wer for Centrifugal Chi HP (1200 GPM @ 130 30 HP (1500 GPM @)' TDH)	1)		1 EA 1 EA 1 EA 1 EA 2 EA		\$170,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00	\$15,050.00	\$186,000 \$60,900 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$315,750
							Contractor C	n Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$94,725 \$61,571 \$47,205 \$77,888
								TOTAL COST		\$597,139
							PROBAE	BLE COST USE	=	\$600,000
								LL 3 PHASES):		\$8,010,000

				24482-01-00	Job No.				
				RCTC	Subject			1	Stanley Consultants avc.
			udy	Chilled Water S		12-Dec-12	Date	Kyle Johnson	Computed by
	VFD)	CHILLERS (with		TRADITIONAL			Date		Checked by
	· •			OPTION 2			Date		Approved by
Total Cost		Unit Cost		uantity			n	Item Description	
	Total Unit Cost	Labor	Material	UOM	No. of Unit			itom 2000 pilot	
						VFD)	RS (With	NTRIFUGAL CHILLEF	TRADITIONAL CEN
									Phase 1
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA	-		vith VFD	Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA			hiller	wer for Centrifugal Ch	500 Ton Cooling To
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA				HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA		OH)	@ 50' TD	s, 30 HP (1500 GPM (
\$650,00	\$650,000.00	\$300,000.00	\$350,000.00	LS					Piping and Accesso
\$113,20	\$5,660.00	\$735.00	\$4,925.00	EA					12" Butterfly Valves
\$29,70 \$67,50	\$2,475.00 \$75.00	\$500.00 \$30.00	\$1,975.00 \$45.00	EA LF				ad Cable & Conduit	8" Butterfly Valves 13.8 kV Undergroun
\$6,05	\$6,054.00	\$1,304.00	\$4,750.00	EA					Pad Mounted Trans
\$3,45	\$23.00	\$11.00	\$12.00	LF			SB.	duit, Secondary to MSE	
\$65,00	\$65,000.00	\$25,000.00	\$40,000.00	EA					1600A Main Switch
\$85,00	\$85,000.00	\$35,000.00	\$50,000.00	EA					Motor Control Cente
\$4,30	\$2,150.00	\$700.00	\$1,450.00	EA					Low Voltage Transfo
\$59,58	\$3,310.00	\$910.00	\$2,400.00	EA					Motor Starter Discor
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$700,00	\$700,000.00	\$300,000.00	\$400,000.00	LS				em	Digital Control Syste
\$1,500,00	\$200.00	\$75.00	\$125.00	SF	7500				Building
\$3,661,53		SUBTOTAL							
\$1,098,46		n Details - 30%	eveloped Desig	Une					
\$713,99		Overhead - 15%	Contractor C						
\$547,39		tor Profit - 10%	Contrac						
\$903,20		gineering - 15%	stration and Eng	Admi					
\$6,924,60		TOTAL COST							
\$6,920,00	=	LE COST USE	PROBAB						
									Phase 2
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA				Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA				wer for Centrifugal Ch	•
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA			<u> </u>	HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA)H)	@ 50' IL	s, 30 HP (1500 GPM (
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$377,75		SUBTOTAL							
		n Details - 30%	eveloped Desig	Uni					
\$113.32		Overhead - 15%		311					
		tor Profit - 10%							
\$73,66			stration and En	Admi					
\$113,32 \$73,66 \$56,47 \$93,18									i
\$73,66 \$56,47		TOTAL COST							

Stanley Consultants	DK.			Job No. Subject	24482-0 RCTC	01-00				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12	Subject	Chilled			CHILLERS (with	ı VFD)	
трріотов зу				(Quantity	-		Unit Cost		
	Item Descriptio	n		No. of Unit	U	OM	Material	Labor	Total Unit Cost	Total Cost
500 Ton Cooling T Primary Pumps, 6	al Centrifugal Chillers w Tower for Centrifugal Cl 0 HP (1200 GPM @ 13 ps, 30 HP (1500 GPM	niller 80' TDH)	DH)	·	I EA I EA I EA I EA 2 EA		\$232,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00	\$248,000.00 \$60,900.00 \$23,800.00 \$15,050.00 \$15,000.00	\$248,000 \$60,900 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$377,750
							Contractor C	n Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$113,325 \$73,661 \$56,474 \$93,181
								TOTAL COST		\$714,391
							PROBAE	BLE COST USE	=	\$710,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$8,340,000

Stanley Consultants »				Job No.	24482	2-01-00				
-				Subject	RCTO					
Computed by Checked by	Kyle Johnson	Date Date	12-Dec-12			d Water St	tudy CHILLERS			
Approved by	-	Date			OPTI		JHILLENS			
, ,				Q	uantity	,		Unit Cost		- · · · ·
	Item Description	1		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
ABSORPTION CHI OPTION 3	<u>LLERS</u>									
Primary Pumps, 60 Condenser Pummp Piping and Accesso 12" Butterfly Valves 8" Butterfly Valves 13.8 kV Undergrou Pad Mounted Trans	wer for Centrifugal Ch HP (1200 GPM @ 13 s, 30 HP (1500 GPM pries and Cable & Conduit former, 13 kV/480V duit, Secondary to MSI Board (MSB) er ormer nnects	0' TDH) @ 50' TI	DH)	1 1 1 20 12 900 1 150 1 1 2 18	EA LF EA EA EA EA LS		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$350,000.00 \$4,925.00 \$1,975.00 \$4,750.00 \$12.00 \$15,000.00 \$50,000.00 \$2,400.00 \$10,000.00 \$10,000.00 \$125.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$300,000.00 \$735.00 \$30.00 \$1,304.00 \$11.00 \$10,000.00 \$700.00 \$910.00 \$5,000.00 \$75.000.00	\$23,800.00 \$15,050.00 \$650,000.00 \$5,660.00 \$2,475.00 \$75.00 \$23.00 \$25,000.00 \$25,000.00 \$2,150.00 \$3,310.00 \$15,000.00	\$367,80 \$105,70 \$23,80 \$15,05 \$650,00 \$113,20 \$29,70 \$67,50 \$6,05 \$3,45 \$25,00 \$85,00 \$4,30 \$59,58 \$30,00 \$700,00
								Overhead - 15% ctor Profit - 10%		\$4,126,13: \$1,237,84! \$804,59! \$616,85' \$1,017,81: \$7,803,24
							PROBAB	LE COST USE	=	\$7,800,00
Primary Pumps, 60	Chillers wer for Centrifugal Ch HP (1200 GPM @ 13 s, 30 HP (1500 GPM	0' TDH)	DH)	1 1 1	EA EA EA EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00		\$367,800 \$105,700 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$542,35
								Overhead - 15% ctor Profit - 10%		\$162,70 \$105,75 \$81,08 \$133,78
								TOTAL COST		\$1,025,67
							РКОВАВ	LE COST USE	=	\$1,030,00

Stanley Consultants	ĸ.			Job No. Subject	2448 RCT	32-01-00 C				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12		Chill	ed Water Str ORPTION C				
	lteres December			(Quanti			Unit Cost		Total Ocat
	Item Description	n		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
Primary Pumps, 60	n Chillers ower for Centrifugal Ch HP (1200 GPM @ 13 os, 30 HP (1500 GPM	0' TDH)	DH)	·	1 EA 1 EA 1 EA 1 EA 2 EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00	\$367,800.00 \$105,700.00 \$23,800.00 \$15,050.00 \$15,000.00	\$367,800 \$105,700 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$542,350
							Contractor C	gn Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$162,705 \$105,758 \$81,081 \$133,784
								TOTAL COST		\$1,025,679
							PROBAE	BLE COST USE	=	\$1,030,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$9,860,000

	Job No.	24482-0	11-00				
Stanley Consultants ac.	Subject RCTC						
Computed by Kyle Johnson Date 12-Dec-12							
Checked by Date		Chilled Water Study Distribution Through the Building Option A - Ph 1,2,3					
Approved by Date							
	Quantity						
Item Description	Quantity		ty			Unit Cost	
	No. of Unit	UC	OM	Material	Labor	Total Unit Cost	
Distribution Through the Building - OPTION B PHASE 1							
12" Direct Buried AWWA Pipe	440) LF		\$13.69	\$16.89	\$30.58	\$13,455
12" AWWA LR Elbow		ŀΕΑ		\$184.00	\$126.00		\$1,240
12" Steel Pipe	745 LF			\$89.00	\$68.78		\$117,546
12" Pipe Insulation with Jacket	745 LF			\$20.50	\$8.95		\$21,940
6" Steel Pipe	300 LF			\$37.50	\$35.97		\$22,041
6" Pipe Insulation with Jacket	300 LF 360 LF		\$12.40	\$6.80		\$5,760	
4" Steel Pipe				\$23.50	\$22.93		\$16,715
4" Pipe Insulation with Jacket 3" Steel Pipe		LF		\$9.95 \$17.20	\$6.20 \$10.00		\$5,814 \$5,941
3" Pipe Insulation with Jacket	160 LF 160 LF			\$17.20 \$8.65	\$19.93 \$5.95		\$5,941 \$2,336
12" Steel Elbow		EA		\$3,775.00	\$208.00		\$23,898
6" Steel Elbow		EA		\$495.00	\$139.00		\$5,072
4" Steel Elbow		ΕA		\$315.00	\$100.00		\$1,660
3" Steel Elbow		B EA		\$255.00	\$73.00		\$984
12"x12"x4" Steel Tee	6	EA		\$5,875.00	\$415.00	\$6,290.00	\$37,740
12"x12"x8" Steel Tee	2 EA			\$5,875.00	\$415.00	\$6,290.00	\$12,580
6"x6"x3" Steel Tee	2	2 EA		\$950.00	\$208.00		\$2,316
12"x6" Steel Reducer		2 EA		\$3,825.00	\$179.00		\$8,008
Demo and Replace Lay-In Ceiling	6408			\$2.21	\$1.42		\$23,261
AHU (12.5 Tons, 5000 CFM)		EA		\$26,500.00	\$1,600.00		\$28,100
AHU (30 Tons, 12000 CFM)		1 EA		\$54,500.00	\$2,450.00		\$56,950
AHU (40 Tons, 16000 CFM)		1 EA 1 EA		\$79,500.00	\$3,100.00		\$82,600
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)				\$7,900.00	\$620.00		\$8,520 \$4,200
Secondary CHWP (CF) 7.5 HP (312.5 GPM. 60' TDH) Secondary CHWP (Theater) 7.5 HP (206.25 GPM. 60' TDH)		1 EA 1 EA		\$3,725.00 \$3,725.00	\$475.00 \$475.00		\$4,200 \$4,200
Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)		1 EA		\$3,725.00	\$475.00		\$4,200
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH)		EA		\$1,685.00	\$214.00		\$1,899
		SUBTOTAL PHASE 1				\$518,976	
		Difficult Working Conditions - 20%					\$103,795
				developed Design Details - 30%			\$186,831
	Contractor Overhead - 15%)	\$121,440
		Contractor Profit - 10% Adminstration and Engineering - 15%			\$93,104 \$153,622		
		TOTAL COST			-	\$1,177,770	
		PROBABLE COST USE			_	\$1,178,000	
PHASE 2						•	
12" Steel Pipe	420) I F		\$89.00	\$68.78	\$157.78	\$66,268
12" Pipe Insulation with Jacket	420			\$20.50	\$8.95		\$12,369
8" Steel Pipe	160			\$55.50	\$44.82		\$16,051
8" Pipe Insulation with Jacket		LF		\$14.80	\$7.55		\$3,576
12"x12"x12" Steel Tee		EA		\$5,875.00	\$415.00		\$37,740
12"x8" Steel Reducer	2	2 EA		\$3,825.00	\$179.00		\$8,008
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH)	2	2 EA		\$7,900.00	\$620.00	\$8,520.00	\$17,040
		SUBTOTAL PHASE 2					\$161,052
		Difficult Working Conditions - 20%				,	\$32,210
		Undeveloped Design Details - 30%					\$57,979
		Contractor Overhead - 15%					\$37,686
		Contractor Profit - 10%					\$28,893
		Adminstration and Engineering - 15%					\$47,673
TOTAL COST							\$365,493
				PROBAE	LE COST USE		\$365,000

			Job No.	24482-01-00				
Stanley Consultants ac.			Subject	RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	,	Chilled Water S				
Checked by	Trylo dominoon	Date			ough the Buildin	a		
Approved by		Date		Option A - Ph 1	,2,3	9		
Item Description		00	Quantity		Unit Cost			Total Cost
	item Descripti		No. of Unit	UOM	Material	Labor	Total Unit Cost	Total Cost
PHASE 3								
8" Direct Buried AW	/M/A Pino		236	516	\$11.85	\$15.25	\$27.10	\$64,092
8" AWWA LR Elbov	v ipe			2 EA	\$144.00	\$99.00		\$2,916
8" Steel Pine	•) LF	\$55.50	\$44.82		\$16,051
8" Steel Pipe 8" Pipe Insulation w	ith Jacket) LF	\$14.80	\$7.55		\$3,576
8" Steel Elbow	itii dacket			4 EA	\$855.00	\$156.00		\$4,044
12"x8" Steel Reduc	er			2 EA	\$3,825.00	\$179.00		\$8,008
Secondary CHWP (SC) 15 HP (520 GF	PM. 60' TDH)		2 EA	\$9,625.00	\$780.00		\$20,810
					SUBTO	OTAL PHASE 3	3	\$119,497
				Und	leveloped Desig	n Details - 30% Overhead - 15%		\$35,849
						\$23,302 \$17,865		
				Admin	stration and En	tor Profit - 10%		\$11,552
				Admin	Stration and En	TOTAL COST		\$208,065
					PROBAB	LE COST USE	=	\$208,000
				TOTAL -	- OPTION B (AL	L 3 PHASES)		\$1,751,000
					,	,		, , , , , , , , , , , , , , , , , , , ,

Computed by									
Comparison by Mark Library Date Library Date	Stanley Consultants ac.								
Checked by	Computed by Kylo Johnson	Data 12 Dag 12	Subject		tor Study				
Page						Ruildina			
Distribution Outside the Building - OPTION A						Juliuling			
Description Outside the Building - OPTION A PhASE	Ph		Qı	•	, ,-		Unit Cost		
Distribution Quiside the Building - OPTION A PHASE 12° Direct Buried AWWA Pipe 1025 LF \$13.69 \$16.89 \$30.58 \$31.345 Phase 20° Direct Buried AWWA Pipe 20° DF \$11.85 \$15.25 \$27.10 \$7.046 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.60 \$15.50 \$40.00 \$40.00 Promet Buried AWWA Pipe 20° LF \$26.40 \$20.91 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.00 \$1.00 Promet Buried AWWA Tree 20° LA \$24.00 \$24.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$24.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00	Item Descripti	on	No. of Unit	LION	Moto	riol	Labor	Total Unit Cost	Total Cost
PHASE	E		No. of Unit	UOIV	i Mate	riai	Labor	Total Unit Cost	
8**Direct Buried AWWA Pipe** 1620 LF		PTION A							
8' Direct Buried AWWA Pipe 1620 LF	12" Direct Buried AWWA Pipe		1025	LF	\$	13.69	\$16.89	\$30.58	\$31,345
4* Direct Buried AWWA Pipe 240 LF 98.54 st 313.52 \$20.06 \$8.1814 1**Z*12**AWWA Tee	8" Direct Buried AWWA Pipe		260	LF	\$	11.85	\$15.25	\$27.10	\$7,046
12*12* AWWA Tee	6" Direct Buried AWWA Pipe		1620	LF	\$	10.64	\$14.27	\$24.91	\$40,354
12-x4 NWNA Tec 2 EA	4" Direct Buried AWWA Pipe		240	LF		\$6.54	\$13.52	\$20.06	\$4,814
8/st AWMA Tee	12"x12" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006
876 MWA Tee	12"x4" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006
81-86* AWWA Tee 2 EA \$40,00 \$154.00 \$394.00 \$788 6* AWWA LR Ebow 8 EA \$76,00 \$58.00 \$314.00 \$10,00 8 EA \$76,00 \$58.00 \$134.00 \$10,00 8 EA \$76,00 8 EA \$76,00 \$10,00 8 EA \$76,00 8 EA \$76	8"x4" AWWA Tee		2	EA	\$2	40.00	\$154.00	\$394.00	\$788
12 AWMA LP Elbow	8"x6" AWWA Tee								
8 EA \$75.00 \$88.00 \$134.00 \$1.072 \$2.094 \$2.00 \$2.094 \$2.00 \$2.000 \$									
8 AWMA Direct Buried Valve 2 EA \$825.00 \$217.00 \$1,042.00 \$2.004 127.97 AWMA Pretucer 2 EA \$475.00 \$10.60 \$4.005 127.97 AWMA Reducer 2 EA \$475.00 \$10.60 \$4.005 197.67 AWMA Reducer 2 EA \$475.00 \$10.60 \$24.46 \$486 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$32.50 \$2.293 \$46.43 \$5.572 47 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$6.00 \$1.60.00 \$8.65.00 \$56.95.0									
12 MWA Direct Burled Valve									
12-x8f XMWA Reducer									
8'Af AWWA Reducer									
6° Sleel Pipe 6° Pipe Insulation with Jacket 40 LF 512-40 56° Pipe Insulation with Jacket 40 LF 512-40 58-80 513-20 578-84 58-81 58-97 578-47 58-99 58-99 58-90 58									
6° Pipe Insulation with Jacket 40 LF \$12.40 \$8.80 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$10 LF \$23.50 \$22.93 \$46.43 \$5.572 \$4° Pipe Insulation with Jacket 120 LF \$3.95 \$8.20 \$16.15 \$1.33 \$7 Pipe Insulation with Jacket 180 LF \$17.20 \$19.93 \$37.13 \$5.941 \$79.90 \$10 LF \$3.86 \$5.95 \$14.60 \$2.33 \$5.941 \$10 LF \$3.86,50 \$5.95 \$14.60 \$2.33 \$1.91 \$1.91 \$1.92 \$1.93 \$									
4" Sleel Pipe 4" Pipe Insulation with Jacket 120 LF \$23.50 \$22.93 \$46.43 \$5.572 4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1.938 3" Sleel Pipe 160 LF \$17.20 \$19.93 \$37.13 \$5.941 3" Pipe Insulation with Jacket 160 LF \$16.50 \$8.65 \$5.95 \$46.00 \$2.338 AHU (12.5 Tons, 5000 CFM) 1 EA \$26.500.00 \$1.600.00 \$26.100.00 \$26.100.00 AHU (30 Tons, 12000 CFM) 1 EA \$54.500.00 \$2.450.00 \$56.950 AHU (40 Tons, 16000 CFM) 1 EA \$79.500.00 \$2.100.00 \$26.100.00 Secondary CHWP (CF) To HP (450 GPM, 60' TDH) 1 EA \$7.900.00 \$20.00 \$5.50.00 Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.600 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.600 \$1.899.00 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.850 \$16.89 \$30.58 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.850 \$16.89 \$30.58 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.850 \$16.89 \$30.58 Secondary CHWP (SH) 3 HP (50 GPM, 60' TDH) 1 EA \$1.800 \$1.000 \$	-								
4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1,938 \$1.50 \$10 LF \$17.20 \$19.30 \$3.71.31 \$5.941 \$10 LF \$1.50 \$19.30 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$1.30 \$1.30 \$2.450.00 \$2.450.00 \$2.250.00 \$2.250.00 \$2.250.00 \$1.00 \$2.250.00 \$2.									
3" Stele Pipe 3" Stele Pipe 3" Pipe Insulation with Jacket 180 LF \$8.65 \$5.55 \$5.55 \$14.60 \$2.338 AHU (12.5 Tons, 5000 CFM) 1 EA \$6.6500.00 \$1.600.00 \$22,100.00 \$22,									
10 F									
AHU (12 5 Tons, 5000 CFM) 1 EA \$26,500.00 \$1,600.00 \$28,100.00 \$28,100 AHU (30 Tons, 12000 CFM) 1 EA \$35,500.00 \$2,450.00 \$56,950.00	3" Steel Pipe		160	LF	\$	17.20	\$19.93	\$37.13	\$5,941
AHU (30 Tons, 12000 CFM) AHU (30 Tons, 15000 CFM) 1 EA \$45,500.00 \$2,450.00 \$56,950.00 \$2,600.	3" Pipe Insulation with Jacket		160	LF		\$8.65	\$5.95	\$14.60	\$2,336
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00	AHU (12.5 Tons, 5000 CFM)		1	EA	\$26,5	00.00	\$1,600.00	\$28,100.00	\$28,100
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00			1	EA					
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)	AHU (40 Tons, 16000 CFM)		1	EA					
Secondary CHWP (CF) 7.5 HP (312.5 GPM. 60' TDH)		PM 60' TDH)							
Secondary CHWP (Theater) 7.5 IHP (206.25 GPM, 60' TDH)									
Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)									
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH) 1 EA									
SUBTOTAL PHASE 1									
Undeveloped Design Details - 30%	Secondary CHWP (SH) 2 HP (50 GPM	. 60' TDH)	1	EA	\$1,6	85.00	\$214.00	\$1,899.00	\$1,899
Contractor Overhead - 15%					:	SUBTOT	AL PHASE 1		\$309,014
Contractor Profit - 10% Adminstration and Engineering - 15% \$76,226					Undeveloped	Design I	Details - 30%		\$92,704
Adminstration and Engineering - 15% \$76,226 TOTAL COST \$584,399 PROBABLE COST USE \$584,000 PROBABLE COST USE \$584,000 PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 "Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1.084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1.006 \$8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4.013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60" TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$7.594 Contractor Overhead - 15% Contractor Overhead - 15% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					Contr	actor Ove	erhead - 15%		\$60,258
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 \$30.68 \$10.00 \$					C	Contracto	r Profit - 10%		\$46,198
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% F6,244 TOTAL COST \$447,873				А	dminstration a	ind Engin	eering - 15%		\$76,226
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% TOTAL COST \$47,873						Т	OTAL COST		\$584,399
12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"X8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"X8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873					PR	OBABLE	COST USE	_	\$584,000
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	PHASE 2								
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	12" Direct Buried AWWA Pinc		10	l E	ď	13.60	¢16 00	¢20 E0	¢20c
12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 40.10 \$25,314 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873									
12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$25,314 \$100.00 \$100								·	
8" Steel Pipe									
8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 \$									
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$4,936 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244									
SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873	Secondary CHWP (ST) 10 HP (362.5 G	GPM. 60' TDH)	2	EA	\$7,9	00.00	\$620.00	\$8,520.00	\$17,040
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					:	SUBTOT	AL PHASE 2		\$25,314
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					Undeveloped	Design I	Details - 30%		\$7 504
Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
				А					
PROBABLE COST USE \$48.000						Т	OTAL COST		\$47,873
					PR	OBABLE	COST USE		\$48,000

			Job No.	24482-01-00				
Stanley Consultants :	c		Subject	RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	,	Chilled Water	Study			
Checked by		Date		Distribution Ou				
Approved by	•	Date		Option B - Ph				
	Item Description	on	C	Quantity		Unit Cost		Total Cost
DUMOE 0		-	No. of Unit	UOM	Material	Labor	Total Unit Cost	
PHASE 3								
8" Direct Buried AV 8" AWWA Reducer 8" Steel Pipe 8" Pipe Insulation v	VWA Pipe		2800) LF	\$11.85	\$15.25	\$27.10	\$75,880
8" AWWA Reducer	r) EA	\$234.00	\$10.60		\$2,446
8" Steel Pipe) LF	\$55.50	\$44.82		\$4,013
8" Pipe Insulation v	vith Jacket) LF	\$14.80	\$7.55		\$894
Secondary CHWP	(SC) 15 HP (520 GP	M. 60' TDH)	2	2 EA	\$9,625.00	\$780.00	\$10,405.00	\$20,810
					SUBTO	OTAL PHASE 3		\$104,043
				Un	developed Desig			\$31,213
						Overhead - 15% ctor Profit - 10%		\$20,288 \$15,554
				Admi	nstration and En			\$25,665
						TOTAL COST		\$196,763
					PROBAB	LE COST USE	_	\$197,000
				TOTAL	- OPTION A (AI	L 3 PHASES):		\$829,000

Appendix E

Life Cycle Cost Analysis

Prepared By:

J. J. Bovenkamp

Chilled Water Plant Comparison Analysis Input & Results Summary

				Date:	12-Dec-2012
Variable Cost Inputs					
Demand Charge-Summer		Energy Charge - Summer		On/Off Peak Split	
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	On-Peak	70%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261	Off-Peak	30%
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
				Summer/Winter Split	
Demand Charge-Winter		Energy Charge - Winter		Summer	70%
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	Winter	30%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261		
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
Variable Cost Rates		Fuel Cost (at Central Plant)			
Purchased Steam Rate (per klb)	\$17.64	Natural Gas (Per MMBtu)	\$7.20	NOT USED	
Purchased CHW Rate (per ton-hr)	\$0.000	Other Stm Costs (Per MMBtu)	\$1.80	NOT USED	
Water Rate (per 1,000 Gal)	\$0.93				
Sewage Rate (per 1,000 Gal)	\$3.30				
Miscellaneous Cost (% of energy cost)	0.0%				

PV Calculation Inputs		Load Profile Inputs		Steam Conditions						
Period (years)		Elec Demand Transformer	Elec Demand Transformer							
endu (years)	25	Losses	5%	Steam Inlet Pressure (psig)	50.0					
Discount Data	4.00/	Auxiliaries Electrical Demand								
Discount Rate	4.0%	(kW/ton)	0.01	Steam Inlet Temperature (°F)	400.0					
nterest Rate	1.0%	Peak Make-up Water (gpm)	300	Steam Exhaust Pressure (psig)	-13.2					
/ariable Cost Escalation	3.0%	Peak Sewage (gpm)	50	Steam Exhaust Temperature (°F)	115.69					
D&M Cost Escalation	2.0%	·		Condensate Pressure (psig)	0.0					
Capital Cost Escalation	4.0%			Condensate Temperature (°F)	115.69					
•				Condensate Enthalpy (Btu/lb)	83.00					
Note: Additional Input on the PV Analysis	Page	Note: Additional Input on the Load F	rofile Case Pages	1, ()						

Case	Description	Temperatures	Chilled Water Source
Case 1	Central plant with constant speed chiller	42 °F Supply, 12 °F ΔT	Self Generated
Case 2	Central Plant with magnetic bearing variable speed chiller	42 °F Supply, 12 °F ∆T	Self Generated
Case 3	Central Plant with absorption chillers	42 °F Supply, 12 °F ∆T	Self Generated
Case 4	not used		Purchased

St Luke's Hospital Building Chillers vs. Central Chiller Plant Present Value Results Summary

	Case 1	Case 2	Case 3	Case 4
25-year Present Value (\$)	\$16,829,609	\$16,573,690	\$23,886,953	\$0
Average Calculated CHW Cost (\$/ton-hr)	\$0.11	\$0.11	\$0.29	#DIV/0!

Present Value Analysis

J. J. Bovenkamp 12-Dec-2012 Prepared By: Date:

Assumptions

·	c	Case 1	Case 2 Central Plant with magnetic bearing	Case 3 Central Plai	Case 4			
		ith constant	variable speed					
	s	peed chiller	chiller	chillers	not used	Financing Information		
Peak Cooling Load (tons)		1,500	1,500				CHW System	Distribution System
Annual Consumption (ton-hrs)		4,744,226	4,744,226		26	Percent Financed	0%	
Total Energy Usage (KWh)		3,300,287	2,857,558			Equity Percent	100%	100%
Total Energy Usage (klbs)		0	C	38,	133	Loan Period (years)	₹	5
						Interest Rate	1.0%	
Water Usage (gal)		17,857,020	17,857,020	17,857,0	20	Capital Recovery Factor (CRF)	0.2060398	0.2060398
Water Rate (per 1,000 Gal)	\$	0.93	\$ 0.93	\$ 0.	93 \$ 0.			
						Replacement System Percent Financed	0%	
Sewage Usage (gal)		2,976,170	2,976,170			Replacement System Equity Percent	100%	100%
Sewage Rate (per 1,000 Gal)	\$	3.30	\$ 3.30	\$ 3.	30 \$ 3.	Replacement System Loan Period (years)	₹	5
						Replacement System Interest Rate	1.0%	
Miscellaneous Cost (% of energy cost)		0.0%	0.0%	0.	0% 0.	Replacement System Capital Recovery Factor (CRF)	0.2060398	0.2060398
Annual Maintenance Cost		\$0	\$0		\$0	Other Information		
Number of Operators		0	0		0	Period (years)	25	
Operator Salary		\$0	\$0		\$0	Discount Rate	4.0%	
CHW System Capital Cost (\$)	\$	7,975,425	\$ 8,219,325	\$ 2,840,0	00 \$ -			
CHW Equipment Life (years)		25	25	5	25	Escalation	2.24	
D'. L. '. L. ' O L O L . (A)	•	000 000			00 0	Variable Cost Escalation	3.0%	
Distribution System Cost (\$)	\$	829,000	\$ 829,000		00 \$ -	O&M Cost Escalation	2.0%	
Distribution System Life (years)		50	50	J	50	Capital Cost Escalation	4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those preposted in this propert. vary from those presented in this report.

Comparison of	Cooling System Costs

25-year Present Value Cost

\$ 16,573,690

Comparison of Cooling System	Cosis																					
Case 1 - Central plant with cons	tant speed	chiller:				42 9	F Supply, 12 °F D	Т														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment (Equity)	\$	7,975,425	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		;	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		;	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		;	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment		;	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		;	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service		;	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost		;	\$ 347,641 \$	358,070 \$	368,812 \$	379,876 \$	391,273 \$	403,011 \$	415,101 \$	427,554 \$	440,381 \$	453,592 \$	467,200 \$	481,216 \$	495,652 \$	510,522 \$	525,838 \$	541,613 \$	557,861 \$	574,597 \$	591,835 \$	609,590
Water Cost		;	\$ 16,518 \$	17,013 \$	17,524 \$	18,049 \$	18,591 \$	19,149 \$	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost		;	\$ 9,821 \$	10,116 \$	10,419 \$	10,732 \$	11,054 \$	11,386 \$	11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423 \$	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs		;	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost		:	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost		<u>_:</u>	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	
Total Annual Costs	\$	8,804,425		385,199 \$	396,755 \$	408,658 \$	420,918 \$	433,545 \$	446,551 \$	459,948 \$	473,746 \$	487,959 \$	502,598 \$	517,675 \$	533,206 \$	549,202 \$	565,678 \$	582,648 \$	600,128 \$	618,132 \$	636,675 \$	655,776
Calculated CHW Cost (per ton-hr)		;	\$ 0.08 \$	0.08 \$	0.08 \$	0.09 \$	0.09 \$	0.09 \$	0.09 \$	0.10 \$	0.10 \$	0.10 \$	0.11 \$	0.11 \$	0.11 \$	0.12 \$	0.12 \$	0.12 \$	0.13 \$	0.13 \$	0.13 \$	0.14
25-year Present Value Cost		16,829,609						_														
25-year Present Value Cost Case 2 - Central Plant with mag	netic bearir		eed chiller:			42 °	F Supply, 12 °F D	т														
Case 2 - Central Plant with mag		ng variable spe	eed chiller: 1	2	3	42 °	F Supply, 12 °F D	T 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Case 2 - Central Plant with mag	netic bearir		eed chiller: 1 \$ - \$	2 - \$	3 - \$	42 ° 4 - \$	F Supply, 12 °F D 5 - \$	T 6 - \$	7 - \$	8 - \$	9 - \$	10 - \$	11 - \$	12 - \$	13 - \$	14 - \$	15 - \$	16 - \$	17 - \$	18 - \$	19 - \$	20
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment	netic bearir	ng variable spe	eed chiller: 1 5 - \$	2 - \$ - \$	3 - \$ - \$	42 ° 4 - \$ - \$	F Supply, 12 °F D' 5 - \$ - \$	T 6 - \$ - \$	7 - \$ - \$	8 - \$ - \$	9 - \$	10 - \$ - \$	11 - \$ - \$	12 - \$ - \$	13 - \$ - \$	14 - \$ - \$	15 - \$ - \$	16 - \$ - \$	17 - \$ - \$	18 - \$ - \$	19 - \$ - \$	20 - -
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment	netic bearir	ng variable spe	eed chiller: 1 5 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$	3 - \$ - \$ - \$	42 ° 4	F Supply, 12 °F D' 5 - \$ - \$ - \$	T 6 - \$ - \$ - \$ - \$	7 - \$ - \$ - \$	8 - \$ - \$ - \$	9 - \$ - \$ - \$	10 - \$ - \$ - \$ - \$	11 - \$ - \$ - \$ - \$	12 - \$ - \$ - \$	13 - \$ - \$ - \$	14 - \$ - \$ - \$	15 - \$ - \$ - \$	16 - \$ - \$ - \$	17 - \$ - \$ - \$	18 - \$ - \$ - \$	19 - \$ - \$ - \$	20 - - -
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service	netic bearir	ng variable spe 0 8,219,325	eed chiller: 1 5 6 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$	3 - \$ - \$ - \$ - \$	42 ° 4	F Supply, 12 °F D' 5 - \$ - \$ - \$ - \$	T 6 - \$ - \$ - \$ - \$ - \$ - \$ - \$	7 - \$ - \$ - \$ - \$	8 - \$ - \$ - \$ - \$	9 - \$ - \$ - \$	10 - \$ - \$ - \$ - \$ - \$ - \$ - \$	11 - \$ - \$ - \$ - \$	12 - \$ - \$ - \$ - \$	13 - \$ - \$ - \$ - \$	14 - \$ - \$ - \$ - \$	15 - \$ - \$ - \$	16 - \$ - \$ - \$ - \$	17 - \$ - \$ - \$ - \$	18 - \$ - \$ - \$ - \$	19 - \$ - \$ - \$ - \$	20
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment	netic bearir	ng variable spe	eed chiller: 1 5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$ - \$ - \$	3 - \$ - \$ - \$ - \$	42° 4 - \$ - \$ - \$ - \$ - \$	F Supply, 12 °F D' 5 - \$ - \$ - \$ - \$ - \$ - \$ - \$	T 6	7 - \$ - \$ - \$ - \$ - \$	8 - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$	10 - \$ - \$ - \$ - \$ - \$	11 - \$ - \$ - \$ - \$ - \$	12 - \$ - \$ - \$ - \$ - \$	13 - \$ - \$ - \$ - \$ - \$	14 - \$ - \$ - \$ - \$ - \$ - \$	15 - \$ - \$ - \$ - \$ - \$	16 - \$ - \$ - \$ - \$ - \$ - \$	17 - \$ - \$ - \$ - \$ - \$	18 - \$ - \$ - \$ - \$ - \$	19 - \$ - \$ - \$ - \$ - \$	20
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment	netic bearir	ng variable spe 0 8,219,325	eed chiller: 1 5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$ - \$ - \$	3 - \$ - \$ - \$ - \$ - \$	42 ° 4	F Supply, 12 °F D' 5	T 6	7 - \$ - \$ - \$ - \$ - \$	8 - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$	10 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	11 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	12 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	14 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	15 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	16 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	18 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	<u> </u>	20
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Interest Payment	netic bearir	ng variable spe 0 8,219,325	eed chiller: 1 5 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$ 6 - \$	2 - \$ - \$ - \$ - \$ - \$	3 - \$ - \$ - \$ - \$ - \$ - \$	4 - \$ \$ - \$ - \$ \$	F Supply, 12 °F D' 5 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	6	7 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- - - - - - - - - - - - - - - - - - -	12 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- \$ \$ \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	14 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -			- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		- \$ - \$ - \$	20
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service	netic bearir	ng variable spe 0 8,219,325	1	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$	4 - \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$	7	- \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ \$ \$	- - - - - - - - - - - - - - - - - - -		- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			- - - - - - - - - - - - - - - - - - -		- \$ - \$ - \$	- - - - - -
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost	netic bearir	ng variable spe 0 8,219,325	1	334,079 \$	3 - \$ - \$ - \$ - \$ - \$ - \$ 344,102 \$	4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	5	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 376,009 \$	7 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- \$ 398,908 \$	410,875 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 423,201 \$		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 448,974 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 462,444 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 476,317 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 490,607	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 505,325	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 520,484 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 536,099	- \$ - \$ - \$ - \$ 552,182 \$	- - - - - - - 568,747
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost	netic bearir	ng variable spe 0 8,219,325	1	334,079 \$ 17,013 \$	17,524 \$	4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	5	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19,723 \$	- \$ 398,908 \$ 20,315 \$	410,875 \$ 20,924 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 21,552 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 22,198 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 448,974 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 476,317 \$ 24,257 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 490,607 \$	- \$ \$ \$ \$ \$ \$ \$ \$ - 5 505,325 \$ 25,734 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 520,484 \$ 26,506 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ 552,182 \$ 28,120 \$	- - - - - - 568,747 28,964
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost	netic bearir	ng variable spe 0 8,219,325	1	334,079 \$		4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	5	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 376,009 \$		- \$ 398,908 \$ 20,315 \$ 12,079 \$	410,875 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 22,198 \$ 13,199 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 448,974 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 462,444 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 476,317 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 490,607	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 505,325	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 520,484 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 536,099	- \$ - \$ - \$ - \$ 552,182 \$	- - - - - - - 568,747
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs	netic bearir	ng variable spe 0 8,219,325	1	334,079 \$ 17,013 \$	17,524 \$	4 - \$ \$ \$ \$ \$ \$ \$ \$ \$ - 18,049 \$ 10,732 \$ - 5	5	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19,723 \$	- \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$	410,875 \$ 20,924 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 22,198 \$ 22,199 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 448,974 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 23,550 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 476,317 \$ 24,257 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ \$ \$ \$ \$ \$ - 5 505,325 \$ 25,734 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 536,099 \$ 27,301 \$	- \$ - \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$	- - - - - - 568,747 28,964
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Interest Payment Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	netic bearir	ng variable spe 0 8,219,325	1	334,079 \$ 17,013 \$	17,524 \$ 10,419 \$	4 - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ - 18,049 10,732 \$ \$	5	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19,723 \$	- \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$ - \$	410,875 \$ 20,924 \$ 12,441 \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 448,974 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 23,550 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 476,317 \$ 24,257 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ \$ \$ \$ \$ \$ - 5 505,325 \$ 25,734 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$ - \$	- - - - - - 568,747 28,964 17,222
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost Annual Operations Cost	netic bearir Year: \$	ng variable spe 0 8,219,325 829,000	1	334,079 \$ 17,013 \$ 10,116 \$ - \$ - \$ - \$	17,524 \$ 10,419 \$ - \$ - \$ - \$	4 - \$ \$ \$ \$ \$ \$ \$ \$ \$ - 10,732 \$ \$ \$ \$ \$ \$ \$	5 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19,723 \$ 11,727 \$ - \$ - \$ - \$	- \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$ - \$ - \$ - \$	410,875 \$ 20,924 \$ 12,441 \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ - 35,898 \$ - 22,198 \$ - 13,199 \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ \$ \$ \$ \$ - 505,325 \$ 25,734 \$ 15,301 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$ - \$ - \$	- - - - - - 568,747 28,964 17,222 - -
Case 2 - Central Plant with mag Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Interest Payment Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	netic bearir	ng variable spe 0 8,219,325 829,000	1	334,079 \$ 17,013 \$	17,524 \$ 10,419 \$	4 - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ - 18,049 10,732 \$ \$	5 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19,723 \$	- \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$ - \$	410,875 \$ 20,924 \$ 12,441 \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 448,974 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 23,550 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 476,317 \$ 24,257 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ 536,099 \$ 27,301 \$	- \$ - \$ - \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$ - \$	- - - - - - 568,747 28,964 17,222

Stanley Consultants CentralPlant-PV Case Comparison4%discount Rate.xlsx Printed: 12/14/2012

24482 | RCTC Chilled Water Study E-3 Stanley Consultants

Present Value Analysis

Prepared By: J. J. Bovenkamp Date: 12-Dec-2012

Assumptions

		Case 1	Case 2 Central Plan	+	Case 3	Case 4		
			with magnet					
	С	entral plant	bearing		Central Plant			
			variable spec	d w	ith absorption			
	s	peed chiller	chiller		chillers	not used	Financing Information	
Peak Cooling Load (tons)		1,500	1,50	00	1,500	1,500	CHW System Distrib	oution System
Annual Consumption (ton-hrs)		4,744,226	4,744,22	26	4,744,226	0	Percent Financed 0%	0%
Total Energy Usage (KWh)		3,300,287	2,857,55	8	1,314,505	0	Equity Percent 100%	100%
Total Energy Usage (klbs)		0		0	38,133		Loan Period (years) 5	5
							Interest Rate 1.0%	1.0%
Water Usage (gal)		17,857,020	17,857,02	20	17,857,020	0	Capital Recovery Factor (CRF) 0.2060398	0.2060398
Water Rate (per 1,000 Gal)	\$	0.93	\$ 0.9	93 \$	0.93	\$ 0.93		
							Replacement System Percent Financed 0%	0%
Sewage Usage (gal)		2,976,170	2,976,17		2,976,170	0	Replacement System Equity Percent 100%	100%
Sewage Rate (per 1,000 Gal)	\$	3.30	\$ 3.3	30 \$	3.30	\$ 3.30	Replacement System Loan Period (years) 5	5
							Replacement System Interest Rate 1.0%	1.0%
Miscellaneous Cost (% of energy cost)		0.0%	0.0)%	0.0%	0.0%	Replacement System Capital Recovery Factor (CRF) 0.2060398	0.2060398
Annual Maintenance Cost		\$0	\$	60	\$0	\$0	Other Information	
Number of Operators		0		0	0	4	Period (years) 25	
Operator Salary		\$0	\$	80	\$0	\$0	Discount Rate 4.0%	
CHW System Capital Cost (\$)	\$	7,975,425	\$ 8,219,32	25 \$	2,840,000	\$ -		
CHW Equipment Life (years)		25		25	25	25	Escalation	
							Variable Cost Escalation 3.0%	
Distribution System Cost (\$)	\$	829,000	\$ 829,00	00 \$	829,000		O&M Cost Escalation 2.0%	
Distribution System Life (years)		50		50	50	50	Capital Cost Escalation 4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

25-year Present Value Cost

Case 3 - Central Plant with absorption chillers:

Case 3 - Central Plant with absorption	orption chille	ers:				42 '	°F Supply, 12 °F	DT														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	2,840,000	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		, ,	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost		9	915,833 \$	943,308 \$	971,607 \$	1,000,756 \$	1,030,778 \$	1,061,702 \$	1,093,553 \$	1,126,359 \$	1,160,150 \$	1,194,954 \$	1,230,803 \$	1,267,727 \$	1,305,759 \$	1,344,932 \$	1,385,280 \$	1,426,838 \$	1,469,643 \$	1,513,733 \$	1,559,145 \$	1,605,919
Water Cost		\$	16,518 \$	17,013 \$	17,524 \$	18,049 \$	18,591 \$	19,149 \$	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost		9	9,821 \$	10,116 \$	10,419 \$	10,732 \$	11,054 \$	11,386 \$	11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423 \$	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost		_ 9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	
Total Annual Costs	\$	3,669,000		970,437 \$	999,551 \$	1,029,537 \$	1,060,423 \$	1,092,236 \$	1,125,003 \$	1,158,753 \$		1,229,321 \$	1,266,201 \$	1,304,187 \$	1,343,312 \$	1,383,612 \$	1,425,120 \$	1,467,874 \$	1,511,910 \$	1,557,267 \$	1,603,985 \$	1,652,105
Calculated CHW Cost (per ton-hr)		\$	0.20 \$	0.20 \$	0.21 \$	0.22 \$	0.22 \$	0.23 \$	0.24 \$	0.24 \$	0.25 \$	0.26 \$	0.27 \$	0.27 \$	0.28 \$	0.29 \$	0.30 \$	0.31 \$	0.32 \$	0.33 \$	0.34 \$	0.35
25-year Present Value Cost Case 4 - not used:	•	23,886,953					0															
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	- 9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		9	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	- 9	- \$	¢.	•	dr.	_ \$	Φ.		•	Φ.	•		- \$	- 4	- ¢	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment			Ψ	- ф	- 5	- ф	- ψ	- ф	- ф	- 3	- 5	- 5	- ψ	Ψ	- ψ	- ψ	Ψ	Ψ				
		9	- \$	- \$	- \$	- \$	- \$	- \$	5 - \$	- \$	- \$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		9	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$ - \$	- \$ - \$	- \$ - \$	5 - \$ 5 - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	-
Distribution Debt Service		9	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- 5 - 5 - 5 - 5	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- - -
Distribution Debt Service Annual Energy Cost			- \$ - \$ - \$	- \$ - \$ - \$ - \$	- - - - - - - - -	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- - -
Distribution Debt Service Annual Energy Cost Water Cost			- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- - - - - - - - - - - - - -	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- - - - - - - - - - - - - - - -	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- \$\$ - \$\$ - \$\$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- - - -
Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost			- \$	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- \$ \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	-	- \$ \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$	- - - - - - - - - - - - - - -	- \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- - - - -
Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs			- \$ - \$	-	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- + + + + + + + + + + + + + + + + + + +	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- + + + + + + + + + + + + + + + + + + +	- \$\$ - \$\$ - \$\$ - \$\$ - \$\$		Ψ	- \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$	- - - - - -
Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost			- \$ - \$ - \$	-	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$			- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- + + + + + + + + + + + + + + + + + + +	- - - - - - - - - - - - - - - - - - -	- \$ \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$			- \$\$ - \$\$ - \$\$ - \$\$ - \$\$ - \$\$		- \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- - - - - - -
Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost Annual Operations Cost		999	- \$ - \$ - \$	-	- \$ \$ \$ - \$ \$ \$ - \$ - \$ \$ - \$ \$ - \$ - \$ \$ -	-		Ψ		- \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$	- \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$	- - - - - - - -
Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	\$	-	- - - - - - - - - - - - - - - - - - -	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$		- \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- - - - - - - - - - - - - - - - - - -

Stanley Consultants
CentralPlant-PV Case Comparison4%discount Rate.xlsx
Printed: 12/14/2012

Capital Cost Calculation

	et (Pefer to Detailed Cost Estimate for Break	, Down)						
	t (Refer to Detailed Cost Estimate for Break							
Case 1	Central plant with constant speed chille	er						
42 °F Suppl	ly, 12 % DI							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$6,810,000	\$	6,810,000	85.4%
	Phase 2		i	ls	\$600,000	\$	600,000	7.5%
	Phase 3		1	ls	\$600,000	\$	600,000	7.5%
	Rebate		1	ls	(\$34,575)	\$	(34,575)	
	riebate	Total		15	(ψυ4,υ7υ)	φ \$	7,975,425	100%
		Total				φ	7,975,425	100 /6
Capital Cos	st (Refer to Detailed Cost Estimate for Break	(Down)						
Case 2	Central Plant with magnetic bearing va							
42 °F Suppl	ly, 12 °F DT	-						
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		Quantity	ls		ф	6,920,000	84.2%
	Phase 2		1	ls	\$6,920,000 \$710,000	\$ \$	710,000	8.6%
	Phase 3		1	ls	\$710,000	φ \$	710,000	8.6%
			1					
	Rebate	Tatal	ı	ls	(\$120,675)	\$	(120,675)	
		Total				\$	8,219,325	101%
Capital Cos	st (Refer to Detailed Cost Estimate for Break	(Down)						
Case 3	Central Plant with absorption chillers							
42 °F Suppl	ly, 12 °F DT							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$780,000	\$	780,000	27.5%
	Phase 2		1	ls	\$1,030,000	\$	1,030,000	36.3%
	Phase 3		1	ls	\$1,030,000	\$	1,030,000	36.3%
	i ilase s			15	φ1,030,000	\$	1,030,000	30.3 /6
		Total				φ \$	2,840,000	100%
						· .		
	st (Refer to Detailed Cost Estimate for Break	(Down)						
Case 4	not used							
0								
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Chillers		1	ea	\$0	\$	-	#DIV/0!
	Chilled water pumps		1	ea	\$0	\$	-	#DIV/0!
	AHU Coils		1	ea	\$0	\$	-	#DIV/0!
								"" "
		Total				\$	-	#DIV/0!

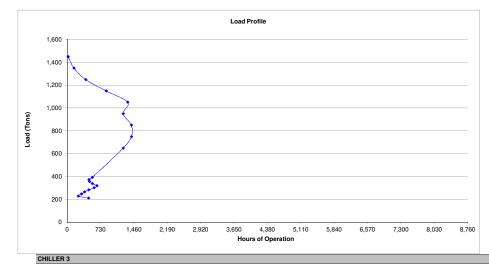
Stanley Consultants Printed: 12/14/2012

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			=

			L	OAD SUMMARY	1			
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	6,712	0	11,592	69,552	11,592
90=>94	1,350	14	25	37,598	0	67,500	405,000	67,500
85=>89	1,248	12	68	90,635	0	169,728	1,018,368	169,728
80=>84	1,149	11	143	168,644	0	327,465	1,964,790	327,465
75=>79	1,050	11	221	233,906	0	464,100	2,784,600	464,100
70=>74	950	10	204	296,028	0	582,350	2,329,400	388,233
65=>69	850	9	234	289,598	0	596,700	2,386,800	397,800
60=>64	748	7	235	242,934	0	526,592	2,106,368	351,061
55=>59	648	6	205	174,003	0	397,872	1,591,488	265,248
50=>54	391	4	92	91,009	0	215,832	431,664	71,944
45=>49	372	4	80	70,889	0	177,816	355,632	59,272
40=>44	354	4	81	67,695	0	172,398	344,796	57,466
35=>39	336	3	92	72,643	0	185,472	370,944	61,824
30=>34	318	3	109	81,539	0	207,654	415,308	69,218
25=>29	300	3	99	69,797	0	177,300	354,600	59,100
20=>24	282	3	79	53,134	0	133,950	267,900	44,650
15=>19	264	3	63	40,089	0	100,056	200,112	33,352
10=>14	245	2	52	31,262	0	76,685	153,370	25,562
5=>9	227	2	40	22,889	0	54,934	109,868	18,311
0=>4	209	2	78	42,108	0	98,230	196,460	32,743
Total/Avg				2,183,112	0	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	391	0.420	164	552	90,649	0	0.0	0.0	215,832
45=>49	372	0.397	148	478	70,593	0	0.0	0.0	177,816
40=>44	354	0.391	138	487	67,408	0	0.0	0.0	172,398
35=>39	336	0.390	131	552	72,334	0	0.0	0.0	185,472
30=>34	318	0.391	124	653	81,193	0	0.0	0.0	207,654
25=>29	300	0.392	118	591	69,502	0	0.0	0.0	177,300
20=>24	282	0.395	111	475	52,910	0	0.0	0.0	133,950
15=>19	264	0.399	105	379	39,922	0	0.0	0.0	100,056
10=>14	245	0.406	99	313	31,134	0	0.0	0.0	76,685
5=>9	227	0.415	94	242	22,798	0	0.0	0.0	54,934
0=>4	209	0.427	89	470	41,944	0	0.0	0.0	98,230
otal/Avg		0.433	3,195	8,746	1,315,594	0.000	0.0	0.0	2,998,879

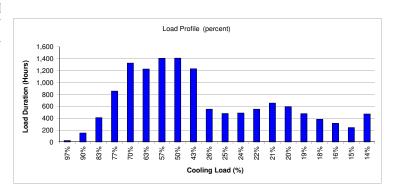
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.480	1,872	3,554	675,207		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	Ö
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.510	921	921	177,431		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0


Load Profile
Case 1 Central plant with constant speed chiller

PEAK ELECTRICAL DEMAND (including transformer losses)											
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
Docombor	60 - 64	100	100	0	'n	'n	'n	co	41	60	F07

			CHILL	ER LOAD PRO	FILE			
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load
95=>99	483	483	483	0	0	0	1,449	979
90=>94	450	450	450	0	0	0	1,350	909
85=>89	416	416	416	0	0	0	1,248	839
80=>84	383	383	383	0	0	0	1,149	77'
75=>79	350	350	350	0	0	0	1,050	701
70=>74	475	475	0	0	0	0	950	63'
65=>69	425	425	0	0	0	0	850	57'
60=>64	374	374	0	0	0	0	748	50
55=>59	324	324	0	0	0	0	648	43
50=>54	391	0	0	0	0	0	391	26
45=>49	372	0	0	0	0	0	372	25
40=>44	354	0	0	0	0	0	354	24
35=>39	336	0	0	0	0	0	336	22
30=>34	318	0	0	0	0	0	318	21
25=>29	300	0	0	0	0	0	300	20
20=>24	282	0	0	0	0	0	282	19
15=>19	264	0	0	0	0	0	264	18
10=>14	245	0	0	0	0	0	245	16
5=>9	227	0	0	0	0	0	227	15
0=>4	209	0	0	0	0	0	209	14
Peak	483	483	483	0	0	0	1,449	

		CHILLER	EFFICIENCY (E	LECTRIC)		
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.574	0.574	0.574	0.000	0.000	0.000
90=>94	0.552	0.552	0.552	0.000	0.000	0.000
85=>89	0.529	0.529	0.529	0.000	0.000	0.000
80=>84	0.510	0.510	0.510	0.000	0.000	0.000
75=>79	0.499	0.499	0.499	0.000	0.000	0.000
70=>74	0.505	0.505	0.000	0.000	0.000	0.000
65=>69	0.482	0.482	0.000	0.000	0.000	0.000
60=>64	0.458	0.458	0.000	0.000	0.000	0.000
55=>59	0.434	0.434	0.000	0.000	0.000	0.000
50=>54	0.420	0.000	0.000	0.000	0.000	0.000
45=>49	0.397	0.000	0.000	0.000	0.000	0.000
40=>44	0.391	0.000	0.000	0.000	0.000	0.000
35=>39	0.390	0.000	0.000	0.000	0.000	0.000
30=>34	0.391	0.000	0.000	0.000	0.000	0.000
25=>29	0.392	0.000	0.000	0.000	0.000	0.000
20=>24	0.395	0.000	0.000	0.000	0.000	0.000
15=>19	0.399	0.000	0.000	0.000	0.000	0.000
10=>14	0.406	0.000	0.000	0.000	0.000	0.000
5=>9	0.415	0.000	0.000	0.000	0.000	0.000
0=>4	0.427	0.000	0.000	0.000	0.000	0.000
Average	0.433	0.480	0.510	0.000	0.000	0.000

CHILLER OPERATIONAL HOURS							
Temperature Bin (°F)	Chiller 1 Operational Hours	Chiller 2 Operational Hours	Chiller 3 Operational Hours	Chiller 4 Operational Hours	Chiller 5 Operational Hours	Chiller 6 Operational Hours	Cumulative Operationa Hours
95=>99	8	8	8	0	0	0	24
90=>94	50	50	50	Ö	ō	ō	150
85=>89	136	136	136	0	0	0	408
80=>84	285	285	285	0	0	0	855
75=>79	442	442	442	0	0	0	1,326
70=>74	613	613	0	0	0	0	1,226
65=>69	702	702	0	0	0	0	1.404
60=>64	704	704	0	0	0	0	1,408
55=>59	614	614	0	0	0	0	1,228
50=>54	552	0	0	0	0	0	552
45=>49	478	0	0	0	0	0	478
40=>44	487	0	0	0	0	0	487
35=>39	552	0	0	0	0	0	552
30=>34	653	0	0	0	0	0	653
25=>29	591	0	0	0	0	0	591
20=>24	475	0	0	0	0	0	475
15=>19	379	0	0	0	0	0	379
10=>14	313	0	0	0	0	0	313
5=>9	242	0	0	0	0	0	242
0=>4	470	0	0	0	0	0	470
Total	8,746	3,554	921	0	0	0	

	CHILLER EFFICIENCY (STEAM)								
T Di-	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	OL:11 C D			
Temperature Bin (°F)	Demand	Demand	Demand	Demand	Demand	Chiller 6 Demand (lb/ton)			
	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)				
95=>99	0.000	0.000	0.000	0.000	0.000	0.000			
90=>94	0.000	0.000	0.000	0.000	0.000	0.000			
85=>89	0.000	0.000	0.000	0.000	0.000	0.000			
80=>84	0.000	0.000	0.000	0.000	0.000	0.000			
75=>79	0.000	0.000	0.000	0.000	0.000	0.000			
70=>74	0.000	0.000	0.000	0.000	0.000	0.000			
65=>69	0.000	0.000	0.000	0.000	0.000	0.000			
60=>64	0.000	0.000	0.000	0.000	0.000	0.000			
55=>59	0.000	0.000	0.000	0.000	0.000	0.000			
50=>54	0.000	0.000	0.000	0.000	0.000	0.000			
45=>49	0.000	0.000	0.000	0.000	0.000	0.000			
40=>44	0.000	0.000	0.000	0.000	0.000	0.000			
35=>39	0.000	0.000	0.000	0.000	0.000	0.000			
30=>34	0.000	0.000	0.000	0.000	0.000	0.000			
25=>29	0.000	0.000	0.000	0.000	0.000	0.000			
20=>24	0.000	0.000	0.000	0.000	0.000	0.000			
15=>19	0.000	0.000	0.000	0.000	0.000	0.000			
10=>14	0.000	0.000	0.000	0.000	0.000	0.000			
5=>9	0.000	0.000	0.000	0.000	0.000	0.000			
0=>4	0.000	0.000	0.000	0.000	0.000	0.000			
Average	0.000	0.000	0.000	0.000	0.000	0.000			

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data								
Pump	Horsepower	Efficiency	Switch Poi					
PCHWP 1	39.96	92%						
PCHWP 2	39.96	92%						
PCHWP 3	39.96	92%						
PCHWP 4	0	92%						
PCHWP 5	0	92%						
PCHWP 6	0	92%						

PCHWP Demand (kW)							
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	ō	ō	ō	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

			PCHWP Energ	y Usage (kWh)			
Temperature Bin (°F)	PCHWP 1 Energy Usage (kWh)	PCHWP 2 Energy Usage (kWh)	PCHWP 3 Energy Usage (kWh)	PCHWP 4 Energy Usage (kWh)	PCHWP 5 Energy Usage (kWh)	PCHWP 6 Energy Usage (kWh)	Total PCHWP Energy Usage (kWh)
95=>99	259	259	259	0	0	, , ,	778
90=>94	1,620	1,620	1,620	0	0	0	4,860
85=>89	4,406	4,406	4,406	0	0	0	13,219
80=>84	9,234	9,234	9,234	0	0	0	27,702
75=>79	14,321	14,321	14,321	0	0	0	42,962
70=>74	19,861	19,861	0	0	0	0	39,722
65=>69	22,745	22,745	0	0	0	0	45,490
60=>64	22,810	22,810	0	0	0	0	45,619
55=>59	19,894	19,894	0	0	0	0	39,787
50=>54	17,885	0	0	0	0	0	17,885
45=>49	15,487	0	0	0	0	0	15,487
40=>44	15,779	0	0	0	0	0	15,779
35=>39	17,885	0	0	0	0	0	17,885
30=>34	21,157	0	0	0	0	0	21,157
25=>29	19,148	0	0	0	0	0	19,148
20=>24	15,390	0	0	0	0	0	15,390
15=>19	12,280	0	0	0	0	0	12,280
10=>14	10,141	0	0	0	0	0	10,141
5=>9	7,841	0	0	0	0	0	7,841
0=>4	15,228	0	0	0	0	0	15,228
otal/Avg	283,370	115,150	29,840	0	0	0	428,360

Condenser Water Pump (CWP)

CWP Energy Data							
Pump	Horsepower	Efficiency	Switch Point				
CWP 1	24.35	92%	1				
CWP 2	24.35	92%	1				
CWP3	24.35	92%	1				
CWP 4	0	92%	1				
CWP 5	0	92%	1				
CWP 6	0	92%	1				

Temperature	CWP 1	CWP 2	CWP 3	CWP 4	CWP 5	CWP 6	Total CWP
Bin	Demand						
(°F)	(kW)						
95=>99	20	20	20	0	0	0	5
90=>94	20	20	20	0	0	0	5
85=>89	20	20	20	0	0	0	5
80=>84	20	20	20	0	0	0	5
75=>79	20	20	20	0	0	0	5
70=>74	20	20	0	0	0	0	3
65=>69	20	20	0	0	0	0	3
60=>64	20	20	0	0	0	0	3
55=>59	20	20	0	0	0	0	3
50=>54	20	0	0	0	0	0	2
45=>49	20	0	0	0	0	0	2
40=>44	20	0	0	0	0	0	2
35=>39	20	0	0	0	0	0	2
30=>34	20	0	0	0	0	0	2
25=>29	20	0	0	0	0	0	2
20=>24	20	0	0	0	0	0	2
15=>19	20	0	0	0	0	0	2
10=>14	20	0	0	0	0	0	2
5=>9	20	0	0	0	0	0	2
0=>4	20	0	0	0	0	0	2
otal/Avg	394	177	99	0	0	0	67

			CWP Energy	Usage (kWh)			
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	158	158	158	0	0	0	473
90=>94	985	985	985	0	0	0	2,955
85=>89	2,679	2,679	2,679	0	0	0	8,038
80=>84	5,615	5,615	5,615	0	0	0	16,844
75=>79	8,707	8,707	8,707	0	0	0	26,122
70=>74	12,076	12,076	0	0	0	0	24,152
65=>69	13,829	13,829	0	0	0	0	27,659
60=>64	13,869	13,869	0	0	0	0	27,738
55=>59	12,096	12,096	0	0	0	0	24,192
50=>54	10,874	0	0	0	0	0	10,874
45=>49	9,417	0	0	0	0	0	9,417
40=>44	9,594	0	0	0	0	0	9,594
35=>39	10,874	0	0	0	0	0	10,874
30=>34	12,864	0	0	0	0	0	12,864
25=>29	11,643	0	0	0	0	0	11,643
20=>24	9,358	0	0	0	0	0	9,358
15=>19	7,466	0	0	0	0	0	7,466
10=>14	6,166	0	0	0	0	0	6,166
5=>9	4,767	0	0	0	0	0	4,767
0=>4	9,259	0	0	0	0	0	9,259
Total/Avg	172,296	70,014	18,144	0	0	0	260,454

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data								
Pump	Horsepower	Efficiency	Switch Point					
CT 1	40	92%	1					
CT 2	40	92%	1					
CT 3	40	92%	1					
CT 4	0	92%	1					
CT 5	0	92%	1					
CT 6	0	92%	1					

			Cooling Tower	Demand (kW)			
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	0	0	0	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

Cooling Tower Energy Usage (kWh)							
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)
95=>99	259	259	259	0	0	0	778
90=>94	1,620	1,620	1,620	0	0	0	4,860
85=>89	4,406	4,406	4,406	0	0	0	13,219
80=>84	9,234	9,234	9,234	0	0	0	27,702
75=>79	14,321	14,321	14,321	0	0	0	42,962
70=>74	19,861	19,861	0	0	0	0	39,722
65=>69	22,745	22,745	0	0	0	0	45,490
60=>64	22,810	22,810	0	0	0	0	45,619
55=>59	19,894	19,894	0	0	0	0	39,787
50=>54	17,885	0	0	0	0	0	17,885
45=>49	15,487	0	0	0	0	0	15,487
40=>44	15,779	0	0	0	0	0	15,779
35=>39	17,885	0	0	0	0	0	17,885
30=>34	21,157	0	0	0	0	0	21,157
25=>29	19,148	0	0	0	0	0	19,148
20=>24	15,390	0	0	0	0	0	15,390
15=>19	12,280	0	0	0	0	0	12,280
10=>14	10,141	0	0	0	0	0	10,141
5=>9	7,841	0	0	0	0	0	7,841
0=>4	15,228	0	0	0	0	0	15,228
Total/Avg	283,370	115,150	29,840	0	0	0	428,360

Air Handling Unit (AHU)

AHU Supply Fan Energy Data					
Coil Pressure drop	0				
Other Pressure drop	0				
Typical Airflow rate	0 cfm				
Fan Efficiency	70%				
Supply Horsepower	0.0				
# of fans	1				
Efficiency	92%				
Contrate District	000/				

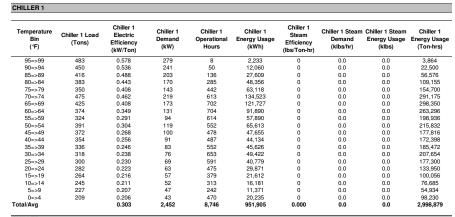
Cooling	g Tower Deman	d (kW)
Temperature Bin (°F)	Percent Load	AHU Demand (kW)
95=>99	97%	0
90=>94	90%	0
85=>89	83%	0
80=>84	77%	0
75=>79	70%	0
70=>74	63%	0
65=>69	57%	0
60=>64	50%	0
55=>59	43%	0
50=>54	26%	0
45=>49	25%	0
40=>44	24%	0
35=>39	22%	0
30=>34	21%	0
25=>29	20%	0
20=>24	19%	0
15=>19	18%	0
10=>14	16%	0
5=>9	15%	0
0=>4	14%	0
Total/Avg		0

AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Variable Cost

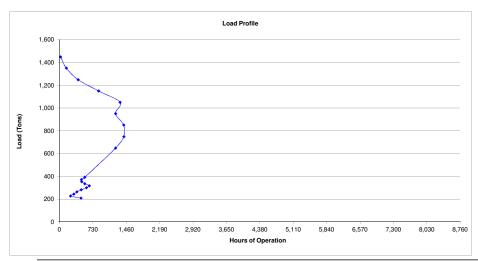
Case 1 Central plant with constant speed chiller


Input Data Summary													
5 0 1 11 11	Demand Charge-S			Energy Charge -			Chilled Water S	ource		Self Generated			
Energy Charge Multiplier 1.00	First 200-kW Next 800-kW	\$16.46 \$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Purchased Stea	m Data (may kib		£17.64	Per kLB		
1.00	Over 1000 kW	\$16.46		Energy Cost Adj	\$0.00000		Purchased CHV				Per Ton-hr		
								-	,				
	Demand Charge-V			Energy Charge -			Water Rate (per				Per 1000 Gal		
	First 200-kW	\$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Sewage Rate (p				Per 1000 Gal		
	Next 800-kW Over 1000 kW	\$16.46 \$16.46		Energy Cost Adj	\$0.0000		Miscellaneous (Cost (% of energ	ly cost)	0%	of Energy Cost		
	Over 1000 kw	ψ10.40		Lifelgy Cost Auj	ψ0.00000		Natural Gas			\$7.20	Per MMbtu	NOT USED	
	On/Off Peak Split			Summer/Winter S	Split		Other Stm Cost	ts			Per MMbtu	NOT USED	
	On Peak	70%		Summer	70%								
Variable Cost Calculation	Off Peak	30%		Winter	30%								
variable Cost Calculation	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs	•				•		•						
CHW Usage (Ton-Hrs)													4,744,226
,												4%	
Purchased CHW Cost													\$0
Steam Usage													
Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage													
Chiller Energy Usage (kWh):													2,183,112
Chilled Water Pump Energy Usage (kWh):													428,360
Condenser Water Pump Energy Usage (kWh):													260,454
Cooling Tower Energy Usage (kWh):													428,360
AHU Supply Fan Energy Usage (kWh):													0
Total Energy Usage													3,300,287
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh													2,310,201
Off Peak Energy Usage - kWh													990,086
													3,300,287
Demand Charge	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013
On Peak Energy Cost	φ1,103	φ0,043	Φ11,214	φ15,794	φ17,204	\$10,759	φ10,759	φ10,739	φ10,759	\$15,754	\$13,439	φο,043	\$121,540
Off Peak Energy Cost													\$52,088
EECR & AEP Cost													\$0
Electricity Cost													\$347,641
Total Energy Cost													\$347,641
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cost)													\$0
-													
Other Variable Costs													\$26,339

Load Profile Case 1 Central plant with constant speed chiller

General Assumptions				
Transformer Losses	5%		Peak Make-up Water:	300 gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50 gpm
Peak Cooling Load	1,500	tons		

			L	OAD SUMMARY	1			
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	6,758	0	11,592	69,552	11,592
90=>94	1,350	14	25	36,518	0	67,500	405,000	67,500
85=>89	1,248	12	68	83,676	0	169,728	1,018,368	169,728
80=>84	1,149	11	143	146,704	0	327,465	1,964,790	327,465
75=>79	1,050	11	221	191,673	0	464,100	2,784,600	464,100
70=>74	950	10	204	270,987	0	582,350	2,329,400	388,233
65=>69	850	9	234	245,443	0	596,700	2,386,800	397,800
60=>64	748	7	235	185,536	0	526,592	2,106,368	351,061
55=>59	648	6	205	117,107	0	397,872	1,591,488	265,248
50=>54	391	4	92	65,973	0	215,832	431,664	71,944
45=>49	372	4	80	47,951	0	177,816	355,632	59,272
40=>44	354	4	81	44,421	0	172,398	344,796	57,466
35=>39	336	3	92	45,935	0	185,472	370,944	61,824
30=>34	318	3	109	49,768	0	207,654	415,308	69,218
25=>29	300	3	99	41,075	0	177,300	354,600	59,100
20=>24	282	3	79	30,094	0	133,950	267,900	44,650
15=>19	264	3	63	21,779	0	100,056	200,112	33,352
10=>14	245	2	52	16,308	0	76,685	153,370	25,562
5=>9	227	2	40	11,463	0	54,934	109,868	18,311
0=>4	209	2	78	20,399	0	98,230	196,460	32,743
Total/Avg				1,679,567	0	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

CHILLER 4									
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
			_	_	_				_

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	475	0.462	219	613	134,523	0	0.0	0.0	291,175
65=>69	425	0.408	173	702	121,727	0	0.0	0.0	298,350
60=>64	374	0.349	131	704	91,890	0	0.0	0.0	263,296
55=>59	324	0.291	94	614	57,890	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.393	1,654	3,554	559,406		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.439	921	921	153,376		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Load Profile
Case 1 Central plant with constant speed chiller

Chiller 1 Operational Hours

Temperature
Bin
(157)
95x>99
90x>94
85x>89
80x>84
75xx>70
70x>74
65x>69
60x>64
55x>59
30x>34
40x>44
25x>29
20x>24
10x>14
5x>99
10x>14
5x>99
10x>14
5x>15
10x>14
5x>15
10x>16
5x>16
5

Chiller 2 Operational Hours

Chiller 3 Operational

				PEAK ELECTRI	CAL DEMAND	(including tran	sformer losses	;)			
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
D	00 04	400	400					00		00	507

			CHILL	ER LOAD PRO	FILE			
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load
95=>99	483	483	483	0	0	0	1,449	97%
90=>94	450	450	450	0	0	0	1,350	90%
85=>89	416	416	416	0	0	0	1,248	83%
80=>84	383	383	383	0	0	0	1,149	77%
75=>79	350	350	350	0	0	0	1,050	70%
70=>74	475	475	0	0	0	0	950	63%
65=>69	425	425	0	0	0	0	850	579
60=>64	374	374	0	0	0	0	748	509
55=>59	324	324	0	0	0	0	648	439
50=>54	391	0	0	0	0	0	391	269
45=>49	372	0	0	0	0	0	372	259
40=>44	354	0	0	0	0	0	354	249
35=>39	336	0	0	0	0	0	336	229
30=>34	318	0	0	0	0	0	318	219
25=>29	300	0	0	0	0	0	300	209
20=>24	282	0	0	0	0	0	282	199
15=>19	264	0	0	0	0	0	264	189
10=>14	245	0	0	0	0	0	245	169
5=>9	227	0	0	0	0	0	227	159
0=>4	209	0	0	0	0	0	209	149
Peak	483	483	483	0	0	0	1,449	

		CHILLER	EFFICIENCY (E	LECTRIC)		
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.578	0.578	0.578	0.000	0.000	0.000
90=>94	0.536	0.536	0.536	0.000	0.000	0.000
85=>89	0.488	0.488	0.488	0.000	0.000	0.000
80=>84	0.443	0.443	0.443	0.000	0.000	0.000
75=>79	0.408	0.408	0.408	0.000	0.000	0.000
70=>74	0.462	0.462	0.000	0.000	0.000	0.000
65=>69	0.408	0.408	0.000	0.000	0.000	0.000
60=>64	0.349	0.349	0.000	0.000	0.000	0.000
55=>59	0.291	0.291	0.000	0.000	0.000	0.000
50=>54	0.304	0.000	0.000	0.000	0.000	0.000
45=>49	0.268	0.000	0.000	0.000	0.000	0.000
40=>44	0.256	0.000	0.000	0.000	0.000	0.000
35=>39	0.246	0.000	0.000	0.000	0.000	0.000
30=>34	0.238	0.000	0.000	0.000	0.000	0.000
25=>29	0.230	0.000	0.000	0.000	0.000	0.000
20=>24	0.223	0.000	0.000	0.000	0.000	0.000
15=>19	0.216	0.000	0.000	0.000	0.000	0.000
10=>14	0.211	0.000	0.000	0.000	0.000	0.000
5=>9	0.207	0.000	0.000	0.000	0.000	0.000
0=>4	0.206	0.000	0.000	0.000	0.000	0.000
Average	0.303	0.393	0.439	0.000	0.000	0.000

										Coo	ling L	oad	(%)								
		%26	%06	83%	71%	%02	%89	21%	20%	43%	26%	52%	24%	25%	21%	50%	19%	18%	16%	15%	
_	0	_				1															
Load Duration (Hours)	200			1	1	1	1	1	1		1					1	1			-	
ē	400			_					1									_			
ırat	600															_					_
ö	800						-		-												
Ĕ	1,000					-	-		-	-											
nrs	1,200					-		-	₽												
-	1,400					_															
	1,600	1																			
								Lo	ad P	rofile	(per	cent)									

		CHILLE	R EFFICIENCY	(STEAM)		
Temperature Bin (°F)	Chiller 1 Demand (lb/ton)	Chiller 2 Demand (lb/ton)	Chiller 3 Demand (lb/ton)	Chiller 4 Demand (lb/ton)	Chiller 5 Demand (lb/ton)	Chiller 6 Demand (lb/ton)
95=>99	0.000	0.000	0.000	0.000	0.000	0.000
90=>94	0.000	0.000	0.000	0.000	0.000	0.000
85=>89	0.000	0.000	0.000	0.000	0.000	0.000
80=>84	0.000	0.000	0.000	0.000	0.000	0.000
75=>79	0.000	0.000	0.000	0.000	0.000	0.000
70=>74	0.000	0.000	0.000	0.000	0.000	0.000
65=>69	0.000	0.000	0.000	0.000	0.000	0.000
60=>64	0.000	0.000	0.000	0.000	0.000	0.000
55=>59	0.000	0.000	0.000	0.000	0.000	0.000
50=>54	0.000	0.000	0.000	0.000	0.000	0.000
45=>49	0.000	0.000	0.000	0.000	0.000	0.000
40=>44	0.000	0.000	0.000	0.000	0.000	0.000
35=>39	0.000	0.000	0.000	0.000	0.000	0.000
30=>34	0.000	0.000	0.000	0.000	0.000	0.000
25=>29	0.000	0.000	0.000	0.000	0.000	0.000
20=>24	0.000	0.000	0.000	0.000	0.000	0.000
15=>19	0.000	0.000	0.000	0.000	0.000	0.000
10=>14	0.000	0.000	0.000	0.000	0.000	0.000
5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0=>4	0.000	0.000	0.000	0.000	0.000	0.000
Average	0.000	0.000	0.000	0.000	0.000	0.000

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data											
Pump	Horsepower	Efficiency	Switch Point								
PCHWP 1	41.23	92%	1								
PCHWP 2	41.23	92%	1								
PCHWP 3	41.23	92%	1								
PCHWP 4	0	92%	1								
PCHWP 5	0	92%	1								
PCHWP 6	0	92%	1								

			PCHWP Dem	and (kW)			
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	33	33	33	0	0	0	100
90=>94	33	33	33	0	0	0	100
85=>89	33	33	33	0	0	0	100
80=>84	33	33	33	0	0	0	100
75=>79	33	33	33	0	0	0	100
70=>74	33	33	0	0	0	0	67
65=>69	33	33	0	0	0	0	67
60=>64	33	33	0	0	0	0	67
55=>59	33	33	0	0	0	0	67
50=>54	33	0	0	0	0	0	33
45=>49	33	0	0	0	0	0	33
40=>44	33	0	0	0	0	0	33
35=>39	33	0	0	0	0	0	33
30=>34	33	0	0	0	0	0	33
25=>29	33	0	0	0	0	0	33
20=>24	33	0	0	0	0	0	33
15=>19	33	0	0	0	0	0	33
10=>14	33	0	0	0	0	0	33
5=>9	33	0	0	0	0	0	33
0=>4	33	0	0	0	0	0	33
Total/Avg	668	301	167	0	0	0	1,136

			PCHWP Energ	y Usage (kWh)			
Temperature	PCHWP 1	PCHWP 2	PCHWP 3	PCHWP 4	PCHWP 5	PCHWP 6	Total PCHWP
Bin (°F)	Energy Usage (kWh)						
95=>99	267	267	267	0	0	0	802
90=>94	1,670	1,670	1,670	0	0	0	5,010
85=>89	4,542	4,542	4,542	0	0	0	13,627
80=>84	9,519	9,519	9,519	0	0	0	28,557
75=>79	14,763	14,763	14,763	0	0	0	44,288
70=>74	20,474	20,474	. 0	0	0	0	40,948
65=>69	23,447	23,447	0	0	0	0	46,894
60=>64	23,514	23,514	0	0	0	0	47,027
55=>59	20,508	20,508	0	0	0	0	41,015
50=>54	18,437	0	0	0	0	0	18,437
45=>49	15,965	0	0	0	0	0	15,965
40=>44	16,266	0	0	0	0	0	16,266
35=>39	18,437	0	0	0	0	0	18,437
30=>34	21,810	0	0	0	0	0	21,810
25=>29	19,739	0	0	0	0	0	19,739
20=>24	15,865	0	0	0	0	0	15,865
15=>19	12,659	0	0	0	0	0	12,659
10=>14	10,454	0	0	0	0	0	10,454
5=>9	8,083	0	0	0	0	0	8,083
0=>4	15,698	0	0	0	0	0	15,698
Total/Avg	292,116	118,704	30,761	0	0	0	441,581

Condenser Water Pump (CWP)

CWP Energy	/ Data		
Pump	Horsepower	Efficiency	Switch Point
CWP 1	28.74	92%	1
CWP 2	28.74	92%	1
CWP3	28.74	92%	1
CWP 4	0	92%	1
CWP 5	0	92%	1
CWP 6	0	92%	1

			CWP Dema	nd (kW)			
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)
95=>99	23	23	23	0	0	0	70
90=>94	23	23	23	0	0	0	70
85=>89	23	23	23	0	0	0	70
80=>84	23	23	23	0	0	0	70
75=>79	23	23	23	0	0	0	70
70=>74	23	23	0	0	0	0	47
65=>69	23	23	0	0	0	0	47
60=>64	23	23	0	0	0	0	47
55=>59	23	23	0	0	0	0	47
50=>54	23	0	0	0	0	0	23
45=>49	23	0	0	0	0	0	23
40=>44	23	0	0	0	0	0	23
35=>39	23	0	0	0	0	0	23
30=>34	23	0	0	0	0	0	23
25=>29	23	0	0	0	0	0	23
20=>24	23	0	0	0	0	0	23
15=>19	23	0	0	0	0	0	23
10=>14	23	0	0	0	0	0	23
5=>9	23	0	0	0	0	0	23
0=>4	23	0	0	0	0	0	23
Total/Avg	466	210	117	0	0	0	792

			CWP Energy	Usage (kWh)			
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	186	186		0	0	0	559
90=>94	1,165	1,165	1,165	0	0	0	3,495
85=>89	3,169	3,169	3,169	0	0	0	9,506
80=>84	6,641	6,641	6,641	0	0	0	19,922
75=>79	10,299	10,299	10,299	0	0	0	30,896
70=>74	14,283	14,283	. 0	0	0	0	28,566
65=>69	16,357	16,357	0	0	0	0	32,713
60=>64	16,403	16,403	0	0	0	0	32,806
55=>59	14,306	14,306	0	0	0	0	28,612
50=>54	12,862	0	0	0	0	0	12,862
45=>49	11,137	0	0	0	0	0	11,137
40=>44	11,347	0	0	0	0	0	11,347
35=>39	12,862	0	0	0	0	0	12,862
30=>34	15,215	0	0	0	0	0	15,215
25=>29	13,770	0	0	0	0	0	13,770
20=>24	11,068	0	0	0	0	0	11,068
15=>19	8,831	0	0	0	0	0	8,831
10=>14	7,293	0	0	0	0	0	7,293
5=>9	5,639	0	0	0	0	0	5,639
0=>4	10,951	0	0	0	0	0	10,951
Total/Avg	203,782	82,808	21,459	0	0	0	308,049

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data										
Pump	Horsepower	Efficiency	Switch Point							
CT 1	40	92%	1							
CT 2	40	92%	1							
CT 3	40	92%	1							
CT 4	0	92%	1							
CT 5	0	92%	1							
CT 6	0	92%	1							

			Cooling Tower	Demand (kW)			
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	0	0	0	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

	Cooling Tower Energy Usage (kWh)											
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)					
95=>99	259	259	259	0	0	0	77					
90=>94	1,620	1,620	1,620	0	0	0	4,86					
85=>89	4,406	4,406	4,406	0	0	0	13,21					
80=>84	9,234	9,234	9,234	0	0	0	27,70					
75=>79	14,321	14,321	14,321	0	0	0	42,96					
70=>74	19,861	19,861	0	0	0	0	39,72					
65=>69	22,745	22,745	0	0	0	0	45,49					
60=>64	22,810	22,810	0	0	0	0	45,61					
55=>59	19,894	19,894	0	0	0	0	39,78					
50=>54	17,885	0	0	0	0	0	17,88					
45=>49	15,487	0	0	0	0	0	15,48					
40=>44	15,779	0	0	0	0	0	15,77					
35=>39	17,885	0	0	0	0	0	17,88					
30=>34	21,157	0	0	0	0	0	21,15					
25=>29	19,148	0	0	0	0	0	19,14					
20=>24	15,390	0	0	0	0	0	15,39					
15=>19	12,280	0	0	0	0	0	12,28					
10=>14	10,141	0	0	0	0	0	10,14					
5=>9	7,841	0	0	0	0	0	7,84					
0=>4	15,228	0	0	0	0	0	15,22					
Total/Ava	283 370	115 150	20 840	n	0	0	428 36					

Air Handling Unit (AHU)

AHU Supply Fan Energy Data		
Coil Pressure drop	0	
Other Pressure drop	0	
Typical Airflow rate	0	cfm
Fan Efficiency	70%	
Supply Horsepower	0.0	
# of fans	1	
Efficiency	92%	
Switch Point	30%	

Coolin	Cooling Tower Demand (kW)											
Temperature Bin (°F)	Percent Load	AHU Demand (kW)										
95=>99	97%	0										
90=>94	90%	0										
85=>89	83%	0										
80=>84	77%	0										
75=>79	70%	0										
70=>74	63%	0										
65=>69	57%	0										
60=>64	50%	0										
55=>59	43%	0										
50=>54	26%	0										
45=>49	25%	0										
40=>44	24%	0										
35=>39	22%	0										
30=>34	21%	0										
25=>29	20%	0										
20=>24	19%	0										
15=>19	18%	0										
10=>14	16%	0										
5=>9	15%	0										
0=>4	14%	0										
Total/Avg		0										

AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Variable Cost

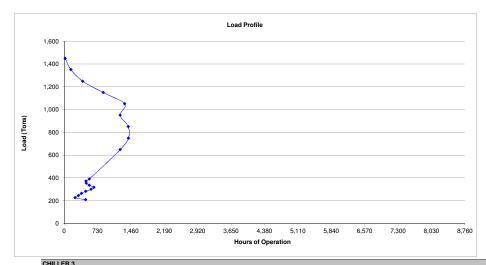
Case 2 Central Plant with magnetic bearing variable speed chiller

Input Data Summary													
Energy Charge Multiplier 1.00	Demand Charge-S First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000		Purchased Stea				Per kLB Per Ton-hr		
	Demand Charge-W First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000		Water Rate (per Sewage Rate (p Miscellaneous	er 1,000 Gal)	gy cost)	\$3.30 0%	Per 1000 Gal Per 1000 Gal of Energy Cost		
	On/Off Peak Split On Peak	70%		Summer/Winter Summer	70%		Natural Gas Other Stm Cost	ts			Per MMbtu Per MMbtu	NOT USED NOT USED	
Variable Cost Calculation	Off Peak	30%		Winter	30%								
-	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs													
CHW Usage (Ton-Hrs)												4%	4,744,226
Purchased CHW Cost												470	\$0
Steam Usage Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage Chiller Energy Usage (kWh): Chilled Water Pump Energy Usage Condenser Water Pump Energy U Cooling Tower Energy Usage (kW AHU Supply Fan Energy Usage (k	sage (kWh): h):												1,679,567 441,581 308,049 428,360 0
Total Energy Usage													2,857,558
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh Off Peak Energy Usage - kWh													2,000,291 857,267
													2,857,558
Demand Charge On Peak Energy Cost Off Peak Energy Cost EECR & AEP Cost	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013 \$105,235 \$45,101 \$0
Electricity Cost													\$324,349
Total Energy Cost													\$324,349
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cos	t)												\$0
Other Variable Costs													\$26,339

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			

Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	58	107	11,592	69,552	11,592
90=>94	1,350	14	25	338	608	67,500	405,000	67,500
85=>89	1,248	12	68	849	1,485	169,728	1,018,368	169,728
80=>84	1,149	11	143	1,637	2,783	327,465	1,964,790	327,465
75=>79	1,050	11	221	2,321	3,857	464,100	2,784,600	464,100
70=>74	950	10	204	1,941	4,978	582,350	2,329,400	388,233
65=>69	850	9	234	1,989	4,935	596,700	2,386,800	397,800
60=>64	748	7	235	1,755	4,204	526,592	2,106,368	351,061
55=>59	648	6	205	1,326	3,069	397,872	1,591,488	265,248
50=>54	391	4	92	360	1,692	215,832	431,664	71,944
45=>49	372	4	80	296	1,371	177,816	355,632	59,272
40=>44	354	4	81	287	1,316	172,398	344,796	57,466
35=>39	336	3	92	309	1,404	185,472	370,944	61,824
30=>34	318	3	109	346	1,561	207,654	415,308	69,218
25=>29	300	3	99	296	1,324	177,300	354,600	59,100
20=>24	282	3	79	223	996	133,950	267,900	44,650
15=>19	264	3	63	167	741	100,056	200,112	33,352
10=>14	245	2	52	128	567	76,685	153,370	25,562
5=>9	227	2	40	92	406	54,934	109,868	18,311
0=>4	209	2	78	164	728	98,230	196,460	32,743
Total/Avg				14,881	38,133	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	391	0.000	0	552	0	8	3.1	1,692.4	215,832
45=>49	372	0.000	0	478	0	8	2.9	1,371.4	177,816
40=>44	354	0.000	0	487	0	8	2.7	1,315.9	172,398
35=>39	336	0.000	0	552	0	8	2.5	1,404.3	185,472
30=>34	318	0.000	0	653	0	8	2.4	1,561.3	207,654
25=>29	300	0.000	0	591	0	7	2.2	1,324.4	177,300
20=>24	282	0.000	0	475	0	7	2.1	995.6	133,950
15=>19	264	0.000	0	379	0	7	2.0	740.9	100,056
10=>14	245	0.000	0	313	0	7	1.8	566.8	76,685
5=>9	227	0.000	0	242	0	7	1.7	406.1	54,934
0=>4	209	0.000	0	470	0	7	1.5	728.0	98,230
otal/Ava		0.000	Ó	8,746	0	7.817	56.3	23,646,7	2.998.879

CHILLER 4									
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
Takal/Assa		#DIV/01		•	•		0.0	0.0	

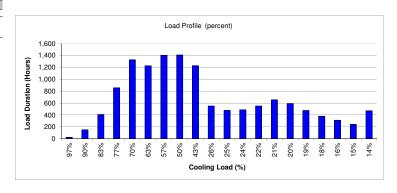
Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.000	0	3,554	0		31.4	11,539.5	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	Ö
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.000	921	921	Ō		18.3	2,946.7	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Load Profile
Case 1 Central plant with constant speed chiller


	PEAK ELECTRICAL DEMAND (including transformer losses)										
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
December	60 - 64	100	100	0	0	0	0	60	41	60	E97

Chiller Input

CHILLER LOAD PROFILE									
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load	
95=>99	483	483	483	0	0	0	1,449	97%	
90=>94	450	450	450	0	0	0	1,350	90%	
85=>89	416	416	416	0	0	0	1,248	83%	
80=>84	383	383	383	0	0	0	1,149	77%	
75=>79	350	350	350	0	0	0	1,050	70%	
70=>74	475	475	0	0	0	0	950	63%	
65=>69	425	425	0	0	0	0	850	579	
60=>64	374	374	0	0	0	0	748	50%	
55=>59	324	324	0	0	0	0	648	439	
50=>54	391	0	0	0	0	0	391	269	
45=>49	372	0	0	0	0	0	372	259	
40=>44	354	0	0	0	0	0	354	249	
35=>39	336	0	0	0	0	0	336	229	
30=>34	318	0	0	0	0	0	318	21%	
25=>29	300	0	0	0	0	0	300	209	
20=>24	282	Ō	Ó	0	0	0	282	199	
15=>19	264	0	0	0	0	0	264	189	
10=>14	245	0	0	0	0	0	245	169	
5=>9	227	Ō	0	0	0	0	227	159	
0=>4	209	0	0	0	0	0	209	149	
Peak	483	483	483	0	0	0	1,449		

CHILLER EFFICIENCY (ELECTRIC)									
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6			
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency			
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)			
95=>99	0.000	0.000	0.000	0.000	0.000	0.000			
90=>94	0.000	0.000	0.000	0.000	0.000	0.000			
85=>89	0.000	0.000	0.000	0.000	0.000	0.000			
80=>84	0.000	0.000	0.000	0.000	0.000	0.000			
75=>79	0.000	0.000	0.000	0.000	0.000	0.000			
70=>74	0.000	0.000	0.000	0.000	0.000	0.000			
65=>69	0.000	0.000	0.000	0.000	0.000	0.000			
60=>64	0.000	0.000	0.000	0.000	0.000	0.000			
55=>59	0.000	0.000	0.000	0.000	0.000	0.000			
50=>54	0.000	0.000	0.000	0.000	0.000	0.000			
45=>49	0.000	0.000	0.000	0.000	0.000	0.000			
40=>44	0.000	0.000	0.000	0.000	0.000	0.000			
35=>39	0.000	0.000	0.000	0.000	0.000	0.000			
30=>34	0.000	0.000	0.000	0.000	0.000	0.000			
25=>29	0.000	0.000	0.000	0.000	0.000	0.000			
20=>24	0.000	0.000	0.000	0.000	0.000	0.000			
15=>19	0.000	0.000	0.000	0.000	0.000	0.000			
10=>14	0.000	0.000	0.000	0.000	0.000	0.000			
5=>9	0.000	0.000	0.000	0.000	0.000	0.000			
0=>4	0.000	0.000	0.000	0.000	0.000	0.000			
Average	0.000	0.000	0.000	0.000	0.000	0.000			

		01	ED ODEDA	TIONAL HOUR	•		
		Ci	HILLER OPERA	HONAL HOUR	5		
Temperature Bin	Chiller 1 Operational	Chiller 2 Operational	Chiller 3 Operational	Chiller 4 Operational	Chiller 5 Operational	Chiller 6 Operational	Cumulative
(°F) 95=>99	Hours 8	Hours 8	Hours 8	Hours	Hours	Hours	Hours 24
90=>94	50	50	50	0	0	0	150
85=>89	136	136	136	0	0	0	408
80=>84	285	285	285	0	0	0	855
75=>79	442	442	442	0	0	0	1,326
70=>74	613	613	0	0	ů .	0	1,226
65=>69	702	702	ů .	0	0	0	1,404
60=>64	704	704	ů .	0	ů .	0	1,408
55=>59	614	614	0	0	o O	0	1,228
50=>54	552	0	0	0	0	0	552
45=>49	478	ō	ō	ō	ō	ō	478
40=>44	487	0	0	0	0	0	487
35=>39	552	0	0	Ö	0	0	552
30=>34	653	0	0	0	0	0	653
25=>29	591	0	0	0	0	0	591
20=>24	475	0	0	0	0	0	475
15=>19	379	0	0	0	0	0	379
10=>14	313	0	0	0	0	0	313
5=>9	242	0	0	0	0	0	242
0=>4	470	0	0	0	0	0	470
Total	8,746	3,554	921	0	0	0	

		CHILLE	R EFFICIENCY	(STEAM)		
Temperature Bin (°F)	Chiller 1 Demand (lb/ton)	Chiller 2 Demand (lb/ton)	Chiller 3 Demand (lb/ton)	Chiller 4 Demand (lb/ton)	Chiller 5 Demand (lb/ton)	Chiller 6 Demand (lb/ton)
95=>99	9.219	9.219	9.219	0.000	0.000	0.000
90=>94	9.002	9.002	9.002	0.000	0.000	0.000
85=>89	8.750	8.750	8.750	0.000	0.000	0.000
80=>84	8.499	8.499	8.499	0.000	0.000	0.000
75=>79	8.311	8.311	8.311	0.000	0.000	0.000
70=>74	8.547	8.547	0.000	0.000	0.000	0.000
65=>69	8.271	8.271	0.000	0.000	0.000	0.000
60=>64	7.984	7.984	0.000	0.000	0.000	0.000
55=>59	7.713	7.713	0.000	0.000	0.000	0.000
50=>54	7.841	0.000	0.000	0.000	0.000	0.000
45=>49	7.712	0.000	0.000	0.000	0.000	0.000
40=>44	7.633	0.000	0.000	0.000	0.000	0.000
35=>39	7.571	0.000	0.000	0.000	0.000	0.000
30=>34	7.519	0.000	0.000	0.000	0.000	0.000
25=>29	7.470	0.000	0.000	0.000	0.000	0.000
20=>24	7.433	0.000	0.000	0.000	0.000	0.000
15=>19	7.405	0.000	0.000	0.000	0.000	0.000
10=>14	7.392	0.000	0.000	0.000	0.000	0.000
5=>9	7.392	0.000	0.000	0.000	0.000	0.000
0=>4	7.411	0.000	0.000	0.000	0.000	0.000
Average	7.817	8.219	8.480	0.000	0.000	0.000

24482 | RCTC Chilled Water Study E-17 Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data									
Pump	Horsepower	Efficiency	Switch Poi						
PCHWP 1	42.6	92%							
PCHWP 2	42.6	92%							
PCHWP 3	42.6	92%							
PCHWP 4	0	92%							
PCHWP 5	0	92%							
PCHWP 6	0	92%							

			PCHWP Dem	and (kW)			
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	35	35	35	0	0	0	104
90=>94	35	35	35	0	0	0	104
85=>89	35	35	35	0	0	0	104
80=>84	35	35	35	0	0	0	104
75=>79	35	35	35	0	0	0	104
70=>74	35	35	0	0	0	0	69
65=>69	35	35	0	0	0	0	69
60=>64	35	35	0	0	0	0	69
55=>59	35	35	0	0	0	0	69
50=>54	35	0	0	0	0	0	35
45=>49	35	0	0	0	0	0	35
40=>44	35	0	0	0	0	0	35
35=>39	35	0	0	0	0	0	35
30=>34	35	0	0	0	0	0	35
25=>29	35	0	0	0	0	0	35
20=>24	35	0	0	0	0	0	35
15=>19	35	0	0	0	0	0	35
10=>14	35	0	0	0	0	0	35
5=>9	35	0	0	0	0	0	35
0=>4	35	0	0	0	0	0	35
Γotal/Avg	690	311	173	0	0	0	1,173

			PCHWP Energ	y Usage (kWh)			
Temperature Bin (°F)	PCHWP 1 Energy Usage (kWh)	PCHWP 2 Energy Usage (kWh)	PCHWP 3 Energy Usage (kWh)	PCHWP 4 Energy Usage (kWh)	PCHWP 5 Energy Usage (kWh)	PCHWP 6 Energy Usage (kWh)	Total PCHWP Energy Usage (kWh)
95=>99	276	276	276	0	0	, , ,	828
90=>94	1,725	1,725	1,725	0	0	0	5,175
85=>89	4,692	4,692	4,692	0	0	0	14,076
80=>84	9,833	9,833	9,833	0	0	0	29,498
75=>79	15,249	15,249	15,249	0	0	0	45,747
70=>74	21,149	21,149	0	0	0	0	42,297
65=>69	24,219	24,219	0	0	0	0	48,438
60=>64	24,288	24,288	0	0	0	0	48,576
55=>59	21,183	21,183	0	0	0	0	42,366
50=>54	19,044	0	0	0	0	0	19,044
45=>49	16,491	0	0	0	0	0	16,491
40=>44	16,802	0	0	0	0	0	16,802
35=>39	19,044	0	0	0	0	0	19,044
30=>34	22,529	0	0	0	0	0	22,529
25=>29	20,390	0	0	0	0	0	20,390
20=>24	16,388	0	0	0	0	0	16,388
15=>19	13,076	0	0	0	0	0	13,076
10=>14	10,799	0	0	0	0	0	10,799
5=>9	8,349	0	0	0	0	0	8,349
0=>4	16,215	0	0	0	0	0	16,215
otal/Avg	301,737	122,613	31,775	0	0	0	456,125

Condenser Water Pump (CWP)

CWP Energy Data									
Pump	Horsepower	Efficiency	Switch Point						
CWP 1	28.74	92%	1						
CWP 2	28.74	92%	1						
CWP 3	28.74	92%	1						
CWP 4	0	92%	1						
CWP 5	0	92%	1						
CWP 6	0	92%	1						

CWP Demand (kW)								
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)	
95=>99	23	23	23	0	0	0	70	
90=>94	23	23	23	0	0	0	70	
85=>89	23	23	23	0	0	0	70	
80=>84	23	23	23	0	0	0	70	
75=>79	23	23	23	0	0	0	70	
70=>74	23	23	0	0	0	0	47	
65=>69	23	23	0	0	0	0	47	
60=>64	23	23	0	0	0	0	47	
55=>59	23	23	0	0	0	0	47	
50=>54	23	0	0	0	0	0	23	
45=>49	23	0	0	0	0	0	23	
40=>44	23	0	0	0	0	0	23	
35=>39	23	0	0	0	0	0	23	
30=>34	23	0	0	0	0	0	23	
25=>29	23	0	0	0	0	0	23	
20=>24	23	0	0	0	0	0	23	
15=>19	23	0	0	0	0	0	23	
10=>14	23	0	0	0	0	0	23	
5=>9	23	0	0	0	0	0	23	
0=>4	23	0	0	0	0	0	23	
Total/Avg	466	210	117	0	0	0	792	

CWP Energy Usage (kWh)								
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)	
95=>99	186	186	186	0	0	0	559	
90=>94	1,165	1,165	1,165	0	0	0	3,495	
85=>89	3,169	3,169	3,169	0	0	0	9,506	
80=>84	6,641	6,641	6,641	0	0	0	19,922	
75=>79	10,299	10,299	10,299	0	0	0	30,896	
70=>74	14,283	14,283	0	0	0	0	28,566	
65=>69	16,357	16,357	0	0	0	0	32,713	
60=>64	16,403	16,403	0	0	0	0	32,806	
55=>59	14,306	14,306	0	0	0	0	28,612	
50=>54	12,862	0	0	0	0	0	12,862	
45=>49	11,137	0	0	0	0	0	11,137	
40=>44	11,347	0	0	0	0	0	11,347	
35=>39	12,862	0	0	0	0	0	12,862	
30=>34	15,215	0	0	0	0	0	15,215	
25=>29	13,770	0	0	0	0	0	13,770	
20=>24	11,068	0	0	0	0	0	11,068	
15=>19	8,831	0	0	0	0	0	8,831	
10=>14	7,293	0	0	0	0	0	7,293	
5=>9	5,639	0	0	0	0	0	5,639	
0=>4	10,951	0	0	0	0	0	10,951	
Total/Avg	203,782	82,808	21,459	0	0	0	308,049	

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data										
Pump	Horsepower	Efficiency	Switch Point							
CT 1	50	92%	1							
CT 2	50	92%	1							
CT 3	50	92%	1							
CT 4	0	92%	1							
CT 5	0	92%	1							
CT 6	0	92%	1							

	Cooling Tower Demand (kW)								
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)		
95=>99	41	41	41	0	0	0	122		
90=>94	41	41	41	0	0	0	122		
85=>89	41	41	41	0	0	0	122		
80=>84	41	41	41	0	0	0	122		
75=>79	41	41	41	0	0	0	122		
70=>74	41	41	0	0	0	0	81		
65=>69	41	41	0	0	0	0	81		
60=>64	41	41	0	0	0	0	81		
55=>59	41	41	0	0	0	0	81		
50=>54	41	0	0	0	0	0	41		
45=>49	41	0	0	0	0	0	41		
40=>44	41	0	0	0	0	0	41		
35=>39	41	0	0	0	0	0	41		
30=>34	41	0	0	0	0	0	41		
25=>29	41	0	0	0	0	0	41		
20=>24	41	0	0	0	0	0	41		
15=>19	41	0	0	0	0	0	41		
10=>14	41	0	0	0	0	0	41		
5=>9	41	0	0	0	0	0	41		
0=>4	41	0	0	0	0	0	41		
Total/Avg	810	365	203	0	0	0	1,377		

Cooling Tower Energy Usage (kWh)								
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)	
95=>99	324		324	0	0	0	972	
90=>94	2,025	2,025	2,025	0	0	0	6,075	
85=>89	5,508	5,508	5,508	0	0	0	16,524	
80=>84	11,543	11,543	11,543	0	0	0	34,628	
75=>79	17,901	17,901	17,901	0	0	0	53,703	
70=>74	24,827	24,827	0	0	0	0	49,653	
65=>69	28,431	28,431	0	0	0	0	56,862	
60=>64	28,512	28,512	0	0	0	0	57,024	
55=>59	24,867	24,867	0	0	0	0	49,734	
50=>54	22,356	0	0	0	0	0	22,356	
45=>49	19,359	0	0	0	0	0	19,359	
40=>44	19,724	0	0	0	0	0	19,724	
35=>39	22,356	0	0	0	0	0	22,356	
30=>34	26,447	0	0	0	0	0	26,447	
25=>29	23,936	0	0	0	0	0	23,936	
20=>24	19,238	0	0	0	0	0	19,238	
15=>19	15,350		0	0	0	0	15,350	
10=>14	12,677		0	0	0	0	12,677	
5=>9	9,801	0	0	0	0	0	9,801	
0=>4	19,035	0	0	0	0	0	19,035	
Total/Avg	354,213		37.301	0	0	0	535,451	

Air Handling Unit (AHU)

AHU Supply Fan Energy Data							
Coil Pressure drop	0						
Other Pressure drop	0						
Typical Airflow rate	0	cfm					
Fan Efficiency	70%						
Supply Horsepower	0.0						
# of fans	1						
Efficiency	92%						

Cooling Tower Demand (kW)						
Temperature Bin (°F)	Percent Load	AHU Demand (kW)				
95=>99	97%	0				
90=>94	90%	0				
85=>89	83%	0				
80=>84	77%	0				
75=>79	70%	0				
70=>74	63%	0				
65=>69	57%	0				
60=>64	50%	0				
55=>59	43%	0				
50=>54	26%	0				
45=>49	25%	0				
40=>44	24%	0				
35=>39	22%	0				
30=>34	21%	0				
25=>29	20%	0				
20=>24	19%	0				
15=>19	18%	0				
10=>14	16%	0				
5=>9	15%	0				
0=>4	14%	0				
Total/Avg		0				

AHU Energy Usage (kWh)							
Temperature Bin (°F)	AHU Energy Usage (kWh)						
95=>99	0						
90=>94	0						
85=>89	0						
80=>84	0						
75=>79	0						
70=>74	0						
65=>69	0						
60=>64	0						
55=>59	0						
50=>54	0						
45=>49	0						
40=>44	0						
35=>39	0						
30=>34	0						
25=>29	0						
20=>24	0						
15=>19	0						
10=>14	0						
5=>9	0						
0=>4	0						
Total/Avg	0						

CentralPlant-PV Case Comparison4%discount Rate.xlsx

Variable Cost

Case 3 Central Plant with absorption chillers

Input Data Summary													
5 O M III II	Demand Charge-S			Energy Charge -				Self Generated					
Energy Charge Multiplier 1.00	First 200-kW Next 800-kW	\$16.46 \$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Purchased Stea	m Poto (nor kil	•)	¢17.64	Per kLB		
1.00	Over 1000 kW	\$16.46		Energy Cost Adj	\$0.00000		Purchased CH\				Per Ton-hr		
								-	,				
	Demand Charge-V			Energy Charge -			Water Rate (pe				Per 1000 Gal		
	First 200-kW Next 800-kW	\$16.46		On Peak	\$0.05261		Sewage Rate (p				Per 1000 Gal		
	Over 1000 kW	\$16.46 \$16.46		Off Peak Energy Cost Adj	\$0.05261 \$0.00000		Miscellaneous	Cost (% of ener	gy cost)	0%	of Energy Cost		
	Over 1000 kw	φ10.40		Ellergy Cost Auj	φυ.υυυυ		Natural Gas			\$7.20	Per MMbtu	NOT USED	
	On/Off Peak Split			Summer/Winter	Split		Other Stm Cost	ts			Per MMbtu	NOT USED	
	On Peak	70%		Summer	70%								
V : 11 0 : 0 1 1 ::	Off Peak	30%		Winter	30%								
Variable Cost Calculation	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs	- Canada y	. 02. 44. 7	a. o	7.4	,	54.15	v a.,	, tagaot	Coptombol	0010201		200020.	741144
CHW Usage (Ton-Hrs)													4,744,226
Purchased CHW Cost												4%	\$0
Steam Usage Energy Usage (klb):													38,133
Steam Cost													\$672,664
Electricity Usage													44.004
Chiller Energy Usage (kWh):	(LAMIE).												14,881
Chilled Water Pump Energy Usag													456,125 308.049
Condenser Water Pump Energy L Cooling Tower Energy Usage (kW													535,451
AHU Supply Fan Energy Usage (kW													0
Allo Supply I all Ellergy Usage (F	KVVII).												0
Total Energy Usage													1,314,505
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh													920,154
Off Peak Energy Usage - kWh													394,352
													1,314,505
Daniel Obanie	Φ7.700	#0.040	644.044	045.704	#47.004	640.750	#40.7F0	#40.750	040.750	045 704	#40.400	#0.040	0474.040
Demand Charge	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013
On Peak Energy Cost Off Peak Energy Cost													\$48,409 \$20,747
EECR & AEP Cost													\$0,747
Electricity Cost													\$243,169
•													
Total Energy Cost													\$915,833
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cos	st)												\$0
•	•												
Other Variable Costs													\$26,339

Prepared By:

J. J. Bovenkamp

Chilled Water Plant Comparison Analysis Input & Results Summary

		Date:	12-Dec-2012		
Variable Cost Inputs					
Demand Charge-Summer		Energy Charge - Summer		On/Off Peak Split	
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	On-Peak	70%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261	Off-Peak	30%
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
				Summer/Winter Split	
Demand Charge-Winter		Energy Charge - Winter		Summer	70%
First 200-kW	\$16.46	On Peak (Per kWh)	\$0.05261	Winter	30%
Next 800-kW	\$16.46	Off Peak (Per kWh)	\$0.05261		
All over 1000 kW	\$16.46	Energy Cost Adj (Per kWh)	\$0.00000		
Variable Cost Rates		Fuel Cost (at Central Plant)			
Purchased Steam Rate (per klb)	\$17.64	Natural Gas (Per MMBtu)	\$7.20	NOT USED	
Purchased CHW Rate (per ton-hr)	\$0.000	Other Stm Costs (Per MMBtu)	\$1.80	NOT USED	
Water Rate (per 1,000 Gal)	\$0.93				
Sewage Rate (per 1,000 Gal)	\$3.30				
Miscellaneous Cost (% of energy cost)	0.0%				

PV Calculation Inputs		Load Profile Inputs		Steam Conditions	
Period (years)		Elec Demand Transformer			
Tellou (years)	25	Losses	5%	Steam Inlet Pressure (psig)	50.0
Discount Rate	8.0%	Auxiliaries Electrical Demand			
	8.0%	(kW/ton)	0.01	Steam Inlet Temperature (°F)	400.0
Interest Rate	1.0%	Peak Make-up Water (gpm)	300	Steam Exhaust Pressure (psig)	-13.2
Variable Cost Escalation	3.0%	Peak Sewage (gpm)	50	Steam Exhaust Temperature (°F)	115.69
O&M Cost Escalation	2.0%			Condensate Pressure (psig)	0.0
Capital Cost Escalation	4.0%			Condensate Temperature (°F)	115.69
·				Condensate Enthalpy (Btu/lb)	83.00
Note: Additional Input on the DV Analysis	Beas	Note: Additional Input on the Lead P	rofile Cose Boses		

Cases			
Case	Description	Temperatures	Chilled Water Source
Case 1	Central plant with constant speed chiller	42 °F Supply, 12 °F ∆T	Self Generated
Case 2	Central Plant with magnetic bearing variable speed chiller	42 °F Supply, 12 °F ∆T	Self Generated
Case 3	Central Plant with absorption chillers	42 °F Supply, 12 °F ∆T	Self Generated
Case 4	not used		Purchased

St Luke's Hospital Building Chillers vs. Central Chiller Plant Present Value Results Summary

CentralPlant-PV Case Comparison8%discount Rate.xlsx

	Case 1	Case 2	Case 3	Case 4
25-year Present Value (\$)	\$13,997,290	\$13,917,772	\$16,751,456	\$0
Average Calculated CHW Cost (\$/ton-hr)	\$0.11	\$0.11	\$0.29	#DIV/0!

Present Value Analysis

Prepared By: J. J. Bovenkamp
Date: 12-Dec-2012

Assumptions

		Case 1	Case 2 Central Plant with magnetic		se 3	Case 4		
	w	Central plant rith constant speed chiller	bearing variable speed chiller	Centra with abs		not used	Financing Information	
Peak Cooling Load (tons)	_	1,500	1,500		1,500	1,500	CHW System	Distribution System
Annual Consumption (ton-hrs)		4,744,226	4,744,226		744,226	0		0%
Total Energy Usage (KWh)		3,300,287	2,857,558		314,505	0	Equity Percent 100	
Total Energy Usage (klbs)		0	, ,		38,133		Loan Period (years)	5 5
o, o , ,					,			0% 1.0%
Water Usage (gal)		17,857,020	17,857,020	17,	857,020	0	Capital Recovery Factor (CRF) 0.20603	
Water Rate (per 1,000 Gal)	\$	0.93	\$ 0.93	\$	0.93	\$ 0.93		
,							Replacement System Percent Financed	0%
Sewage Usage (gal)		2,976,170	2,976,170	2,	976,170	0	Replacement System Equity Percent 100	0% 100%
Sewage Rate (per 1,000 Gal)	\$	3.30	\$ 3.30	\$	3.30	\$ 3.30	Replacement System Loan Period (years)	5 5
							Replacement System Interest Rate 1.0	0% 1.0%
Miscellaneous Cost (% of energy cost)		0.0%	0.0%	ó	0.0%	0.0%	Replacement System Capital Recovery Factor (CRF) 0.20603	98 0.2060398
Annual Maintenance Cost		\$0	\$0		\$0	\$0	Other Information	
Number of Operators		0	0		0	4	Period (years) 25	
Operator Salary		\$0	\$0		\$0	\$0	Discount Rate 8.0%	
CHW System Capital Cost (\$)	\$	7,975,425	\$ 8,219,325	\$ 2,	840,000	\$ -		
CHW Equipment Life (years)		25	2	5	25	25	Escalation	
							Variable Cost Escalation 3.0%	
Distribution System Cost (\$)	\$	829,000			829,000		O&M Cost Escalation 2.0%	
Distribution System Life (years)		50	50)	50	50	Capital Cost Escalation 4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Case 1 - Central plant with con-	stant speed o	chiller:				42 9	F Supply, 12 °F D	Т														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment (Equity)	\$	7,975,425 \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000 \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost		\$	347,641 \$	358,070 \$	368,812 \$	379,876 \$	391,273 \$	403,011 \$	415,101 \$	427,554 \$	440,381 \$	453,592 \$	467,200 \$	481,216 \$	495,652 \$	510,522 \$	525,838 \$	541,613 \$	557,861 \$	574,597 \$	591,835 \$	609,590
Water Cost		\$	16,518 \$	17,013 \$	17,524 \$	18,049 \$	18,591 \$	19,149 \$	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost		\$	9,821 \$	10,116 \$	10,419 \$	10,732 \$	11,054 \$	11,386 \$	11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423 \$	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Total Annual Costs	\$	8,804,425	373,980 \$	385,199 \$	396,755 \$	408,658 \$	420,918 \$	433,545 \$	446,551 \$	459,948 \$	473,746 \$	487,959 \$	502,598 \$	517,675 \$	533,206 \$	549,202 \$	565,678 \$	582,648 \$	600,128 \$	618,132 \$	636,675 \$	655,776
Calculated CHW Cost (per ton-hr)		\$	0.08 \$	0.08 \$	0.08 \$	0.09 \$	0.09 \$	0.09 \$	0.09 \$	0.10 \$	0.10 \$	0.10 \$	0.11 \$	0.11 \$	0.11 \$	0.12 \$	0.12 \$	0.12 \$	0.13 \$	0.13 \$	0.13 \$	0.14
25-year Present Value Cost	\$	13,997,290																				
Case 2 - Central Plant with mag	netic bearing	g variable spe	ed chiller:			42 9	F Supply, 12 °F D	Т														
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	8,219,325 \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000 \$																				
Distribution Principal Payment		029,000 4	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
		029,000 \$	· - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	- \$ - \$	-
Distribution Principal Payment Distribution Interest Payment		829,000 \$ \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	-
		629,000 \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	Ψ	- \$ - \$ - \$	Ψ	Ψ	- \$ - \$ - \$	Ψ	- \$ - \$ - \$	Ψ	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	- \$ - \$ - \$	¥	-
Distribution Interest Payment		829,000 \$ \$ \$	- \$ - \$ - \$ - \$ - 324,349 \$	- \$ - \$ - \$ - \$ 334,079 \$	- \$ - \$ - \$ - \$ 344,102 \$	Ψ	Ψ	- \$	- \$ - \$ - \$ - \$ 387,289 \$	- \$	- \$	Ψ	- \$	- \$ - \$ - \$ - \$ 448,974 \$	- \$	Ψ	Ψ	- \$ - \$ - \$ - \$ 505,325 \$	Ψ.	- \$ - \$ - \$ 536,099 \$	- \$	- - - - 568,747
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost		629,000 \$ \$ \$	324,349 \$ 16,518 \$	- \$ - \$ - \$ - \$ 334,079 \$ 17,013 \$	- \$ - \$ - \$ - \$ 344,102 \$ 17,524 \$	- \$ 354,425 \$ 18,049 \$	- \$ 365,057 \$ 18,591 \$	- \$ - \$ 376,009 \$ 19,149 \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$	- \$ - \$	- \$ 423,201 \$ 21,552 \$	- \$ - \$ 435,898 \$ 22,198 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$	- \$ 505,325 \$ 25,734 \$	- \$ 520,484 \$ 26,506 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$	568,747 28,964
Distribution Interest Payment Distribution Debt Service Annual Energy Cost		029,000 \$	324,349 \$, •		- \$ 354,425 \$	- \$ 365,057 \$	- \$ - \$ 376,009 \$, •	- \$ - \$ 398,908 \$	- \$ - \$ 410,875 \$	- \$ 423,201 \$	- \$ - \$ 435,898 \$	448,974 \$	- \$ - \$ 462,444 \$	- \$ 476,317 \$	- \$ 490,607 \$	- \$ 505,325 \$	- \$ 520,484 \$,	- \$ - \$ 552,182 \$	568,747
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost		629,000 3 3 4 4 9	324,349 \$ 16,518 \$	17,013 \$	17,524 \$	- \$ 354,425 \$ 18,049 \$	- \$ 365,057 \$ 18,591 \$	- \$ - \$ 376,009 \$ 19,149 \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$	- \$ - \$ 410,875 \$ 20,924 \$	- \$ 423,201 \$ 21,552 \$	- \$ - \$ 435,898 \$ 22,198 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$	- \$ 505,325 \$ 25,734 \$	- \$ 520,484 \$ 26,506 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$	568,747 28,964
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost		629,000 3 3 4 9 9	324,349 \$ 16,518 \$	17,013 \$	17,524 \$ 10,419 \$	- \$ 354,425 \$ 18,049 \$	- \$ 365,057 \$ 18,591 \$ 11,054 \$	- \$ - \$ 376,009 \$ 19,149 \$ 11,386 \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$ 12,079 \$	- \$ - \$ 410,875 \$ 20,924 \$	- \$ 423,201 \$ 21,552 \$ 12,815 \$	- \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$ 14,003 \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$ 14,856 \$	- \$ 505,325 \$ 25,734 \$ 15,301 \$	- \$ 520,484 \$ 26,506 \$ 15,760 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$	568,747 28,964 17,222
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs		629,000	324,349 \$ 16,518 \$ 9,821 \$ - \$	17,013 \$	17,524 \$ 10,419 \$ - \$	- \$ 354,425 \$ 18,049 \$ 10,732 \$ - \$	- \$ 365,057 \$ 18,591 \$ 11,054 \$	- \$ - \$ 376,009 \$ 19,149 \$ 11,386 \$ - \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$	- \$ - \$ 410,875 \$ 20,924 \$	- \$ 423,201 \$ 21,552 \$ 12,815 \$	- \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$ 14,003 \$ - \$	- \$ 476,317 \$ 24,257 \$	- \$ 490,607 \$ 24,985 \$ 14,856 \$	- \$ 505,325 \$ 25,734 \$ 15,301 \$ - \$	520,484 \$ 26,506 \$ 15,760 \$	27,301 \$	- \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$ - \$	568,747 28,964 17,222
Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	\$	9999	324,349 \$ 16,518 \$ 9,821 \$ - \$ - \$ - \$	17,013 \$	17,524 \$ 10,419 \$ - \$ - \$	- \$ 354,425 \$ 18,049 \$ 10,732 \$ - \$	- \$ 365,057 \$ 18,591 \$ 11,054 \$	- \$ - \$ 376,009 \$ 19,149 \$ 11,386 \$ - \$	19,723 \$	- \$ - \$ 398,908 \$ 20,315 \$ 12,079 \$ - \$	- \$ - \$ 410,875 \$ 20,924 \$ 12,441 \$ - \$	- \$ 423,201 \$ 21,552 \$ 12,815 \$ - \$ - \$	- \$ - \$ 435,898 \$ 22,198 \$ 13,199 \$ - \$	448,974 \$ 22,864 \$	- \$ - \$ 462,444 \$ 23,550 \$ 14,003 \$ - \$	- \$ 476,317 \$ 24,257 \$ 14,423 \$ - \$ - \$	- \$ 490,607 \$ 24,985 \$ 14,856 \$ - \$ - \$	- \$ 505,325 \$ 25,734 \$ 15,301 \$ - \$	- \$ 520,484 \$ 26,506 \$ 15,760 \$ - \$ - \$	27,301 \$ 16,233 \$ - \$ - \$	- \$ - \$ 552,182 \$ 28,120 \$ 16,720 \$ - \$	568,747 28,964 17,222 -

Stanley Consultants Printed: 12/14/2012

CentralPlant-PV Case Comparison8%discount Rate.xlsx

\$ 13,917,772

25-year Present Value Cost

24482 | RCTC Chilled Water Study

E-22

Stanley Consultants

Present Value Analysis

J. J. Bovenkamp Prepared By: Date: 12-Dec-2012

Assumptions

Assumptions									
		Case 1	Ce	Case 2 ntral Plant h magnetic	Case 3		Case 4		
	_	Central plant		bearing	Central Pla	nt			
		ith constant			with absorp				
		peed chiller		chiller	chillers		not used	Financing Information	
Book Cooling Load (topo)	3					500	1,500		ution Custom
Peak Cooling Load (tons)		1,500		1,500			1,500		ution System
Annual Consumption (ton-hrs)		4,744,226		4,744,226	4,744,		0	Percent Financed 0%	0%
Total Energy Usage (KWh)		3,300,287		2,857,558	1,314,		0	Equity Percent 100%	100%
Total Energy Usage (klbs)		0		0	38	,133		Loan Period (years) 5	5
								Interest Rate 1.0%	1.0%
Water Usage (gal)		17,857,020		17,857,020	17,857,	020	0	Capital Recovery Factor (CRF) 0.2060398	0.2060398
Water Rate (per 1,000 Gal)	\$	0.93	\$	0.93	\$ 0	.93	\$ 0.93		
								Replacement System Percent Financed 0%	0%
Sewage Usage (gal)		2,976,170		2,976,170	2,976,	170	0	Replacement System Equity Percent 100%	100%
Sewage Rate (per 1,000 Gal)	\$	3.30		3.30		3.30	3.30	Replacement System Loan Period (years) 5	5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								Replacement System Interest Rate 1.0%	1.0%
Miscellaneous Cost (% of energy cost)		0.0%		0.0%	C	0.0%	0.0%		0.2060398
Annual Maintenance Cost		\$0		\$0		\$0	\$0	Other Information	
Number of Operators		0		0		0	4	Period (years) 25	
Operator Salary		\$0		\$0		\$0	\$0	Discount Rate 8.0%	
Operator Salary		φυ		φυ		φυ	Φ0	Discount nate 0.0%	
CHW System Capital Cost (\$)	\$	7,975,425		-,,	\$ 2,840,				
CHW Equipment Life (years)		25		25		25	25	Escalation	
								Variable Cost Escalation 3.0%	
Distribution System Cost (\$)	\$	829,000	\$	829,000	\$ 829,	000	\$ -	O&M Cost Escalation 2.0%	
Distribution System Life (years)		50		50		50	50	Capital Cost Escalation 4.0%	

All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Comparison of Cooling System Costs

Case 3 - Central Plant with absor							°F Supply, 12 °F I															
	Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plant Capital Investment	\$	2,840,000	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Principal Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Interest Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Plant Debt Service			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Capital Investment	\$	829,000	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Principal Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Interest Payment			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Distribution Debt Service			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Energy Cost			\$ 915,833 \$	943,308 \$	971,607 \$	1,000,756 \$	1,030,778 \$	1,061,702 \$	1,093,553 \$	1,126,359 \$	1,160,150 \$	1,194,954 \$	1,230,803 \$	1,267,727 \$	1,305,759 \$	1,344,932 \$	1,385,280 \$	1,426,838 \$	1,469,643 \$	1,513,733 \$	1,559,145 \$	1,605,919
Water Cost			\$ 16,518 \$	17,013 \$	17,524 \$	18,049 \$	18,591 \$	19,149 \$	19,723 \$	20,315 \$	20,924 \$	21,552 \$	22,198 \$	22,864 \$	23,550 \$	24,257 \$	24,985 \$	25,734 \$	26,506 \$	27,301 \$	28,120 \$	28,964
Sewage Cost			\$ 9,821 \$	10,116 \$	10,419 \$	10,732 \$	11,054 \$	11,386 \$	11,727 \$	12,079 \$	12,441 \$	12,815 \$	13,199 \$	13,595 \$	14,003 \$	14,423 \$	14,856 \$	15,301 \$	15,760 \$	16,233 \$	16,720 \$	17,222
Misc Variable Costs			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Maintenance Cost			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Annual Operations Cost			\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Total Annual Costs	\$	3,669,000	\$ 942,172 \$	970,437 \$	999,551 \$	1,029,537 \$	1,060,423 \$	1,092,236 \$	1,125,003 \$	1,158,753 \$	1,193,516 \$	1,229,321 \$	1,266,201 \$	1,304,187 \$	1,343,312 \$	1,383,612 \$	1,425,120 \$	1,467,874 \$	1,511,910 \$	1,557,267 \$	1,603,985 \$	1,652,105
Total Alliaal Costs	Ψ	0,000,000											0.07 6	0.07 6	0.00					0.00 0	004 6	0.35
Calculated CHW Cost (per ton-hr)	¥	0,000,000	\$ 0.20 \$	0.20 \$	0.21 \$	0.22 \$	0.22 \$	0.23 \$	0.24 \$	0.24 \$	0.25 \$	0.26 \$	0.27 \$	0.27 \$	0.28 \$	0.29 \$	0.30 \$	0.31 \$	0.32 \$	0.33 \$	0.34 \$	0.35
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost	·			0.20 \$	0.21 \$	0.22 \$	0.22 \$	0.23 \$	6 0.24 \$	0.24 \$	0.25 \$	0.26 \$	0.27 \$	0.27 \$	0.28 \$	0.29 \$	0.30 \$	0.31 \$	0.32 \$	0.33 \$	0.34 \$	0.35
Calculated CHW Cost (per ton-hr)	\$			0.20 \$	0.21 \$	0.22 \$	·	0.23 \$	7	0.24 \$	0.25 \$	0.26 \$				0.29 \$			0.32 \$		0.34 \$	
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used:	·	16,751,456		0.20 \$	0.21 \$ 3 - \$	0.22 \$ 4 - \$	·	0.23 \$ 6 - \$	7 5 - \$	0.24 \$ 8 - \$	0.25 \$ 9 - \$		0.27 \$	12	13		0.30 \$ 15 - \$	0.31 \$	·	0.33 \$ 18 - \$		20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment	\$ Year:	16,751,456		0.20 \$ 2 - \$	0.21 \$ 3 - \$ - \$	0.22 \$ 4 - \$ - \$	·	0.23 \$ 6 - \$	7 - \$	0.24 \$ 8 - \$ - \$	9 - \$ - \$								·			
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment	\$ Year:	16,751,456		0.20 \$ 2 - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$	0.22 \$ 4 - \$ - \$	·	0.23 \$ 6 - \$ - \$	7 - \$ - \$ - \$ - \$	0.24 \$ 8 - \$ - \$ - \$	9 - \$ - \$								·			
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$	·	0.23 \$ 6 - \$ - \$ - \$	7 7 7 7 8 - \$ 8 - \$	8 - \$ - \$ - \$	9 - \$ - \$ - \$								·			
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$	·	0.23 \$ 6 - \$ - \$ - \$ - \$	7 7 5 - \$ 5	8 - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$								·		19 - \$ - \$	
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$	·	0.23 \$ 6 - \$ - \$ - \$ - \$	7 7 5 - \$ 5	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	9 - \$ - \$ - \$ - \$								·		19 - \$ - \$	
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	0.23 \$ 6	7 7 . \$. \$. \$. \$. \$. \$. \$. \$. \$	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	9 - \$ - \$ - \$ - \$ - \$ - \$								·		19 - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment	\$ Year:	16,751,456	\$ 0.20 \$ 1	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$	7 7 5 - \$ 5	8 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	9				13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service	\$ Year:	16,751,456	1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Interest Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost	\$ Year:	16,751,456	\$ 0.20 \$ 1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.21 \$ 3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Debt Service Annual Energy Cost Water Cost	\$ Year:	16,751,456	1	0.20 \$ 2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost	\$ Year:	16,751,456	1	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs	\$ Year:	16,751,456	1 S S S S S S S S S S S S S S S S S S S	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	0.22 \$ 4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7	8 - \$ - \$ - \$ - \$ - \$ - \$	9 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -				17 - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs Annual Maintenance Cost	\$ Year:	16,751,456	1 S - S S - S S - S S - S S - S S S - S S S - S S S - S S S S - S S S S - S S S S - S	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	7	8 - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ -	9 - \$ \$ 6 - \$		111 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$		13 - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ - \$ \$ - \$ - \$ \$ - \$	14 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	15 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20
Calculated CHW Cost (per ton-hr) 25-year Present Value Cost Case 4 - not used: Plant Capital Investment Plant Principal Payment Plant Interest Payment Plant Debt Service Distribution Capital Investment Distribution Principal Payment Distribution Interest Payment Distribution Debt Service Annual Energy Cost Water Cost Sewage Cost Misc Variable Costs	\$ Year:	16,751,456	1	2 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	3	4 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	·	6 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	7 :	8	9		111 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	12 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	13	14 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	15 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	16 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	17 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	18 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	19 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	20

25-year Present Value Cost

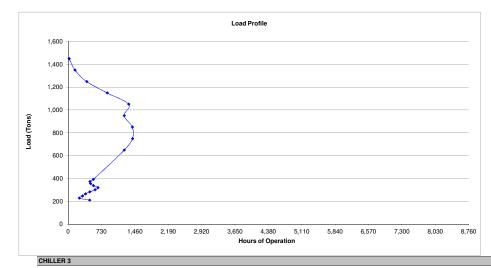
Capital Cost Calculation

Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 1	Central plant with constant speed chiller							
42 °F Supp	ly, 12 ℉ DT							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$6,810,000	\$	6,810,000	85.4%
	Phase 2		1	ls	\$600,000	\$	600,000	7.5%
	Phase 3		1	ls	\$600,000	\$	600,000	7.5%
	Rebate		1	ls	(\$34,575)	\$	(34,575)	
	ricbate	Total		13	(ψο+,στο)	\$	7,975,425	
		iotai				Ψ	1,313,423	100 /0
Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 2	Central Plant with magnetic bearing variable sp	eed chiller						
42 °F Supp	ly, 12 ℉ DT							
осрр	.,,							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$6,920,000	\$	6,920,000	84.2%
	Phase 2		1	ls	\$710,000	\$	710,000	8.6%
	Phase 3		1	ls	\$710,000	\$	710,000	8.6%
	Rebate		1	ls	(\$120,675)	\$	(120,675)	
	ricbate	Total	•	13	(ψ120,070)	\$	8,219,325	
		Total				Ψ	0,210,020	10170
Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 3	Central Plant with absorption chillers							
	ly, 12 ℉ DT							
42 i Gupp	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,							
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	Phase 1		1	ls	\$780,000	\$	780,000	27.5%
	Phase 2		1	ls	\$1,030,000	\$	1,030,000	36.3%
	Phase 3		1	ls	\$1,030,000	\$	1,030,000	36.3%
	Thase 3			15	φ1,030,000	\$	1,030,000	30.5 /6
		Total				φ \$	2,840,000	100%
		iotai				Ψ	2,040,000	100 /0
Capital Cos	st (Refer to Detailed Cost Estimate for Break Down)							
Case 4	not used							
0								
•								
	Description		Quantity	Unit	Unit Cost		Subtotal	Percent of Total
	•		•			Φ.		
	Chilled		1	ea	\$0 #0	\$	-	#DIV/0!
	Chilled water pumps		1	ea	\$ 0	\$	-	#DIV/0!
	AHU Coils		1	ea	\$0	\$	-	#DIV/0!
								((P.1) (A.1
		Total				\$	-	#DIV/0!

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			

LOAD SUMMARY													
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)					
95=>99	1,449	14	4	6,712	0	11,592	69,552	11,592					
90=>94	1,350	14	25	37,598	0	67,500	405,000	67,500					
85=>89	1,248	12	68	90,635	0	169,728	1,018,368	169,728					
80=>84	1,149	11	143	168,644	0	327,465	1,964,790	327,465					
75=>79	1,050	11	221	233,906	0	464,100	2,784,600	464,100					
70=>74	950	10	204	296,028	0	582,350	2,329,400	388,233					
65=>69	850	9	234	289,598	0	596,700	2,386,800	397,800					
60=>64	748	7	235	242,934	0	526,592	2,106,368	351,061					
55=>59	648	6	205	174,003	0	397,872	1,591,488	265,248					
50=>54	391	4	92	91,009	0	215,832	431,664	71,944					
45=>49	372	4	80	70,889	0	177,816	355,632	59,272					
40=>44	354	4	81	67,695	0	172,398	344,796	57,466					
35=>39	336	3	92	72,643	0	185,472	370,944	61,824					
30=>34	318	3	109	81,539	0	207,654	415,308	69,218					
25=>29	300	3	99	69,797	0	177,300	354,600	59,100					
20=>24	282	3	79	53,134	0	133,950	267,900	44,650					
15=>19	264	3	63	40,089	0	100,056	200,112	33,352					
10=>14	245	2	52	31,262	0	76,685	153,370	25,562					
5=>9	227	2	40	22,889	0	54,934	109,868	18,311					
0=>4	209	2	78	42,108	0	98,230	196,460	32,743					
Total/Avg				2,183,112	0	4,744,226	17,857,020	2,976,170					


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	391	0.420	164	552	90,649	0	0.0	0.0	215,832
45=>49	372	0.397	148	478	70,593	0	0.0	0.0	177,816
40=>44	354	0.391	138	487	67,408	0	0.0	0.0	172,398
35=>39	336	0.390	131	552	72,334	0	0.0	0.0	185,472
30=>34	318	0.391	124	653	81,193	0	0.0	0.0	207,654
25=>29	300	0.392	118	591	69,502	0	0.0	0.0	177,300
20=>24	282	0.395	111	475	52,910	0	0.0	0.0	133,950
15=>19	264	0.399	105	379	39,922	0	0.0	0.0	100,056
10=>14	245	0.406	99	313	31,134	0	0.0	0.0	76,685
5=>9	227	0.415	94	242	22,798	0	0.0	0.0	54,934
0=>4	209	0.427	89	470	41,944	0	0.0	0.0	98,230
otal/Ava		0.433	3,195	8,746	1.315.594	0.000	0.0	0.0	2.998.879

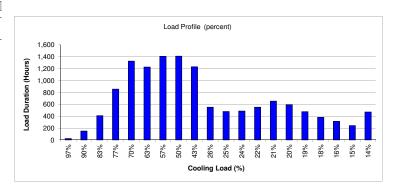
CHILLER 4									
Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
Takal/Assa		#DIV/01		•	•		0.0	0.0	

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	475	0.505	240	613	147,043	0	0.0	0.0	291,175
65=>69	425	0.482	205	702	143,805	0	0.0	0.0	298,350
60=>64	374	0.458	171	704	120,590	0	0.0	0.0	263,296
55=>59	324	0.434	141	614	86,338	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.480	1,872	3,554	675,207		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Fotal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.574	277	8	2,218	0	0.0	0.0	3,864
90=>94	450	0.552	248	50	12,420	0	0.0	0.0	22,500
85=>89	416	0.529	220	136	29,929	0	0.0	0.0	56,576
80=>84	383	0.510	195	285	55,669	0	0.0	0.0	109,155
75=>79	350	0.499	175	442	77,195	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.510	921	921	177,431		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0


Load Profile
Case 1 Central plant with constant speed chiller

PEAK ELECTRICAL DEMAND (including transformer losses)											
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
Docombor	60 - 64	100	180	0	ñ	ñ	n	68	41	60	E97

CHILLER LOAD PROFILE									
Femperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load	
95=>99	483	483	483	0	0	0	1,449	979	
90=>94	450	450	450	0	0	0	1,350	909	
85=>89	416	416	416	0	0	0	1,248	831	
80=>84	383	383	383	0	0	0	1,149	77'	
75=>79	350	350	350	0	0	0	1,050	701	
70=>74	475	475	0	0	0	0	950	63	
65=>69	425	425	0	0	0	0	850	57	
60=>64	374	374	0	0	0	0	748	50	
55=>59	324	324	0	0	0	0	648	43	
50=>54	391	0	0	0	0	0	391	26	
45=>49	372	0	0	0	0	0	372	25	
40=>44	354	0	0	0	0	0	354	24	
35=>39	336	0	0	0	0	0	336	22	
30=>34	318	0	0	0	0	0	318	21	
25=>29	300	0	0	0	0	0	300	20	
20=>24	282	0	0	0	0	0	282	19	
15=>19	264	0	0	0	0	0	264	18	
10=>14	245	0	0	0	0	0	245	16	
5=>9	227	0	0	0	0	0	227	15	
0=>4	209	0	0	0	0	0	209	14	
Peak	483	483	483	0	0	0	1,449		

		CHILLER	EFFICIENCY (E	LECTRIC)		
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.574	0.574	0.574	0.000	0.000	0.000
90=>94	0.552	0.552	0.552	0.000	0.000	0.000
85=>89	0.529	0.529	0.529	0.000	0.000	0.000
80=>84	0.510	0.510	0.510	0.000	0.000	0.000
75=>79	0.499	0.499	0.499	0.000	0.000	0.000
70=>74	0.505	0.505	0.000	0.000	0.000	0.000
65=>69	0.482	0.482	0.000	0.000	0.000	0.000
60=>64	0.458	0.458	0.000	0.000	0.000	0.000
55=>59	0.434	0.434	0.000	0.000	0.000	0.000
50=>54	0.420	0.000	0.000	0.000	0.000	0.000
45=>49	0.397	0.000	0.000	0.000	0.000	0.000
40=>44	0.391	0.000	0.000	0.000	0.000	0.000
35=>39	0.390	0.000	0.000	0.000	0.000	0.000
30=>34	0.391	0.000	0.000	0.000	0.000	0.000
25=>29	0.392	0.000	0.000	0.000	0.000	0.000
20=>24	0.395	0.000	0.000	0.000	0.000	0.000
15=>19	0.399	0.000	0.000	0.000	0.000	0.000
10=>14	0.406	0.000	0.000	0.000	0.000	0.000
5=>9	0.415	0.000	0.000	0.000	0.000	0.000
0=>4	0.427	0.000	0.000	0.000	0.000	0.000
Average	0.433	0.480	0.510	0.000	0.000	0.000

		Cl	HILLER OPERA	TIONAL HOUR	S		
Temperature Bin (°F)	Chiller 1 Operational Hours	Chiller 2 Operational Hours	Chiller 3 Operational Hours	Chiller 4 Operational Hours	Chiller 5 Operational Hours	Chiller 6 Operational Hours	Cumulative Operationa Hours
95=>99	8	8	8	0	0	0	24
90=>94	50	50	50	0	0	0	150
85=>89	136	136	136	0	0	0	408
80=>84	285	285	285	0	0	0	855
75=>79	442	442	442	0	0	0	1,326
70=>74	613	613	0	0	0	0	1,226
65=>69	702	702	0	0	0	0	1,404
60=>64	704	704	0	0	0	0	1,408
55=>59	614	614	0	0	0	0	1,228
50=>54	552	0	0	0	0	0	552
45=>49	478	0	0	0	0	0	478
40=>44	487	0	0	0	0	0	487
35=>39	552	0	0	0	0	0	552
30=>34	653	0	0	0	0	0	653
25=>29	591	0	0	0	0	0	591
20=>24	475	0	0	0	0	0	475
15=>19	379	0	0	0	0	0	379
10=>14	313	0	0	0	0	0	313
5=>9	242	0	0	0	0	0	242
0=>4	470	0	0	0	0	0	470
Total	8,746	3,554	921	0	0	0	

		CHILLE	R EFFICIENCY	(STEAM)		
T D'	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	OL: II C D
Temperature Bin	Demand	Demand	Demand	Demand	Demand	Chiller 6 Demand
(°F)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)
95=>99	0.000	0.000	0.000	0.000	0.000	0.000
90=>94	0.000	0.000	0.000	0.000	0.000	0.000
85=>89	0.000	0.000	0.000	0.000	0.000	0.000
80=>84	0.000	0.000	0.000	0.000	0.000	0.000
75=>79	0.000	0.000	0.000	0.000	0.000	0.000
70=>74	0.000	0.000	0.000	0.000	0.000	0.000
65=>69	0.000	0.000	0.000	0.000	0.000	0.000
60=>64	0.000	0.000	0.000	0.000	0.000	0.000
55=>59	0.000	0.000	0.000	0.000	0.000	0.000
50=>54	0.000	0.000	0.000	0.000	0.000	0.000
45=>49	0.000	0.000	0.000	0.000	0.000	0.000
40=>44	0.000	0.000	0.000	0.000	0.000	0.000
35=>39	0.000	0.000	0.000	0.000	0.000	0.000
30=>34	0.000	0.000	0.000	0.000	0.000	0.000
25=>29	0.000	0.000	0.000	0.000	0.000	0.000
20=>24	0.000	0.000	0.000	0.000	0.000	0.000
15=>19	0.000	0.000	0.000	0.000	0.000	0.000
10=>14	0.000	0.000	0.000	0.000	0.000	0.000
5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0=>4	0.000	0.000	0.000	0.000	0.000	0.000
Average	0.000	0.000	0.000	0.000	0.000	0.000

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data								
Pump	Horsepower	Efficiency	Switch Poir					
PCHWP 1	39.96	92%						
PCHWP 2	39.96	92%						
PCHWP 3	39.96	92%						
PCHWP 4	0	92%						
PCHWP 5	0	92%						
PCHWP 6	0	92%						

	PCHWP Demand (kW)								
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)		
95=>99	32	32	32	0	0	0	97		
90=>94	32	32	32	0	0	0	97		
85=>89	32	32	32	0	0	0	97		
80=>84	32	32	32	0	0	0	97		
75=>79	32	32	32	0	0	0	97		
70=>74	32	32	0	0	0	0	65		
65=>69	32	32	0	0	0	0	65		
60=>64	32	32	0	0	0	0	65		
55=>59	32	32	0	0	0	0	65		
50=>54	32	0	0	0	0	0	32		
45=>49	32	0	0	0	0	0	32		
40=>44	32	0	0	0	0	0	32		
35=>39	32	0	0	0	0	0	32		
30=>34	32	0	0	0	0	0	32		
25=>29	32	0	0	0	0	0	32		
20=>24	32	0	0	0	0	0	32		
15=>19	32	0	0	0	0	0	32		
10=>14	32	0	0	0	0	0	32		
5=>9	32	0	0	0	0	0	32		
0=>4	32	0	0	0	0	0	32		
Γotal/Avg	648	292	162	0	0	0	1,102		

			PCHWP Energ	y Usage (kWh)			
Temperature	PCHWP 1	PCHWP 2	PCHWP 3	PCHWP 4	PCHWP 5	PCHWP 6	Total PCHWP
Bin (°F)	Energy Usage (kWh)	Energy Usage (kWh)	Energy Usage (kWh)		Energy Usage	Energy Usage	Energy Usage
95=>99	(KWII) 259	(KWII) 259	(KWII) 259	(kWh)	(kWh)	(kWh)	(kWh) 778
90=>94	1,620	1,620	1,620	0	0	U O	4,860
	4.406			0	0	0	
85=>89			4,406 9,234	0	0	0	13,219
80=>84	9,234	9,234		0	0	0	27,70
75=>79	14,321	14,321	14,321	0	0	0	42,96
70=>74	19,861	19,861	0	0	0	0	39,72
65=>69	22,745		0	0	0	0	45,49
60=>64	22,810		0	0	0	0	45,61
55=>59	19,894		0	0	0	0	39,78
50=>54	17,885	0	0	0	0	0	17,88
45=>49	15,487	0	0	0	0	0	15,48
40=>44	15,779	0	0	0	0	0	15,77
35=>39	17,885	0	0	0	0	0	17,88
30=>34	21,157	0	0	0	0	0	21,15
25=>29	19,148	0	0	0	0	0	19,14
20=>24	15,390	0	0	0	0	0	15,39
15=>19	12,280	0	0	0	0	0	12,28
10=>14	10,141	0	0	0	0	0	10,14
5=>9	7,841	0	0	0	0	0	7,84
0=>4	15,228	0	0	0	0	0	15.22
Total/Avg	283,370	115,150	29,840	Ó	0	0	428,36

Condenser Water Pump (CWP)

CWP Energy Data									
Pump	Horsepower	Efficiency	Switch Point						
CWP 1	24.35	92%	1						
CWP 2	24.35	92%	1						
CWP3	24.35	92%	1						
CWP 4	0	92%	1						
CWP 5	0	92%	1						
CWP 6	0	92%	1						

Temperature	CWP 1	CWP 2	CWP 3	CWP 4	CWP 5	CWP 6	Total CWP
Bin	Demand						
(°F)	(kW)						
95=>99	20	20	20	0	0	0	5
90=>94	20	20	20	0	0	0	59
85=>89	20	20	20	0	0	0	59
80=>84	20	20	20	0	0	0	59
75=>79	20	20	20	0	0	0	59
70=>74	20	20	0	0	0	0	39
65=>69	20	20	0	0	0	0	39
60=>64	20	20	0	0	0	0	39
55=>59	20	20	0	0	0	0	39
50=>54	20	0	0	0	0	0	20
45=>49	20	0	0	0	0	0	20
40=>44	20	0	0	0	0	0	20
35=>39	20	0	0	0	0	0	20
30=>34	20	0	0	0	0	0	20
25=>29	20	0	0	0	0	0	20
20=>24	20	0	0	0	0	0	20
15=>19	20	0	0	0	0	0	20
10=>14	20	0	0	0	0	0	20
5=>9	20	0	0	0	0	0	20
0=>4	20	0	0	0	0	0	20
otal/Avg	394	177	99	0	0	0	670

			CWP Energy	Usage (kWh)			
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	158				0	0	473
90=>94	985	985	985	0	0	0	2,955
85=>89	2,679	2,679	2,679	0	0	0	8,038
80=>84	5,615	5,615	5,615	0	0	0	16,844
75=>79	8,707	8,707	8,707	0	0	0	26,122
70=>74	12,076	12,076	0	0	0	0	24,152
65=>69	13,829	13,829	0	0	0	0	27,659
60=>64	13,869	13,869	0	0	0	0	27,738
55=>59	12,096	12,096	0	0	0	0	24,192
50=>54	10,874	0	0	0	0	0	10,874
45=>49	9,417	0	0	0	0	0	9,417
40=>44	9,594	0	0	0	0	0	9,594
35=>39	10,874	0	0	0	0	0	10,874
30=>34	12,864	0	0	0	0	0	12,864
25=>29	11,643	0	0	0	0	0	11,643
20=>24	9,358	0	0	0	0	0	9,358
15=>19	7,466	0	0	0	0	0	7,466
10=>14	6,166	0	0	0	0	0	6,166
5=>9	4,767	0	0	0	0	0	4,767
0=>4	9,259	0	0	0	0	0	9,259
Total/Avg	172,296	70,014	18,144	0	0	0	260,454

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data									
Pump	Horsepower	Efficiency	Switch Point						
CT 1	40	92%	1						
CT 2	40	92%	1						
CT 3	40	92%	1						
CT 4	0	92%	1						
CT 5	0	92%	1						
CT 6	0	92%	1						

			Cooling Tower	Demand (kW)			
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	0	0	0	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

		Co	oling Tower En	ergy Usage (kV	Vh)		
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)
95=>99	259	259	259	0	0	0	77
90=>94	1,620	1,620	1,620	0	0	0	4,860
85=>89	4,406	4,406	4,406	0	0	0	13,219
80=>84	9,234	9,234	9,234	0	0	0	27,70
75=>79	14,321	14,321	14,321	0	0	0	42,96
70=>74	19,861	19,861	0	0	0	0	39,72
65=>69	22,745	22,745	0	0	0	0	45,490
60=>64	22,810	22,810	0	0	0	0	45,619
55=>59	19,894	19,894	0	0	0	0	39,787
50=>54	17,885	0	0	0	0	0	17,88
45=>49	15,487	0	0	0	0	0	15,48
40=>44	15,779	0	0	0	0	0	15,779
35=>39	17,885	0	0	0	0	0	17,88
30=>34	21,157	0	0	0	0	0	21,15
25=>29	19,148	0	0	0	0	0	19,14
20=>24	15,390	0	0	0	0	0	15,390
15=>19	12,280	0	0	0	0	0	12,280
10=>14	10,141	0	0	0	0	0	10,141
5=>9	7,841	0	0	0	0	0	7,841
0=>4	15,228	0	0	0	0	0	15,228
Total/Ava	283,370	115,150	29.840	0	0	0	428,360

Air Handling Unit (AHU)

AHU Supply Fan Energy Data		
Coil Pressure drop	0	
Other Pressure drop	0	
Typical Airflow rate	0 (cfm
Fan Efficiency	70%	
Supply Horsepower	0.0	
# of fans	1	
Efficiency	92%	
Switch Point	30%	

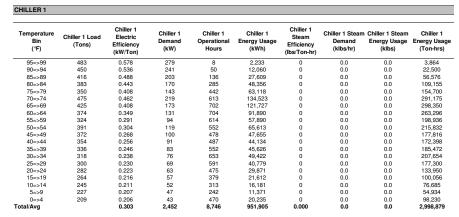
Coolir	ng Tower Deman	d (kW)		
Temperature Bin (°F)	Percent Load	AHU Demand (kW)		
95=>99	97%	0		
90=>94	90%	0		
85=>89	83%	0		
80=>84	77%	0		
75=>79	70%	0		
70=>74	63%	0		
65=>69	57%	0		
60=>64	50%	0		
55=>59	43%	0		
50=>54	26%	0		
45=>49	25%	0		
40=>44	24%	0		
35=>39	22%	0		
30=>34	21%	0		
25=>29	20%	0		
20=>24	19%	0		
15=>19	18%	0		
10=>14	16%	0		
5=>9	15%	0		
0=>4	14%	0		
Total/Ava		0		

AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Variable Cost

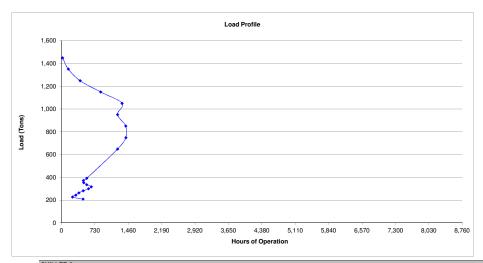
Case 1 Central plant with constant speed chiller


Input Data Summary													
Energy Charge Multiplier 1.00	Demand Charge First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge - On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000			Source am Rate (per klb V Rate (per ton-l			Per kLB Per Ton-hr		
	Demand Charge First 200-kW Next 800-kW Over 1000 kW	**************************************		Energy Charge - On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000				y cost)	\$3.30 0%	Per 1000 Gal Per 1000 Gal of Energy Cost	NOTUSES	
	On/Off Peak Spli On Peak Off Peak	it 70% 30%		Summer/Winter Summer Winter	Split 70% 30%		Natural Gas Other Stm Cost	ts			Per MMbtu Per MMbtu	NOT USED NOT USED	
Variable Cost Calculation													
Energy Costs	January	February	March	April	May	June	July	August	September	October	November	December	Annual
CHW Usage (Ton-Hrs)												***	4,744,226
Purchased CHW Cost												4%	\$0
Steam Usage Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage Chiller Energy Usage (kWh): Chilled Water Pump Energy Usage (kWh): Condenser Water Pump Energy Usage (kWh): Cooling Tower Energy Usage (kWh): AHU Supply Fan Energy Usage (kWh):													2,183,112 428,360 260,454 428,360 0
Total Energy Usage													3,300,287
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh Off Peak Energy Usage - kWh													2,310,201 990,086 3,300,287
Demand Charge On Peak Energy Cost Off Peak Energy Cost EECR & AEP Cost	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013 \$121,540 \$52,088 \$0
Electricity Cost													\$347,641
Total Energy Cost													\$347,641
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage					·								2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cost)													\$0
Other Variable Costs													\$26,339

Load Profile Case 1 Central plant with constant speed chiller

General Assumptions					
Transformer Losses	5%		Peak Make-up Water:	300	gpm
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm
Peak Cooling Load	1,500	tons			

			L	OAD SUMMAR	1			
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	6,758	0	11,592	69,552	11,592
90=>94	1,350	14	25	36,518	0	67,500	405,000	67,500
85=>89	1,248	12	68	83,676	0	169,728	1,018,368	169,728
80=>84	1,149	11	143	146,704	0	327,465	1,964,790	327,465
75=>79	1,050	11	221	191,673	0	464,100	2,784,600	464,100
70=>74	950	10	204	270,987	0	582,350	2,329,400	388,233
65=>69	850	9	234	245,443	0	596,700	2,386,800	397,800
60=>64	748	7	235	185,536	0	526,592	2,106,368	351,061
55=>59	648	6	205	117,107	0	397,872	1,591,488	265,248
50=>54	391	4	92	65,973	0	215,832	431,664	71,944
45=>49	372	4	80	47,951	0	177,816	355,632	59,272
40=>44	354	4	81	44,421	0	172,398	344,796	57,466
35=>39	336	3	92	45,935	0	185,472	370,944	61,824
30=>34	318	3	109	49,768	0	207,654	415,308	69,218
25=>29	300	3	99	41,075	0	177,300	354,600	59,100
20=>24	282	3	79	30,094	0	133,950	267,900	44,650
15=>19	264	3	63	21,779	0	100,056	200,112	33,352
10=>14	245	2	52	16,308	0	76,685	153,370	25,562
5=>9	227	2	40	11,463	0	54,934	109,868	18,311
0=>4	209	2	78	20,399	0	98,230	196,460	32,743
Total/Avg				1,679,567	0	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	Ó	0	Ó	0.0	0.0	Ō
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	ō	0.000	ō	ō	Ö	ō	0.0	0.0	ō
0=>4	ō	0.000	ō	ō	Ö		0.0	0.0	ō
Γotal/Δvα		#DIV/0!	n	n	n		0.0	0.0	'n

Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	475	0.462	219	613	134,523	0	0.0	0.0	291,175
65=>69	425	0.408	173	702	121,727	0	0.0	0.0	298,350
60=>64	374	0.349	131	704	91,890	0	0.0	0.0	263,296
55=>59	324	0.291	94	614	57,890	0	0.0	0.0	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.393	1,654	3,554	559,406		0.0	0.0	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.578	279	8	2,233	0	0.0	0.0	3,864
90=>94	450	0.536	241	50	12,060	0	0.0	0.0	22,500
85=>89	416	0.488	203	136	27,609	0	0.0	0.0	56,576
80=>84	383	0.443	170	285	48,356	0	0.0	0.0	109,155
75=>79	350	0.408	143	442	63,118	0	0.0	0.0	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.439	921	921	153,376		0.0	0.0	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Load Profile
Case 1 Central plant with constant speed chiller

Chiller 1 Operational Hours

Temperature
Bin
('\$F]
95=>99
90=>94
85=>89
80=>84
75=>79
70=>74
65=>69
60=>64
55=>59
40=>44
55=>99
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10=>14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
10==14
1

Chiller 2 Operational

Chiller 3 Operational

			ı	PEAK ELECTRI	CAL DEMAND	(including tran	sformer losses	;)			
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
Docombor	60 - 64	100	100	0	0	0	0	60	41	60	E97

			CHILL	ER LOAD PRO	FILE			
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load
95=>99	483	483	483	0	0	0	1,449	97%
90=>94	450	450	450	0	0	0	1,350	90%
85=>89	416	416	416	0	0	0	1,248	83%
80=>84	383	383	383	0	0	0	1,149	77%
75=>79	350	350	350	0	0	0	1,050	70%
70=>74	475	475	0	0	0	0	950	63%
65=>69	425	425	0	0	0	0	850	579
60=>64	374	374	0	0	0	0	748	509
55=>59	324	324	0	0	0	0	648	439
50=>54	391	0	0	0	0	0	391	269
45=>49	372	0	0	0	0	0	372	259
40=>44	354	0	0	0	0	0	354	249
35=>39	336	0	0	0	0	0	336	229
30=>34	318	0	0	0	0	0	318	219
25=>29	300	0	0	0	0	0	300	209
20=>24	282	0	0	0	0	0	282	199
15=>19	264	0	0	0	0	0	264	189
10=>14	245	0	0	0	0	0	245	169
5=>9	227	0	0	0	0	0	227	159
0=>4	209	0	0	0	0	0	209	149
Peak	483	483	483	0	0	0	1,449	

		CHILLER	EFFICIENCY (E	LECTRIC)		
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.578	0.578	0.578	0.000	0.000	0.000
90=>94	0.536	0.536	0.536	0.000	0.000	0.000
85=>89	0.488	0.488	0.488	0.000	0.000	0.000
80=>84	0.443	0.443	0.443	0.000	0.000	0.000
75=>79	0.408	0.408	0.408	0.000	0.000	0.000
70=>74	0.462	0.462	0.000	0.000	0.000	0.000
65=>69	0.408	0.408	0.000	0.000	0.000	0.000
60=>64	0.349	0.349	0.000	0.000	0.000	0.000
55=>59	0.291	0.291	0.000	0.000	0.000	0.000
50=>54	0.304	0.000	0.000	0.000	0.000	0.000
45=>49	0.268	0.000	0.000	0.000	0.000	0.000
40=>44	0.256	0.000	0.000	0.000	0.000	0.000
35=>39	0.246	0.000	0.000	0.000	0.000	0.000
30=>34	0.238	0.000	0.000	0.000	0.000	0.000
25=>29	0.230	0.000	0.000	0.000	0.000	0.000
20=>24	0.223	0.000	0.000	0.000	0.000	0.000
15=>19	0.216	0.000	0.000	0.000	0.000	0.000
10=>14	0.211	0.000	0.000	0.000	0.000	0.000
5=>9	0.207	0.000	0.000	0.000	0.000	0.000
0=>4	0.206	0.000	0.000	0.000	0.000	0.000
Average	0.303	0.393	0.439	0.000	0.000	0.000

										Co	oling	Load	(%)				
		%26	%06	83%	77%	%02	%89	21%	20%	43%	26%	25%	24%	22%	21%	20%	19%
	0	_			, .			,	, .			, 💶		,			, .
ڎ	200		_	-	-	-	1	-	-	-	-	-	-	-	-	-	-
ad	400				▋	-	▋	-	┫	-	-	-	\blacksquare	-	-	▋	
Jura	600				1	-	1	-	┫	-	_				-		
ij	800					-	1	-	┫	-							
Ē	1,000					-	▋	-	┫	-							
Load Duration (Hours)	1,200					-		-	-								
<u>~</u>	1,400					_											
	1,600	1															
								Lo	oad F	Profile	e (per	cent)					

CHILLER	EFFICIENCY (E	LECTRIC)					CHILLE	R EFFICIENCY	(STEAM)		
Chiller 2 Efficiency (kW/ton)	Chiller 3 Efficiency (kW/ton)	Chiller 4 Efficiency (kW/ton)	Chiller 5 Efficiency (kW/ton)	Chiller 6 Efficiency (kW/ton)	Temperature Bin (°F)	Chiller 1 Demand (lb/ton)	Chiller 2 Demand (lb/ton)	Chiller 3 Demand (lb/ton)	Chiller 4 Demand (lb/ton)	Chiller 5 Demand (lb/ton)	Chiller 6 Demand (lb/ton)
0.578	0.578	0.000	0.000	0.000	95=>99	0.000	0.000	0.000	0.000	0.000	0.000
0.536	0.536	0.000	0.000	0.000	90=>94	0.000	0.000	0.000	0.000	0.000	0.000
0.488	0.488	0.000	0.000	0.000	85=>89	0.000	0.000	0.000	0.000	0.000	0.000
0.443	0.443	0.000	0.000	0.000	80=>84	0.000	0.000	0.000	0.000	0.000	0.000
0.408	0.408	0.000	0.000	0.000	75=>79	0.000	0.000	0.000	0.000	0.000	0.000
0.462	0.000	0.000	0.000	0.000	70=>74	0.000	0.000	0.000	0.000	0.000	0.000
0.408	0.000	0.000	0.000	0.000	65=>69	0.000	0.000	0.000	0.000	0.000	0.000
0.349	0.000	0.000	0.000	0.000	60=>64	0.000	0.000	0.000	0.000	0.000	0.000
0.291	0.000	0.000	0.000	0.000	55=>59	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	50=>54	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	45=>49	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	40=>44	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	35=>39	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	30=>34	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	25=>29	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	20=>24	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	15=>19	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	10=>14	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0=>4	0.000	0.000	0.000	0.000	0.000	0.000
0.393	0.439	0.000	0.000	0.000	Average	0.000	0.000	0.000	0.000	0.000	0.000

24482 | RCTC Chilled Water Study E-31 Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energ	gy Data		
Pump	Horsepower	Efficiency	Switch Poin
PCHWP 1	41.23	92%	
PCHWP 2	41.23	92%	
PCHWP 3	41.23	92%	
PCHWP 4	0	92%	
PCHWP 5	0	92%	
PCHWP 6	0	92%	

			PCHWP Dem	and (kW)			
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)
95=>99	33	33	33	0	0	0	100
90=>94	33	33	33	0	0	0	100
85=>89	33	33	33	0	0	0	100
80=>84	33	33	33	0	0	0	100
75=>79	33	33	33	0	0	0	100
70=>74	33	33	0	0	0	0	67
65=>69	33	33	0	0	0	0	67
60=>64	33	33	0	0	0	0	67
55=>59	33	33	0	0	0	0	67
50=>54	33	0	0	0	0	0	33
45=>49	33	0	0	0	0	0	33
40=>44	33	0	0	0	0	0	33
35=>39	33	0	0	0	0	0	33
30=>34	33	0	0	0	0	0	33
25=>29	33	0	0	0	0	0	33
20=>24	33	0	0	0	0	0	33
15=>19	33	0	0	0	0	0	33
10=>14	33	0	0	0	0	0	33
5=>9	33	0	0	0	0	0	33
0=>4	33	0	0	0	0	0	33
Total/Avg	668	301	167	0	0	0	1,136

			PCHWP Energ	y Usage (kWh)			
Temperature Bin (°F)	PCHWP 1 Energy Usage (kWh)	PCHWP 2 Energy Usage (kWh)	PCHWP 3 Energy Usage (kWh)	PCHWP 4 Energy Usage (kWh)	PCHWP 5 Energy Usage (kWh)	PCHWP 6 Energy Usage (kWh)	Total PCHWP Energy Usage (kWh)
95=>99	267	267	267	0	0	0	80
90=>94	1.670		1.670	ō	ō	ō	5,01
85=>89	4,542	4,542	4,542	0	0	0	13,62
80=>84	9,519	9,519	9,519	0	0	0	28,55
75=>79	14,763		14,763	0	0	0	44,28
70=>74	20,474	20,474	0	0	0	0	40,94
65=>69	23,447	23,447	0	0	0	0	46,89
60=>64	23,514	23,514	0	0	0	0	47,02
55=>59	20,508	20,508	0	0	0	0	41,01
50=>54	18,437	0	0	0	0	0	18,43
45=>49	15,965	0	0	0	0	0	15,96
40=>44	16,266	0	0	0	0	0	16,26
35=>39	18,437	0	0	0	0	0	18,43
30=>34	21,810	0	0	0	0	0	21,81
25=>29	19,739	0	0	0	0	0	19,73
20=>24	15,865	0	0	0	0	0	15,86
15=>19	12,659	0	0	0	0	0	12,65
10=>14	10,454	0	0	0	0	0	10,45
5=>9	8,083	0	0	0	0	0	8,08
0=>4	15,698	0	0	0	0	0	15,69
Total/Avg	292,116	118,704	30,761	0	0	0	441,58

Condenser Water Pump (CWP)

CWP Energy	/ Data		
Pump	Horsepower	Efficiency	Switch Point
CWP 1	28.74	92%	1
CWP 2	28.74	92%	1
CWP3	28.74	92%	1
CWP 4	0	92%	1
CWP 5	0	92%	1
CWP 6	0	92%	1

24482 | RCTC Chilled Water Study

			CWP Dema	nd (kW)			
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)
95=>99	23	23	23	0	0	0	70
90=>94	23	23	23	0	0	0	70
85=>89	23	23	23	0	0	0	70
80=>84	23	23	23	0	0	0	70
75=>79	23	23	23	0	0	0	70
70=>74	23	23	0	0	0	0	47
65=>69	23	23	0	0	0	0	47
60=>64	23	23	0	0	0	0	47
55=>59	23	23	0	0	0	0	47
50=>54	23	0	0	0	0	0	23
45=>49	23	0	0	0	0	0	23
40=>44	23	0	0	0	0	0	23
35=>39	23	0	0	0	0	0	23
30=>34	23	0	0	0	0	0	23
25=>29	23	0	0	0	0	0	23
20=>24	23	0	0	0	0	0	23
15=>19	23	0	0	0	0	0	23
10=>14	23	0	0	0	0	0	23
5=>9	23	0	0	0	0	0	23
0=>4	23	0	0	0	0	0	23
otal/Avg	466	210	117	0	0	0	792

			CWP Energy	Usage (kWh)			
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)
95=>99	186	186	186	0	0	0	55
90=>94	1,165	1,165	1,165	0	0	0	3,49
85=>89	3,169	3,169	3,169	0	0	0	9,50
80=>84	6,641	6,641	6,641	0	0	0	19,92
75=>79	10,299	10,299	10,299	0	0	0	30,89
70=>74	14,283	14,283	0	0	0	0	28,56
65=>69	16,357	16,357	0	0	0	0	32,71
60=>64	16,403	16,403	0	0	0	0	32,80
55=>59	14,306	14,306	0	0	0	0	28,61
50=>54	12,862	0	0	0	0	0	12,86
45=>49	11,137	0	0	0	0	0	11,13
40=>44	11,347	0	0	0	0	0	11,34
35=>39	12,862	0	0	0	0	0	12,86
30=>34	15,215	0	0	0	0	0	15,21
25=>29	13,770	0	0	0	0	0	13,77
20=>24	11,068		0	0	0	0	11,06
15=>19	8,831	0	0	0	0	0	8,83
10=>14	7,293	0	0	0	0	0	7,29
5=>9	5,639		0	0	0	0	5,63
0=>4	10.951	0	0	0	0	0	10.95
Fotol/Ava	202 702	02 000	21 /50	'n	0	'n	300.04

E-32

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tow	ver Energy Data		
Pump	Horsepower	Efficiency	Switch Point
CT 1	40	92%	1
CT 2	40	92%	1
CT 3	40	92%	1
CT 4	0	92%	1
CT 5	0	92%	1
CT 6	0	92%	1

			Cooling Tower	Demand (kW)			
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)
95=>99	32	32	32	0	0	0	97
90=>94	32	32	32	0	0	0	97
85=>89	32	32	32	0	0	0	97
80=>84	32	32	32	0	0	0	97
75=>79	32	32	32	0	0	0	97
70=>74	32	32	0	0	0	0	65
65=>69	32	32	0	0	0	0	65
60=>64	32	32	0	0	0	0	65
55=>59	32	32	0	0	0	0	65
50=>54	32	0	0	0	0	0	32
45=>49	32	0	0	0	0	0	32
40=>44	32	0	0	0	0	0	32
35=>39	32	0	0	0	0	0	32
30=>34	32	0	0	0	0	0	32
25=>29	32	0	0	0	0	0	32
20=>24	32	0	0	0	0	0	32
15=>19	32	0	0	0	0	0	32
10=>14	32	0	0	0	0	0	32
5=>9	32	0	0	0	0	0	32
0=>4	32	0	0	0	0	0	32
Total/Avg	648	292	162	0	0	0	1,102

Cooling Tower Energy Usage (kWh)									
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)		
95=>99	259	259	259	0	0	0	77		
90=>94	1,620	1,620	1,620	0	0	0	4,860		
85=>89	4,406	4,406	4,406	0	0	0	13,219		
80=>84	9,234	9,234	9,234	0	0	0	27,70		
75=>79	14,321	14,321	14,321	0	0	0	42,96		
70=>74	19,861	19,861	0	0	0	0	39,72		
65=>69	22,745	22,745	0	0	0	0	45,490		
60=>64	22,810	22,810	0	0	0	0	45,619		
55=>59	19,894	19,894	0	0	0	0	39,787		
50=>54	17,885	0	0	0	0	0	17,88		
45=>49	15,487	0	0	0	0	0	15,48		
40=>44	15,779	0	0	0	0	0	15,779		
35=>39	17,885	0	0	0	0	0	17,885		
30=>34	21,157	0	0	0	0	0	21,15		
25=>29	19,148	0	0	0	0	0	19,14		
20=>24	15,390	0	0	0	0	0	15,390		
15=>19	12,280	0	0	0	0	0	12,28		
10=>14	10,141	0	0	0	0	0	10,141		
5=>9	7,841	0	0	0	0	0	7,84		
0=>4	15,228	0	0	0	0	0	15,228		
Tatal/Arra	000 070	115 150	00.040	•	•	•	400.00		

Air Handling Unit (AHU)

AHU Supply Fan Energy Data		
		-
Coil Pressure drop	0	
Other Pressure drop	0	
Typical Airflow rate	0	cfm
Fan Efficiency	70%	
Supply Horsepower	0.0	
# of fans	1	
Efficiency	92%	
Switch Point	30%	

Cooling Tower Demand (kW)								
Temperature Bin (°F)	Percent Load	AHU Demand (kW)						
95=>99	97%	0						
90=>94	90%	0						
85=>89	83%	0						
80=>84	77%	0						
75=>79	70%	0						
70=>74	63%	0						
65=>69	57%	0						
60=>64	50%	0						
55=>59	43%	0						
50=>54	26%	0						
45=>49	25%	0						
40=>44	24%	0						
35=>39	22%	0						
30=>34	21%	0						
25=>29	20%	0						
20=>24	19%	0						
15=>19	18%	0						
10=>14	16%	0						
5=>9	15%	0						
0=>4	14%	0						
Tatal/Arra								

AHU Energy	Usage (kWh)					
Temperature Bin (°F)	AHU Energy Usage (kWh)					
95=>99	0					
90=>94	0					
85=>89	0					
80=>84	0					
75=>79	0					
70=>74	0					
65=>69	0					
60=>64	0					
55=>59	0					
50=>54	0					
45=>49	0					
40=>44	0					
35=>39	0					
30=>34	0					
25=>29	0					
20=>24	0					
15=>19	0					
10=>14	0					
5=>9	0					
0=>4	0					
Total/Avg	0					

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Variable Cost

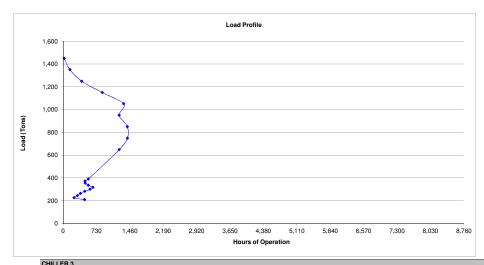
Case 2 Central Plant with magnetic bearing variable speed chiller

Input Data Summary													
Energy Charge Multiplier	Demand Charge-S First 200-kW	ummer \$16.46		Energy Charge - On Peak	Summer \$0.05261			Self Generated					
1.00	Next 800-kW Over 1000 kW	\$16.46 \$16.46		Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000		Purchased Stea Purchased CH\				Per kLB Per Ton-hr		
	Demand Charge-W First 200-kW Next 800-kW Over 1000 kW	\$16.46 \$16.46 \$16.46		Energy Charge - On Peak Off Peak Energy Cost Adj	\$0.05261 \$0.05261 \$0.00000		Water Rate (per Sewage Rate (per Miscellaneous	per 1,000 Gal)	gy cost)	\$3.30	Per 1000 Gal Per 1000 Gal of Energy Cost		
		ψ10.40					Natural Gas				Per MMbtu	NOT USED	
	On/Off Peak Split On Peak Off Peak	70% 30%		Summer/Winter Summer Winter	70% 30%		Other Stm Cos	ts		\$1.80	Per MMbtu	NOT USED	
Variable Cost Calculation	Oli Feak	30 /6		willei	30 /6								
Energy Costs	January	February	March	April	May	June	July	August	September	October	November	December	Annual
CHW Usage (Ton-Hrs)													4,744,226
Purchased CHW Cost												4%	\$0
Steam Usage Energy Usage (klb):													0
Steam Cost													\$0
Electricity Usage Chiller Energy Usage (kWh): Chilled Water Pump Energy Usage Condenser Water Pump Energy Usa Cooling Tower Energy Usage (kWh) AHU Supply Fan Energy Usage (kWh	age (kWh):												1,679,567 441,581 308,049 428,360 0
Total Energy Usage													2,857,558
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh Off Peak Energy Usage - kWh													2,000,291 857,267 2,857,558
Demand Charge On Peak Energy Cost Off Peak Energy Cost EECR & AEP Cost	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013 \$105,235 \$45,101 \$0
Electricity Cost													\$324,349
Total Energy Cost													\$324,349
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cost)													\$0
Other Variable Costs													\$26,339

Load Profile
Case 1 Central plant with constant speed chiller

General Assumptions	General Assumptions								
Transformer Losses	5%		Peak Make-up Water:	300	gpm				
Auxiliaries Electrical Demand	0.01	kW/ton	Peak Sewage:	50	gpm				
Peak Cooling Load	1,500	tons			-				

			L	OAD SUMMARY	1			
Temperature Bin (°F)	Total Load (Tons)	Auxiliaries Demand (kW)	Aux Operational Hours	Total Electrical Energy Usage (kWh)	Total Steam Energy Usage (klb)	Total Energy Usage (Ton-Hrs)	Water Usage (Gal)	Sewage Usage (Gal)
95=>99	1,449	14	4	58	107	11,592	69,552	11,592
90=>94	1,350	14	25	338	608	67,500	405,000	67,500
85=>89	1,248	12	68	849	1,485	169,728	1,018,368	169,728
80=>84	1,149	11	143	1,637	2,783	327,465	1,964,790	327,465
75=>79	1,050	11	221	2,321	3,857	464,100	2,784,600	464,100
70=>74	950	10	204	1,941	4,978	582,350	2,329,400	388,233
65=>69	850	9	234	1,989	4,935	596,700	2,386,800	397,800
60=>64	748	7	235	1,755	4,204	526,592	2,106,368	351,061
55=>59	648	6	205	1,326	3,069	397,872	1,591,488	265,248
50=>54	391	4	92	360	1,692	215,832	431,664	71,944
45=>49	372	4	80	296	1,371	177,816	355,632	59,272
40=>44	354	4	81	287	1,316	172,398	344,796	57,466
35=>39	336	3	92	309	1,404	185,472	370,944	61,824
30=>34	318	3	109	346	1,561	207,654	415,308	69,218
25=>29	300	3	99	296	1,324	177,300	354,600	59,100
20=>24	282	3	79	223	996	133,950	267,900	44,650
15=>19	264	3	63	167	741	100,056	200,112	33,352
10=>14	245	2	52	128	567	76,685	153,370	25,562
5=>9	227	2	40	92	406	54,934	109,868	18,311
0=>4	209	2	78	164	728	98,230	196,460	32,743
Total/Avg				14,881	38,133	4,744,226	17,857,020	2,976,170


All recommendations and/or advice presented in this document are Stanley Consultants' opinions of probable project conditions. Project conditions are based on the information and data sources that are readily available to us, input by the owner, and other reliable sources, all of which are believed to be accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 1 Electric Efficiency (kW/Ton)	Chiller 1 Demand (kW)	Chiller 1 Operational Hours	Chiller 1 Energy Usage (kWh)	Chiller 1 Steam Efficiency (lbs/Ton-hr)	Chiller 1 Steam Demand (klbs/hr)	Chiller 1 Steam Energy Usage (klbs)	Chiller 1 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	391	0.000	0	552	0	8	3.1	1,692.4	215,832
45=>49	372	0.000	0	478	0	8	2.9	1,371.4	177,816
40=>44	354	0.000	0	487	0	8	2.7	1,315.9	172,398
35=>39	336	0.000	0	552	0	8	2.5	1,404.3	185,472
30=>34	318	0.000	0	653	0	8	2.4	1,561.3	207,654
25=>29	300	0.000	0	591	0	7	2.2	1,324.4	177,300
20=>24	282	0.000	0	475	0	7	2.1	995.6	133,950
15=>19	264	0.000	0	379	0	7	2.0	740.9	100,056
10=>14	245	0.000	0	313	0	7	1.8	566.8	76,685
5=>9	227	0.000	0	242	0	7	1.7	406.1	54,934
0=>4	209	0.000	0	470	0	7	1.5	728.0	98,230
otal/Ava		0.000	'n	8 746	'n	7 817	56.3	23 646 7	2 008 870

Temperature Bin (°F)	Chiller 4 Load (Tons)	Chiller 4 Electric Efficiency (kW/Ton)	Chiller 4 Demand (kW)	Chiller 4 Operational Hours	Chiller 4 Energy Usage (kWh)	Chiller 4 Steam Efficiency (lbs/Ton-hr)	Chiller 4 Steam Demand (klbs/hr)	Chiller 4 Steam Energy Usage (klbs)	Chiller 4 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0		0.0	0.0	0
otal/Ava		#DIV/0!	0	0	0		0.0	0.0	0

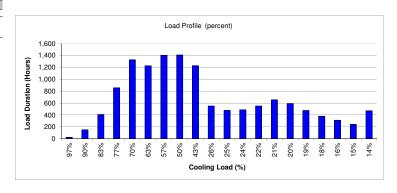
Temperature Bin (°F)	Chiller 2 Load (Tons)	Chiller 2 Electric Efficiency (kW/Ton)	Chiller 2 Demand (kW)	Chiller 2 Operational Hours	Chiller 2 Energy Usage (kWh)	Chiller 2 Steam Efficiency (klbs/Ton-hr)	Chiller 2 Steam Demand (klbs/hr)	Chiller 2 Steam Energy Usage (klbs)	Chiller 2 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	475	0.000	0	613	0	9	4.1	2,488.8	291,175
65=>69	425	0.000	0	702	0	8	3.5	2,467.5	298,350
60=>64	374	0.000	0	704	0	8	3.0	2,102.1	263,296
55=>59	324	0.000	0	614	0	8	2.5	1,534.4	198,936
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
Total/Avg		0.000	0	3,554	0		31.4	11,539.5	1,398,552

Temperature Bin (°F)	Chiller 5 Load (Tons)	Chiller 5 Electric Efficiency (kW/Ton)	Chiller 5 Demand (kW)	Chiller 5 Operational Hours	Chiller 5 Energy Usage (kWh)	Chiller 5 Steam Efficiency (lbs/Ton-hr)	Chiller 5 Steam Demand (klbs/hr)	Chiller 5 Steam Energy Usage (klbs)	
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Temperature Bin (°F)	Chiller 3 Load (Tons)	Chiller 3 Electric Efficiency (kW/Ton)	Chiller 3 Demand (kW)	Chiller 3 Operational Hours	Chiller 3 Energy Usage (kWh)	Chiller 3 Steam Efficiency (lbs/Ton-hr)	Chiller 3 Steam Demand (klbs/hr)	Chiller 3 Steam Energy Usage (klbs)	Chiller 3 Energy Usage (Ton-hrs)
95=>99	483	0.000	0	8	0	9	4.5	35.6	3,864
90=>94	450	0.000	0	50	0	9	4.1	202.6	22,500
85=>89	416	0.000	0	136	0	9	3.6	495.0	56,576
80=>84	383	0.000	0	285	0	8	3.3	927.7	109,155
75=>79	350	0.000	0	442	0	8	2.9	1,285.8	154,700
70=>74	0	0.000	0	0	0	0	0.0	0.0	Ö
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		0.000	921	921	Ō		18.3	2,946.7	346,795

Temperature Bin (°F)	Chiller 6 Load (Tons)	Chiller 6 Electric Efficiency (kW/Ton)	Chiller 6 Demand (kW)	Chiller 6 Operational Hours	Chiller 6 Energy Usage (kWh)	Chiller 6 Steam Efficiency (lbs/Ton-hr)	Chiller 6 Steam Demand (klbs/hr)	Chiller 6 Steam Energy Usage (klbs)	Chiller 6 Energy Usage (Ton-hrs)
95=>99	0	0.000	0	0	0	0	0.0	0.0	0
90=>94	0	0.000	0	0	0	0	0.0	0.0	0
85=>89	0	0.000	0	0	0	0	0.0	0.0	0
80=>84	0	0.000	0	0	0	0	0.0	0.0	0
75=>79	0	0.000	0	0	0	0	0.0	0.0	0
70=>74	0	0.000	0	0	0	0	0.0	0.0	0
65=>69	0	0.000	0	0	0	0	0.0	0.0	0
60=>64	0	0.000	0	0	0	0	0.0	0.0	0
55=>59	0	0.000	0	0	0	0	0.0	0.0	0
50=>54	0	0.000	0	0	0	0	0.0	0.0	0
45=>49	0	0.000	0	0	0	0	0.0	0.0	0
40=>44	0	0.000	0	0	0	0	0.0	0.0	0
35=>39	0	0.000	0	0	0	0	0.0	0.0	0
30=>34	0	0.000	0	0	0	0	0.0	0.0	0
25=>29	0	0.000	0	0	0	0	0.0	0.0	0
20=>24	0	0.000	0	0	0	0	0.0	0.0	0
15=>19	0	0.000	0	0	0	0	0.0	0.0	0
10=>14	0	0.000	0	0	0	0	0.0	0.0	0
5=>9	0	0.000	0	0	0	0	0.0	0.0	0
0=>4	0	0.000	0	0	0	0	0.0	0.0	0
otal/Avg		#DIV/0!	0	0	0		0.0	0.0	0

Load Profile
Case 1 Central plant with constant speed chiller


				PEAK ELECTRI	CAL DEMAND	(including tran	sformer losses	;)			
Month	High Bin	Chiller 1 Peak Demand (kW)	Chiller 2 Peak Demand (kW)	Chiller 3 Peak Demand (kW)	Chiller 4 Peak Demand (kW)	Chiller 5 Peak Demand (kW)	Chiller 6 Peak Demand (kW)	Total PCHWP Demand (kW)	Total CWP Demand (kW)	Total Cooling Tower Demand (kW)	Peak Demand (kW)
January	55=>59	148	148	0	0	0	0	68	41	68	473
February	60=>64	180	180	0	0	0	0	68	41	68	537
March	70=>74	252	252	0	0	0	0	68	41	68	681
April	85=>89	231	231	231	0	0	0	102	62	102	959
May	90=>94	261	261	261	0	0	0	102	62	102	1,049
June	95=>99	291	291	291	0	0	0	102	62	102	1,139
July	95=>99	291	291	291	0	0	0	102	62	102	1,139
August	95=>99	291	291	291	0	0	0	102	62	102	1,139
September	95=>99	291	291	291	0	0	0	102	62	102	1,139
October	85=>89	231	231	231	0	0	0	102	62	102	959
November	75=>79	183	183	183	0	0	0	102	62	102	816
D	00 04	400	100					-00		00	507

Chiller Input

			CHILL	ER LOAD PRO	FILE			
Temperature Bin (°F)	Chiller 1 Load (Tons)	Chiller 2 Load (Tons)	Chiller 3 Load (Tons)	Chiller 4 Load (Tons)	Chiller 5 Load (Tons)	Chiller 6 Load (Tons)	Total Load (Tons)	Percent Load
95=>99	483	483	483	0	0	0	1,449	97%
90=>94	450	450	450	0	0	0	1,350	90%
85=>89	416	416	416	0	0	0	1,248	83%
80=>84	383	383	383	0	0	0	1,149	77%
75=>79	350	350	350	0	0	0	1,050	70%
70=>74	475	475	0	0	0	0	950	63%
65=>69	425	425	0	0	0	0	850	57%
60=>64	374	374	0	0	0	0	748	50%
55=>59	324	324	0	0	0	0	648	43%
50=>54	391	0	0	0	0	0	391	26%
45=>49	372	0	0	0	0	0	372	25%
40=>44	354	0	0	0	0	0	354	24%
35=>39	336	0	0	0	0	0	336	22%
30=>34	318	0	0	0	0	0	318	21%
25=>29	300	0	0	0	0	0	300	20%
20=>24	282	0	0	0	0	0	282	19%
15=>19	264	0	0	0	0	0	264	18%
10=>14	245	0	0	0	0	0	245	16%
5=>9	227	0	0	0	0	0	227	15%
0=>4	209	0	0	0	0	0	209	14%
Peak	483	483	483	0	0	0	1,449	

			EFFICIENCY (E			
Temperature	Chiller 1	Chiller 2	Chiller 3	Chiller 4	Chiller 5	Chiller 6
Bin	Demand	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
(°F)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)	(kW/ton)
95=>99	0.000	0.000	0.000	0.000	0.000	0.000
90=>94	0.000	0.000	0.000	0.000	0.000	0.000
85=>89	0.000	0.000	0.000	0.000	0.000	0.000
80=>84	0.000	0.000	0.000	0.000	0.000	0.000
75=>79	0.000	0.000	0.000	0.000	0.000	0.000
70=>74	0.000	0.000	0.000	0.000	0.000	0.000
65=>69	0.000	0.000	0.000	0.000	0.000	0.000
60=>64	0.000	0.000	0.000	0.000	0.000	0.000
55=>59	0.000	0.000	0.000	0.000	0.000	0.000
50=>54	0.000	0.000	0.000	0.000	0.000	0.000
45=>49	0.000	0.000	0.000	0.000	0.000	0.000
40=>44	0.000	0.000	0.000	0.000	0.000	0.000
35=>39	0.000	0.000	0.000	0.000	0.000	0.000
30=>34	0.000	0.000	0.000	0.000	0.000	0.000
25=>29	0.000	0.000	0.000	0.000	0.000	0.000
20=>24	0.000	0.000	0.000	0.000	0.000	0.000
15=>19	0.000	0.000	0.000	0.000	0.000	0.000
10=>14	0.000	0.000	0.000	0.000	0.000	0.000
5=>9	0.000	0.000	0.000	0.000	0.000	0.000
0=>4	0.000	0.000	0.000	0.000	0.000	0.000
Average	0.000	0.000	0.000	0.000	0.000	0.000

		CI	HILLER OPERA	TIONAL HOUR	S		
Temperature Bin (°F)	Chiller 1 Operational Hours	Chiller 2 Operational Hours	Chiller 3 Operational Hours	Chiller 4 Operational Hours	Chiller 5 Operational Hours	Chiller 6 Operational Hours	Cumulative Operational Hours
95=>99	8	8	8	0	0	0	24
90=>94	50	50	50	0	0	0	150
85=>89	136	136	136	0	0	0	408
80=>84	285	285	285	0	0	0	855
75=>79	442	442	442	0	0	0	1,326
70=>74	613	613	0	0	0	0	1,226
65=>69	702	702	0	0	0	0	1,404
60=>64	704	704	0	0	0	0	1,408
55=>59	614	614	0	0	0	0	1,228
50=>54	552	0	0	0	0	0	552
45=>49	478	0	0	0	0	0	478
40=>44	487	0	0	0	0	0	487
35=>39	552	0	0	0	0	0	552
30=>34	653	0	0	0	0	0	653
25=>29	591	0	0	0	0	0	591
20=>24	475	0	0	0	0	0	475
15=>19	379	0	0	0	0	0	379
10=>14	313	0	0	0	0	0	313
5=>9	242	0	0	0	0	0	242
0=>4	470	0	0	0	0	0	470
Total	8,746	3,554	921	0	0	0	

CHILLER EFFICIENCY (STEAM)									
Temperature Bin (°F)	Chiller 1 Demand (lb/ton)	Chiller 2 Demand (lb/ton)	Chiller 3 Demand (lb/ton)	Chiller 4 Demand (lb/ton)	Chiller 5 Demand (lb/ton)	Chiller 6 Demand (lb/ton)			
95=>99	9.219	9.219	9.219	0.000	0.000	0.000			
90=>94	9.002	9.002	9.002	0.000	0.000	0.000			
85=>89	8.750	8.750	8.750	0.000	0.000	0.000			
80=>84	8.499	8.499	8.499	0.000	0.000	0.000			
75=>79	8.311	8.311	8.311	0.000	0.000	0.000			
70=>74	8.547	8.547	0.000	0.000	0.000	0.000			
65=>69	8.271	8.271	0.000	0.000	0.000	0.000			
60=>64	7.984	7.984	0.000	0.000	0.000	0.000			
55=>59	7.713	7.713	0.000	0.000	0.000	0.000			
50=>54	7.841	0.000	0.000	0.000	0.000	0.000			
45=>49	7.712	0.000	0.000	0.000	0.000	0.000			
40=>44	7.633	0.000	0.000	0.000	0.000	0.000			
35=>39	7.571	0.000	0.000	0.000	0.000	0.000			
30=>34	7.519	0.000	0.000	0.000	0.000	0.000			
25=>29	7.470	0.000	0.000	0.000	0.000	0.000			
20=>24	7.433	0.000	0.000	0.000	0.000	0.000			
15=>19	7.405	0.000	0.000	0.000	0.000	0.000			
10=>14	7.392	0.000	0.000	0.000	0.000	0.000			
5=>9	7.392	0.000	0.000	0.000	0.000	0.000			
0=>4	7.411	0.000	0.000	0.000	0.000	0.000			
Average	7.817	8.219	8.480	0.000	0.000	0.000			

24482 | RCTC Chilled Water Study E-36 Stanley Consultants

Load Profile
Case 1 Central plant with constant speed chiller

Primary Chilled Water Pump (PCHWP)

PCHWP Energy Data								
Pump	Horsepower	Efficiency	Switch Poin					
PCHWP 1	42.6	92%						
PCHWP 2	42.6	92%						
PCHWP 3	42.6	92%						
PCHWP 4	0	92%						
PCHWP 5	0	92%						
PCHWP 6	0	92%						

PCHWP Demand (kW)								
Temperature Bin (°F)	PCHWP 1 Demand (kW)	PCHWP 2 Demand (kW)	PCHWP 3 Demand (kW)	PCHWP 4 Demand (kW)	PCHWP 5 Demand (kW)	PCHWP 6 Demand (kW)	Total PCHWP Demand (kW)	
95=>99	35	35	35	0	0	0	104	
90=>94	35	35	35	0	0	0	104	
85=>89	35	35	35	0	0	0	104	
80=>84	35	35	35	0	0	0	104	
75=>79	35	35	35	0	0	0	104	
70=>74	35	35	0	0	0	0	69	
65=>69	35	35	0	0	0	0	69	
60=>64	35	35	0	0	0	0	69	
55=>59	35	35	0	0	0	0	69	
50=>54	35	0	0	0	0	0	35	
45=>49	35	0	0	0	0	0	35	
40=>44	35	0	0	0	0	0	35	
35=>39	35	0	0	0	0	0	35	
30=>34	35	0	0	0	0	0	35	
25=>29	35	0	0	0	0	0	35	
20=>24	35	0	0	0	0	0	35	
15=>19	35	0	0	0	0	0	35	
10=>14	35	0	0	0	0	0	35	
5=>9	35	0	0	0	0	0	35	
0=>4	35	0	0	0	0	0	35	
Γotal/Avg	690	311	173	0	0	0	1,173	

	PCHWP Energy Usage (kWh)								
Temperature Bin (°F)	PCHWP 1 Energy Usage (kWh)	PCHWP 2 Energy Usage (kWh)	PCHWP 3 Energy Usage (kWh)	PCHWP 4 Energy Usage (kWh)	PCHWP 5 Energy Usage (kWh)	PCHWP 6 Energy Usage (kWh)	Total PCHWP Energy Usage (kWh)		
95=>99	276	276	276	0	0	0	828		
90=>94	1,725	1,725	1,725	0	0	0	5,175		
85=>89	4,692	4,692	4,692	0	0	0	14,076		
80=>84	9,833	9,833	9,833	0	0	0	29,498		
75=>79	15,249	15,249	15,249	0	0	0	45,747		
70=>74	21,149	21,149	0	0	0	0	42,297		
65=>69	24,219	24,219	0	0	0	0	48,438		
60=>64	24,288	24,288	0	0	0	0	48,576		
55=>59	21,183	21,183	0	0	0	0	42,366		
50=>54	19,044	0	0	0	0	0	19,044		
45=>49	16,491	0	0	0	0	0	16,491		
40=>44	16,802	0	0	0	0	0	16,802		
35=>39	19,044	0	0	0	0	0	19,044		
30=>34	22,529	0	0	0	0	0	22,529		
25=>29	20,390	0	0	0	0	0	20,390		
20=>24	16,388	0	0	0	0	0	16,388		
15=>19	13,076	0	0	0	0	0	13,076		
10=>14	10,799	0	0	0	0	0	10,799		
5=>9	8,349	0	0	0	0	0	8,349		
0=>4	16,215	0	0	0	0	0	16,215		
Total/Avg	301,737	122,613	31,775	0	0	0	456,125		

Condenser Water Pump (CWP)

CWP Energy Data								
Pump	Horsepower	Efficiency	Switch Point					
CWP 1	28.74	92%	1					
CWP 2	28.74	92%	1					
CWP 3	28.74	92%	1					
CWP 4	0	92%	1					
CWP 5	0	92%	1					
CWP 6	0	92%	1					

CWP Demand (kW)							
Temperature Bin (°F)	CWP 1 Demand (kW)	CWP 2 Demand (kW)	CWP 3 Demand (kW)	CWP 4 Demand (kW)	CWP 5 Demand (kW)	CWP 6 Demand (kW)	Total CWP Demand (kW)
95=>99	23	23	23	0	0	0	70
90=>94	23	23	23	0	0	0	70
85=>89	23	23	23	0	0	0	70
80=>84	23	23	23	0	0	0	70
75=>79	23	23	23	0	0	0	70
70=>74	23	23	0	0	0	0	47
65=>69	23	23	0	0	0	0	47
60=>64	23	23	0	0	0	0	47
55=>59	23	23	0	0	0	0	47
50=>54	23	0	0	0	0	0	23
45=>49	23	0	0	0	0	0	23
40=>44	23	0	0	0	0	0	23
35=>39	23	0	0	0	0	0	23
30=>34	23	0	0	0	0	0	23
25=>29	23	0	0	0	0	0	23
20=>24	23	0	0	0	0	0	23
15=>19	23	0	0	0	0	0	23
10=>14	23	0	0	0	0	0	23
5=>9	23	0	0	0	0	0	23
0=>4	23	0	0	0	0	0	23
Total/Avg	466	210	117	0	0	0	792

CWP Energy Usage (kWh)								
Temperature Bin (°F)	CWP 1 Energy Usage (kWh)	CWP 2 Energy Usage (kWh)	CWP 3 Energy Usage (kWh)	CWP 4 Energy Usage (kWh)	CWP 5 Energy Usage (kWh)	CWP 6 Energy Usage (kWh)	Total CWP Energy Usage (kWh)	
95=>99	186	186	186	0	0	0	559	
90=>94	1,165	1,165	1,165	0	0	0	3,495	
85=>89	3,169	3,169	3,169	0	0	0	9,506	
80=>84	6,641	6,641	6,641	0	0	0	19,922	
75=>79	10,299	10,299	10,299	0	0	0	30,896	
70=>74	14,283	14,283	. 0	0	0	0	28,566	
65=>69	16,357	16,357	0	0	0	0	32,713	
60=>64	16,403	16,403	0	0	0	0	32,806	
55=>59	14,306	14,306	0	0	0	0	28,612	
50=>54	12,862	0	0	0	0	0	12,862	
45=>49	11,137	0	0	0	0	0	11,137	
40=>44	11,347	0	0	0	0	0	11,347	
35=>39	12,862	0	0	0	0	0	12,862	
30=>34	15,215	0	0	0	0	0	15,215	
25=>29	13,770	0	0	0	0	0	13,770	
20=>24	11,068	0	0	0	0	0	11,068	
15=>19	8,831	0	0	0	0	0	8,831	
10=>14	7,293	0	0	0	0	0	7,293	
5=>9	5,639	0	0	0	0	0	5,639	
0=>4	10,951	0	0	0	0	0	10,951	
Total/Avg	203,782	82,808	21,459	0	0	0	308,049	

Stanley Consultants 24482 | RCTC Chilled Water Study E-37

Load Profile
Case 1 Central plant with constant speed chiller

Cooling Tower

Cooling Tower Energy Data								
Pump	Horsepower	Efficiency	Switch Point					
CT 1	50	92%	1					
CT 2	50	92%	1					
CT 3	50	92%	1					
CT 4	0	92%	1					
CT 5	0	92%	1					
CT 6	0	92%	1					

	Cooling Tower Demand (kW)							
Temperature Bin (°F)	Cooling Tower 1 Demand (kW)	Cooling Tower 2 Demand (kW)	Cooling Tower 3 Demand (kW)	Cooling Tower 4 Demand (kW)	Cooling Tower 5 Demand (kW)	Cooling Tower 6 Demand (kW)	Total Cooling Tower Demand (kW)	
95=>99	41	41	41	0	0	0	122	
90=>94	41	41	41	0	0	0	122	
85=>89	41	41	41	0	0	0	122	
80=>84	41	41	41	0	0	0	122	
75=>79	41	41	41	0	0	0	122	
70=>74	41	41	0	0	0	0	81	
65=>69	41	41	0	0	0	0	81	
60=>64	41	41	0	0	0	0	81	
55=>59	41	41	0	0	0	0	81	
50=>54	41	0	0	0	0	0	41	
45=>49	41	0	0	0	0	0	41	
40=>44	41	0	0	0	0	0	41	
35=>39	41	0	0	0	0	0	41	
30=>34	41	0	0	0	0	0	41	
25=>29	41	0	0	0	0	0	41	
20=>24	41	0	0	0	0	0	41	
15=>19	41	0	0	0	0	0	41	
10=>14	41	0	0	0	0	0	41	
5=>9	41	0	0	0	0	0	41	
0=>4	41	0	0	0	0	0	41	
Total/Avg	810	365	203	0	0	0	1,377	

	Cooling Tower Energy Usage (kWh)								
Temperature Bin (°F)	Cooling Tower 1 Energy Usage (kWh)	Cooling Tower 2 Energy Usage (kWh)	Cooling Tower 3 Energy Usage (kWh)	Cooling Tower 4 Energy Usage (kWh)	Cooling Tower 5 Energy Usage (kWh)	Cooling Tower 6 Energy Usage (kWh)	Total Cooling Tower Energy Usage (kWh)		
95=>99	324	324	324	0	0	0	972		
90=>94	2,025	2,025	2,025	0	0	0	6,075		
85=>89	5,508	5,508	5,508	0	0	0	16,524		
80=>84	11,543	11,543	11,543	0	0	0	34,628		
75=>79	17,901	17,901	17,901	0	0	0	53,703		
70=>74	24,827	24,827	0	0	0	0	49,653		
65=>69	28,431	28,431	0	0	0	0	56,862		
60=>64	28,512	28,512	0	0	0	0	57,024		
55=>59	24,867	24,867	0	0	0	0	49,734		
50=>54	22,356	0	0	0	0	0	22,356		
45=>49	19,359	0	0	0	0	0	19,359		
40=>44	19,724	0	0	0	0	0	19,724		
35=>39	22,356	0	0	0	0	0	22,356		
30=>34	26,447	0	0	0	0	0	26,447		
25=>29	23,936	0	0	0	0	0	23,936		
20=>24	19,238	0	0	0	0	0	19,238		
15=>19	15,350	0	0	0	0	0	15,350		
10=>14	12,677		0	0	0	0	12,677		
5=>9	9,801	0	0	0	0	0	9,801		
0=>4	19,035	0	0	0	0	0	19,035		
Total/Avg	354.213		37.301	0	0	n	535,451		

Air Handling Unit (AHU)

AHU Supply Fan Energy Data						
Coil Pressure drop	0					
Other Pressure drop	0					
Typical Airflow rate	0	cfm				
Fan Efficiency	70%					
Supply Horsepower	0.0					
# of fans	1					
Efficiency	92%					

Cooling Tower Demand (kW)						
Temperature Bin (°F)	Percent Load	AHU Demand (kW)				
95=>99	97%	0				
90=>94	90%	0				
85=>89	83%	0				
80=>84	77%	0				
75=>79	70%	0				
70=>74	63%	0				
65=>69	57%	0				
60=>64	50%	0				
55=>59	43%	0				
50=>54	26%	0				
45=>49	25%	0				
40=>44	24%	0				
35=>39	22%	0				
30=>34	21%	0				
25=>29	20%	0				
20=>24	19%	0				
15=>19	18%	0				
10=>14	16%	0				
5=>9	15%	0				
0=>4	14%	0				
Tatal/Arm		•				

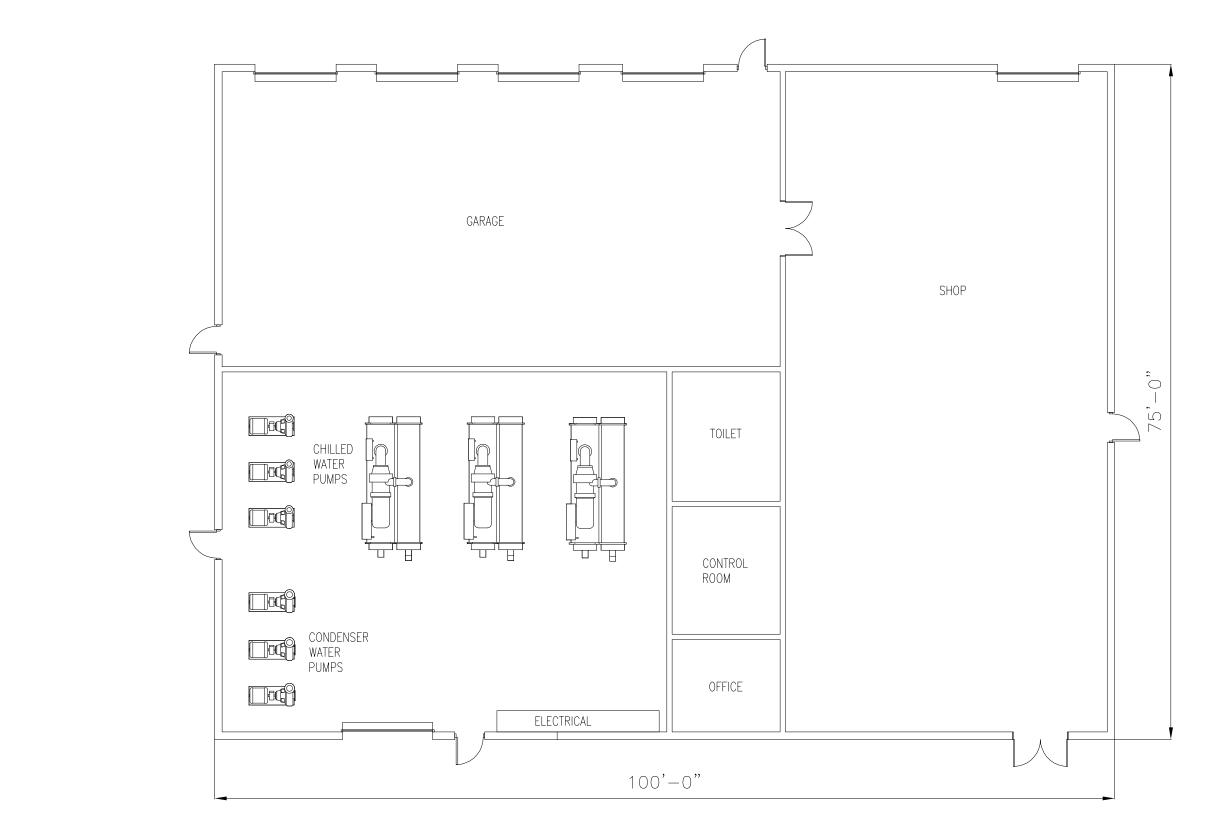
AHU Energy	Usage (kWh)
Temperature Bin (°F)	AHU Energy Usage (kWh)
95=>99	0
90=>94	0
85=>89	0
80=>84	0
75=>79	0
70=>74	0
65=>69	0
60=>64	0
55=>59	0
50=>54	0
45=>49	0
40=>44	0
35=>39	0
30=>34	0
25=>29	0
20=>24	0
15=>19	0
10=>14	0
5=>9	0
0=>4	0
Total/Avg	0

CentralPlant-PV Case Comparison8%discount Rate.xlsx

Stanley Consultants 24482 | RCTC Chilled Water Study E-38

Variable Cost

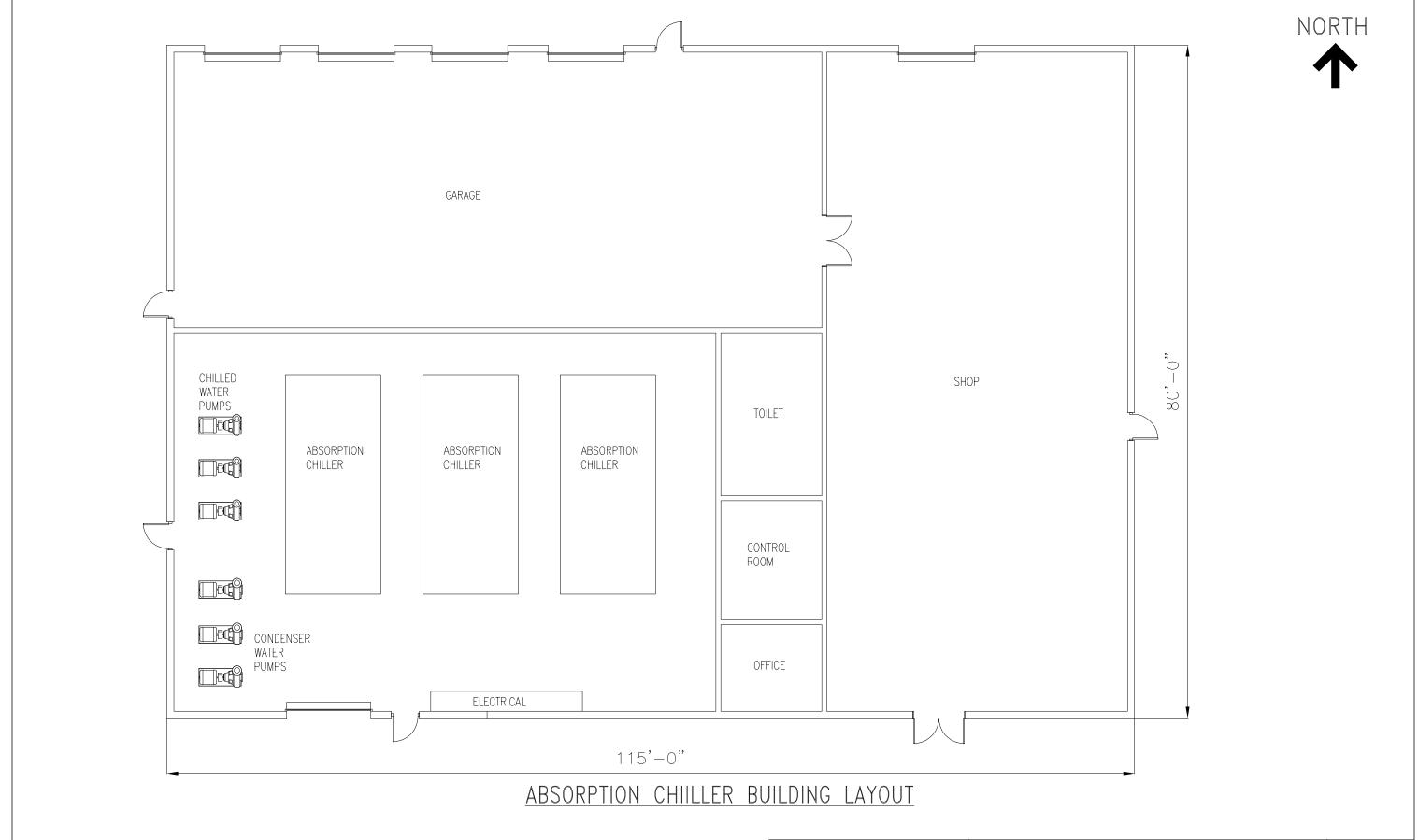
Case 3 Central Plant with absorption chillers


Input Data Summary													
5 O M III II	Demand Charge-S			Energy Charge -				Self Generated					
Energy Charge Multiplier 1.00	First 200-kW Next 800-kW	\$16.46 \$16.46		On Peak Off Peak	\$0.05261 \$0.05261		Purchased Stea	m Poto (nor kil	•)	¢17.64	Per kLB		
1.00	Over 1000 kW	\$16.46		Energy Cost Adj	\$0.00000		Purchased CH\				Per Ton-hr		
								-	,				
	Demand Charge-V			Energy Charge -			Water Rate (pe			\$0.93 Per 1000 Gal			
	First 200-kW Next 800-kW	\$16.46		On Peak	\$0.05261		Sewage Rate (p				Per 1000 Gal		
	Over 1000 kW	\$16.46 \$16.46		Off Peak	\$0.05261 \$0.00000		Miscellaneous	Cost (% of ener	gy cost)	0%	of Energy Cost		
	Over 1000 kw	φ10.40		Energy Cost Adj \$0.00000			Natural Gas			\$7.20	Per MMbtu	NOT USED	
	On/Off Peak Split			Summer/Winter	Split		Other Stm Cost	ts			Per MMbtu	NOT USED	
	On Peak	70%		Summer	70%								
V : 11 0 : 0 1 1 ::	Off Peak	30%		Winter	30%								
Variable Cost Calculation	January	February	March	April	May	June	July	August	September	October	November	December	Annual
Energy Costs	- Canada y	. 02. 44. 7	a. o	7.4	,	54.15	v a.,	, tagaot	Coptombol	0010201		200020.	741144
CHW Usage (Ton-Hrs)													4,744,226
Purchased CHW Cost												4%	\$0
Steam Usage Energy Usage (klb):													38,133
Steam Cost													\$672,664
Electricity Usage													44.004
Chiller Energy Usage (kWh):	(LAMIE).												14,881
Chilled Water Pump Energy Usag													456,125 308.049
Condenser Water Pump Energy L Cooling Tower Energy Usage (kW													535,451
AHU Supply Fan Energy Usage (kW													0
Allo Supply I all Ellergy Osage (F	KVVII).												0
Total Energy Usage													1,314,505
Chiller Peak Demand (kW):	473	537	681	959	1,049	1,139	1,139	1,139	1,139	959	816	537	
On Peak Energy Usage - kWh													920,154
Off Peak Energy Usage - kWh													394,352
													1,314,505
Daniel Obanie	Φ7.700	#0.040	644.044	045.704	#47.004	640.750	#40.7F0	#40.750	040.750	045 704	#40.400	#0.040	0474.040
Demand Charge	\$7,783	\$8,843	\$11,214	\$15,794	\$17,264	\$18,759	\$18,759	\$18,759	\$18,759	\$15,794	\$13,439	\$8,843	\$174,013
On Peak Energy Cost Off Peak Energy Cost													\$48,409 \$20,747
EECR & AEP Cost													\$0,747
Electricity Cost													\$243,169
•													
Total Energy Cost													\$915,833
Other Variable Costs													
Water Usage													17,857,020
Water Cost													\$16,518
Sewage Usage													2,976,170
Sewage Cost													\$9,821
Miscellaneous (0% of Energy Cos	st)												\$0
•	•												
Other Variable Costs													\$26,339

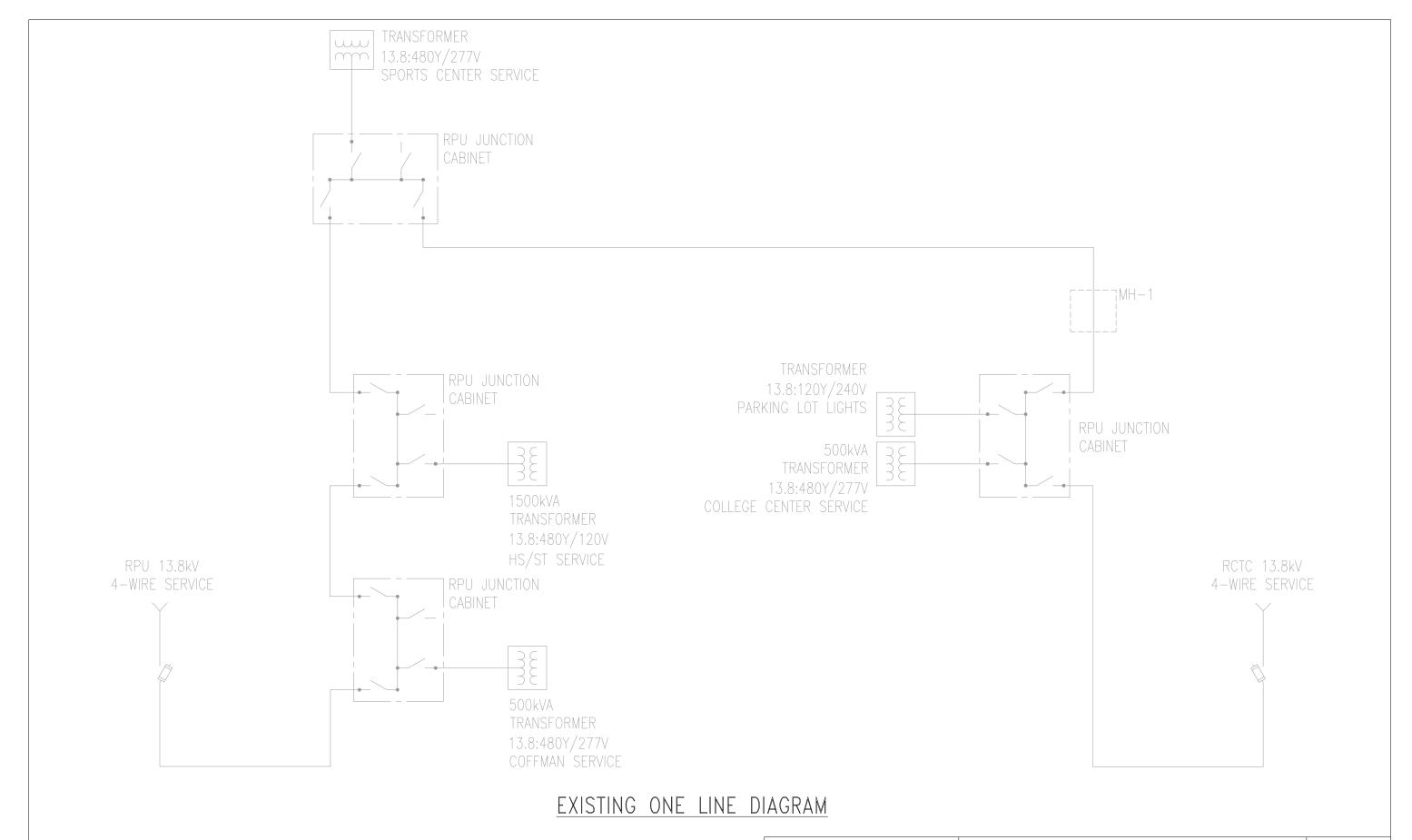
Stanley Consultants Printed: 12/14/2012

Appendix F

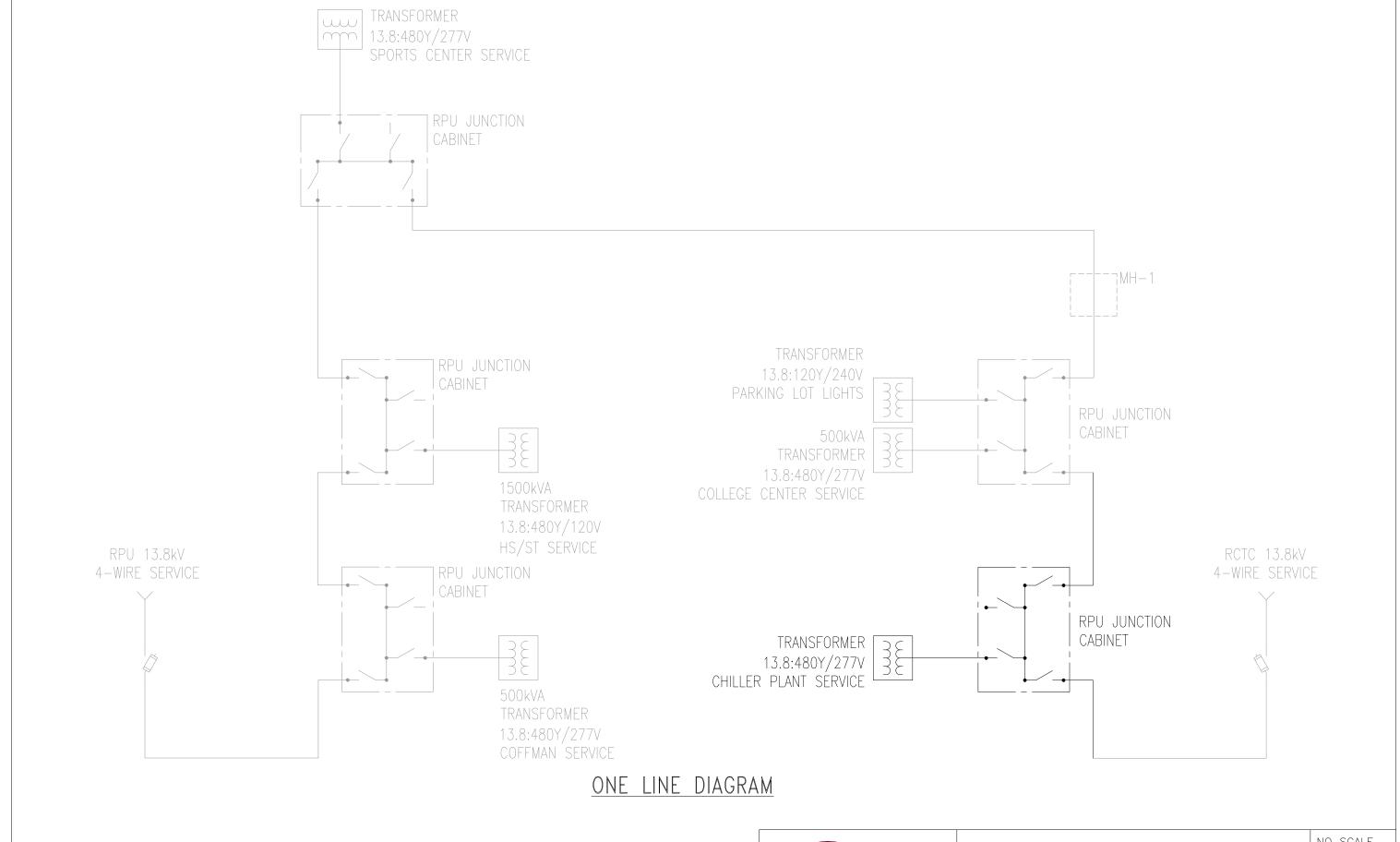
Drawings

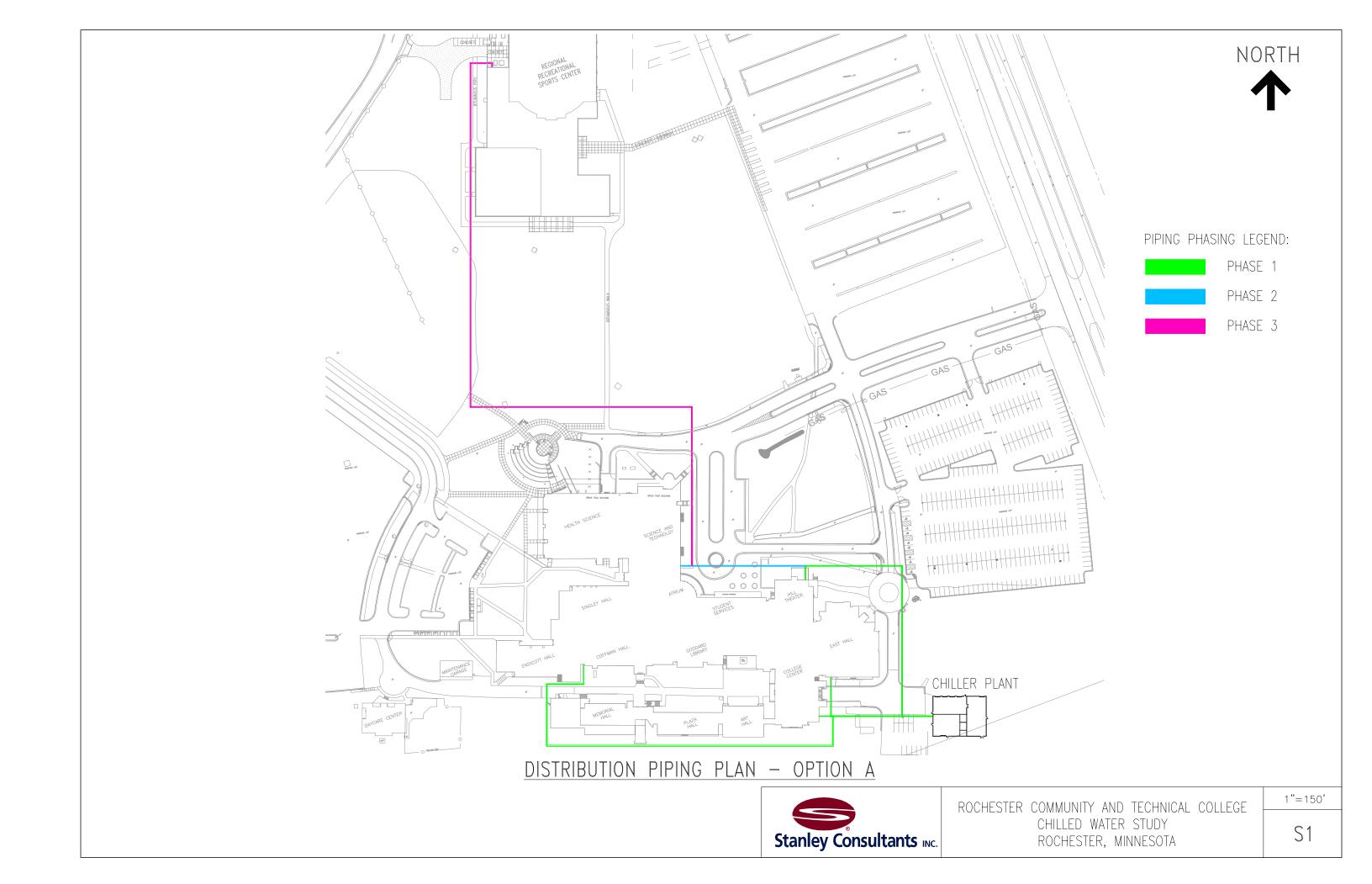

- A1 Centrifugal Chiller Building Layout
- A2 Absorption Chiller Building Layout
- E1 Existing One Line Diagram
- E2 One Line Diagram
- S1 Distribution Piping Plan Option A
- S2 Distribution Piping Plan Option B

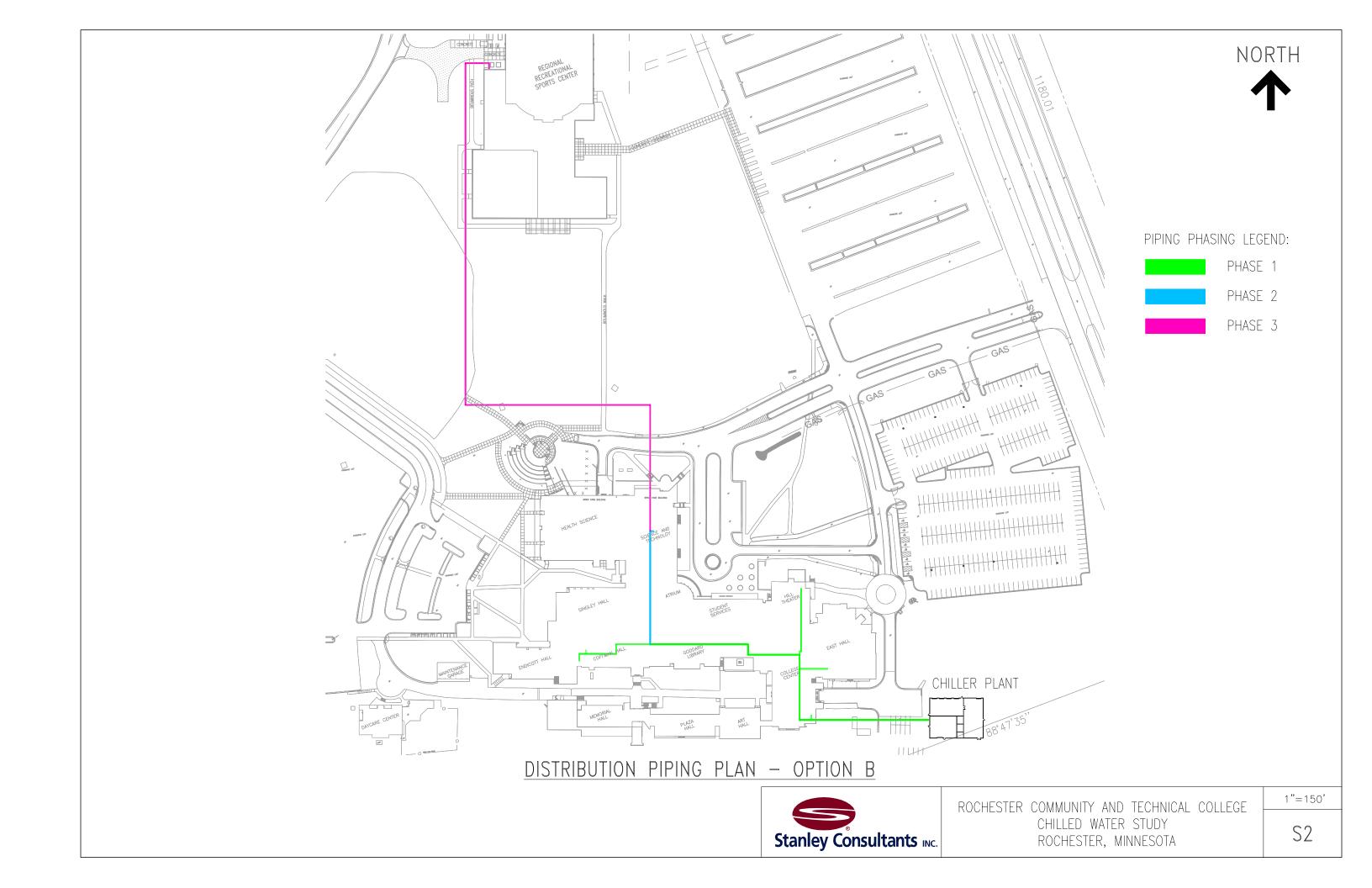
CENTRIFUGAL CHILLER BUILDING LAYOUT



3/32"=1'-0"


A2





ROCHESTER COMMUNITY AND TECHNICAL COLLEGE CHILLED WATER STUDY ROCHESTER, MINNESOTA NO SCALE

E1

Appendix D

Opinion of Probable Cost Information

Total Unit Cos 186,000.0 00 \$186,000.0 00 \$60,000.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$650,000.0 00 \$650,000.0 00 \$2,475.0 00 \$23.3 00 \$65,000.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 186,000.0 00 \$186,090.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
Total Unit Cos 00 \$186,000.0 00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$650,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$700,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$186,000.0 00 \$23,800.0 00 \$56,000.0 00 \$5,660.0 00 \$75.0 00 \$6,054.0 00 \$65,000.0 00 \$2,150.0 00 \$3,310.0 00 \$15,000.0 00 \$3,310.0 00 \$15,000.0 00 \$2,000.0 00 \$2,000.0	0 \$186,00 0 \$60,90 0 \$23,80 0 \$15,05 0 \$650,00 0 \$113,20 0 \$29,70 0 \$67,50 0 \$65,00 0 \$3,45 0 \$65,00 0 \$34,30 0 \$59,58 0 \$59,58 0 \$30,00 0 \$700,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$65,000.0 00 \$65,000.0 00 \$65,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$85,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0 00 \$5,660.0 00 \$5,660.0 00 \$75.0 00 \$65,000.0 00 \$65,000.0 00 \$65,000.0 00 \$2,475.0 00 \$6,054.0 00 \$23.0 00 \$85,000.0 00 \$85,000.0 00 \$85,000.0 00 \$3,310.0 00 \$15,000.0 00 \$700,000.0 00 \$200.0	00 \$60,900 00 \$23,800 00 \$15,050 00 \$650,000 00 \$113,200 00 \$29,700 00 \$67,500 00 \$67,500 00 \$65,000 00 \$85,000 00 \$4,300 00 \$59,580 00 \$30,000 00 \$700,000
000 \$6,054.0 00 \$23.0 000 \$65,000.0 000 \$85,000.0 000 \$2,150.0 000 \$3,310.0 000 \$15,000.0 000 \$700,000.0 000 \$200.0	00 \$6,05 00 \$3,45 00 \$65,00 00 \$85,00 00 \$4,30 00 \$59,58 00 \$30,00 00 \$700,00
00 \$700,000.0 00 \$200.0	0 \$700,00
AL	
	\$3,599,53
9% 5% 5%	\$1,079,86 \$701,90 \$538,13 \$887,91
ST	\$6,807,34
SE	\$6,810,00
00 \$186 000 0	0 \$186,00
00 \$60,900.0 00 \$23,800.0 00 \$15,050.0	0 \$60,90 0 \$23,80 0 \$15,05
AL	\$315,75
5% 0%	\$94,72 \$61,57 \$47,20 \$77,88
ST.	\$597,13
SE .	\$600,00
- 30 - 15 - 10 - 15 - 10	000.00 \$186,000.0 100.00 \$60,900.0 500.00 \$23,800.0 150.00 \$15,050.0 100.00 \$15,000.0 **TOTAL - 30% - 15% - 10% - 15% COST **T USE

Stanley Consultants acc					RCT	32-01-00 C ed Water Sti	udy		_		
Checked by Approved by		Date Date			TRA			CHILLERS (NO	VFD)		
	Item Description			(Quanti	ty		Unit Cost	Unit Cost		
	item bescription	ı		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost	
Phase 3											
500 Ton Cooling To Primary Pumps, 60	500 Ton Traditional Centrifugal Chillers 500 Ton Cooling Tower for Centrifugal Chiller Primary Pumps, 60 HP (1200 GPM @ 130' TDH) Condenser Pumps, 30 HP (1500 GPM @ 50' TDH) Pump VFD				1 EA 1 EA 1 EA 1 EA 2 EA		\$170,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00	\$15,050.00	\$186,000 \$60,900 \$23,800 \$15,050 \$30,000	
								SUBTOTAL		\$315,750	
							Contractor C	n Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$94,725 \$61,571 \$47,205 \$77,888	
								TOTAL COST		\$597,139	
							PROBAE	BLE COST USE	=	\$600,000	
								LL 3 PHASES):		\$8,010,000	

				24482-01-00	Job No.				
				RCTC	Subject			1	Stanley Consultants avc.
			udy	Chilled Water S		12-Dec-12	Date	Kyle Johnson	Computed by
	VFD)	CHILLERS (with		TRADITIONAL			Date		Checked by
	· •			OPTION 2			Date		Approved by
Total Cost		Unit Cost		uantity			n	Item Description	
	Total Unit Cost	Labor	Material	UOM	No. of Unit			itom 2000 pilot	
						VFD)	RS (With	NTRIFUGAL CHILLEF	TRADITIONAL CEN
									Phase 1
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA	-		vith VFD	Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA			hiller	wer for Centrifugal Ch	500 Ton Cooling To
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA				HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA		OH)	@ 50' TD	s, 30 HP (1500 GPM (
\$650,00	\$650,000.00	\$300,000.00	\$350,000.00	LS					Piping and Accesso
\$113,20	\$5,660.00	\$735.00	\$4,925.00	EA					12" Butterfly Valves
\$29,70 \$67,50	\$2,475.00 \$75.00	\$500.00 \$30.00	\$1,975.00 \$45.00	EA LF				ad Cable & Conduit	8" Butterfly Valves 13.8 kV Undergroun
\$6,05	\$6,054.00	\$1,304.00	\$4,750.00	EA					Pad Mounted Trans
\$3,45	\$23.00	\$11.00	\$12.00	LF			SB.	duit, Secondary to MSE	
\$65,00	\$65,000.00	\$25,000.00	\$40,000.00	EA					1600A Main Switch
\$85,00	\$85,000.00	\$35,000.00	\$50,000.00	EA					Motor Control Cente
\$4,30	\$2,150.00	\$700.00	\$1,450.00	EA					Low Voltage Transfo
\$59,58	\$3,310.00	\$910.00	\$2,400.00	EA					Motor Starter Discor
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$700,00	\$700,000.00	\$300,000.00	\$400,000.00	LS				em	Digital Control Syste
\$1,500,00	\$200.00	\$75.00	\$125.00	SF	7500				Building
\$3,661,53		SUBTOTAL							
\$1,098,46		n Details - 30%	eveloped Desig	Une					
\$713,99		Overhead - 15%	Contractor C						
\$547,39		tor Profit - 10%	Contrac						
\$903,20		gineering - 15%	stration and Eng	Admi					
\$6,924,60		TOTAL COST							
\$6,920,00	_	LE COST USE	PROBAB						
									Phase 2
\$248,00	\$248,000.00	\$16,000.00	\$232,000.00	EA				Centrifugal Chillers wi	
\$60,90	\$60,900.00	\$5,400.00	\$55,500.00	EA				wer for Centrifugal Ch	•
\$23,80	\$23,800.00	\$1,500.00	\$22,300.00	EA			<u> </u>	HP (1200 GPM @ 130	
\$15,05	\$15,050.00	\$1,050.00	\$14,000.00	EA)H)	@ 50' IL	s, 30 HP (1500 GPM (
\$30,00	\$15,000.00	\$5,000.00	\$10,000.00	EA	2				Pump VFD
\$377,75		SUBTOTAL							
		n Details - 30%	eveloped Desig	Uni					
\$113.32		Overhead - 15%		311					
		tor Profit - 10%							
\$73,66			stration and En	Admi					
\$113,32 \$73,66 \$56,47 \$93,18									i
\$73,66 \$56,47		TOTAL COST							

Stanley Consultants	Stanley Consultants w.				24482-0 RCTC	01-00				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12	Subject	Chilled			CHILLERS (with	ı VFD)	
трріотов зу				(Quantity	-				
	Item Descriptio	n		No. of Unit	U	OM	Material	Labor	Total Unit Cost	Total Cost
500 Ton Cooling T Primary Pumps, 6	al Centrifugal Chillers w Tower for Centrifugal Cl 0 HP (1200 GPM @ 13 ps, 30 HP (1500 GPM	niller 80' TDH)	DH)	· ·	I EA I EA I EA I EA 2 EA		\$232,000.00 \$55,500.00 \$22,300.00 \$14,000.00 \$10,000.00	\$16,000.00 \$5,400.00 \$1,500.00 \$1,050.00 \$5,000.00	\$248,000.00 \$60,900.00 \$23,800.00 \$15,050.00 \$15,000.00	\$248,000 \$60,900 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$377,750
							Contractor C	n Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$113,325 \$73,661 \$56,474 \$93,181
								TOTAL COST		\$714,391
							PROBAE	BLE COST USE	=	\$710,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$8,340,000

Stanley Consultants »				Job No.	24482	2-01-00				
-				Subject	RCTC					
Computed by Checked by	Kyle Johnson	Date Date	12-Dec-12			d Water St	tudy CHILLERS			
Approved by	-	Date			OPTI					
, ,				Q	uantity	,		Unit Cost		- · · · ·
	Item Description	1		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
ABSORPTION CHI OPTION 3	<u>LLERS</u>									
Primary Pumps, 60 Condenser Pummp Piping and Accesso 12" Butterfly Valves 8" Butterfly Valves 13.8 kV Undergrou Pad Mounted Trans	wer for Centrifugal Ch HP (1200 GPM @ 13 s, 30 HP (1500 GPM pries and Cable & Conduit former, 13 kV/480V duit, Secondary to MSI Board (MSB) er ormer nnects	0' TDH) @ 50' TI	DH)	1 1 1 20 12 900 1 150 1 1 2 18	EA LF EA EA EA EA LS		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$350,000.00 \$4,925.00 \$1,975.00 \$4,750.00 \$12.00 \$15,000.00 \$50,000.00 \$2,400.00 \$10,000.00 \$10,000.00 \$125.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$300,000.00 \$735.00 \$30.00 \$1,304.00 \$11.00 \$10,000.00 \$700.00 \$910.00 \$5,000.00 \$75.000.00	\$23,800.00 \$15,050.00 \$650,000.00 \$5,660.00 \$2,475.00 \$75.00 \$23.00 \$25,000.00 \$25,000.00 \$2,150.00 \$3,310.00 \$15,000.00	\$367,80 \$105,70 \$23,80 \$15,05 \$650,00 \$113,20 \$29,70 \$67,50 \$6,05 \$3,45 \$25,00 \$85,00 \$4,30 \$59,58 \$30,00 \$700,00
							Overhead - 15% ctor Profit - 10%		\$4,126,13: \$1,237,84! \$804,59! \$616,85' \$1,017,81: \$7,803,24	
							PROBAB	LE COST USE	=	\$7,800,00
Primary Pumps, 60	Chillers wer for Centrifugal Ch HP (1200 GPM @ 13 s, 30 HP (1500 GPM	0' TDH)	DH)	1 1 1	EA EA EA EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00		\$367,800 \$105,700 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$542,35
								Overhead - 15% ctor Profit - 10%		\$162,70 \$105,75 \$81,08 \$133,78
								TOTAL COST		\$1,025,67
							РКОВАВ	LE COST USE	=	\$1,030,00

Stanley Consultants	Stanley Consultants IVC				2448 RCT	32-01-00 C				
Computed by Checked by Approved by	Kyle Johnson	Date Date Date	12-Dec-12	Subject	Chill	ed Water Str ORPTION C				
	lteres December			(Quantity			Unit Cost		Total Ocat
	Item Description	n		No. of Unit		UOM	Material	Labor	Total Unit Cost	Total Cost
Primary Pumps, 60	n Chillers ower for Centrifugal Ch HP (1200 GPM @ 13 os, 30 HP (1500 GPM	0' TDH)	DH)	·	1 EA 1 EA 1 EA 1 EA 2 EA		\$350,000.00 \$96,250.00 \$22,300.00 \$14,000.00 \$10,000.00	\$17,800.00 \$9,450.00 \$1,500.00 \$1,050.00 \$5,000.00	\$367,800.00 \$105,700.00 \$23,800.00 \$15,050.00 \$15,000.00	\$367,800 \$105,700 \$23,800 \$15,050 \$30,000
								SUBTOTAL		\$542,350
							Contractor C	gn Details - 30% Overhead - 15% ctor Profit - 10% gineering - 15%		\$162,705 \$105,758 \$81,081 \$133,784
								TOTAL COST		\$1,025,679
							PROBAE	BLE COST USE	=	\$1,030,000
						TOTAL	- OPTION 1 (A	LL 3 PHASES):		\$9,860,000

	Job No.	24482-0	1-00				
Stanley Consultants ac.	Subject	RCTC	1 00				
Computed by Kyle Johnson Date 12-Dec-12	,	Chilled V	Vater St	udv			
Checked by Date				ugh the Buildir	ng		
Approved by Date		Option A			-		
	Q	uantity			Unit Cost		
Item Description		, 				1	Total Cost
	No. of Unit	UC	M	Material	Labor	Total Unit Cost	
Distribution Through the Building - OPTION B PHASE 1							
12" Direct Buried AWWA Pipe	440) LF		\$13.69	\$16.89	\$30.58	\$13,455
12" AWWA LR Elbow	4	EA		\$184.00	\$126.00	\$310.00	\$1,240
12" Steel Pipe	745			\$89.00	\$68.78		\$117,546
12" Pipe Insulation with Jacket		i LF		\$20.50	\$8.95		\$21,940
6" Steel Pipe) LF		\$37.50	\$35.97		\$22,041
6" Pipe Insulation with Jacket	300			\$12.40	\$6.80		\$5,760
4" Steel Pipe	360			\$23.50	\$22.93		\$16,715
4" Pipe Insulation with Jacket		LF		\$9.95 \$17.20	\$6.20		\$5,814 \$5,041
3" Steel Pipe 3" Pipe Insulation with Jacket) LF) LF		\$17.20 \$8.65	\$19.93 \$5.95		\$5,941 \$2,336
12" Steel Elbow		EA		\$3,775.00	\$208.00		\$23,898
6" Steel Elbow		BEA		\$495.00	\$139.00		\$5,072
4" Steel Elbow		EA		\$315.00	\$100.00		\$1,660
3" Steel Elbow		EA		\$255.00	\$73.00		\$984
12"x12"x4" Steel Tee		EA .		\$5,875.00	\$415.00		\$37,740
12"x12"x8" Steel Tee	2	2 EA		\$5,875.00	\$415.00	\$6,290.00	\$12,580
6"x6"x3" Steel Tee	2	2 EA		\$950.00	\$208.00	\$1,158.00	\$2,316
12"x6" Steel Reducer		2 EA		\$3,825.00	\$179.00		\$8,008
Demo and Replace Lay-In Ceiling	6408			\$2.21	\$1.42		\$23,261
AHU (12.5 Tons, 5000 CFM)		EA		\$26,500.00	\$1,600.00		\$28,100
AHU (30 Tons, 12000 CFM)		EA		\$54,500.00	\$2,450.00		\$56,950
AHU (40 Tons, 16000 CFM)		EA		\$79,500.00	\$3,100.00		\$82,600
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)		EA		\$7,900.00	\$620.00		\$8,520
Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH)		EA EA		\$3,725.00	\$475.00		\$4,200
Secondary CHWP (Theater) 7.5 HP (206.25 GPM. 60' TDH) Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)		EA		\$3,725.00 \$3,725.00	\$475.00 \$475.00		\$4,200 \$4,200
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH)		EA		\$1,685.00	\$214.00		\$1,899
				SUBTO	OTAL PHASE 1	I	\$518,976
			Diffie	cult Workina C	onditions - 20%		\$103,795
					n Details - 30%		\$186,831
					Overhead - 15%		\$121,440
			Admins		ctor Profit - 10% gineering - 15%		\$93,104 \$153,622
			710111110		-		
					TOTAL COST		\$1,177,770
				PROBAE	BLE COST USE	•	\$1,178,000
PHASE 2							
12" Steel Pipe	420	LF		\$89.00	\$68.78	\$157.78	\$66,268
12" Pipe Insulation with Jacket	420			\$20.50	\$8.95		\$12,369
8" Steel Pipe	160	LF		\$55.50	\$44.82		\$16,051
8" Pipe Insulation with Jacket	160	LF		\$14.80	\$7.55	\$22.35	\$3,576
12"x12"x12" Steel Tee		EA .		\$5,875.00	\$415.00		\$37,740
12"x8" Steel Reducer		EA		\$3,825.00	\$179.00		\$8,008
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH)	2	2 EA		\$7,900.00	\$620.00	\$8,520.00	\$17,040
				SUBTO	OTAL PHASE 2	2	\$161,052
					onditions - 20%		\$32,210
			Unde		ın Details - 30%		\$57,979
					Overhead - 15%		\$37,686
					ctor Profit - 10%		\$28,893
			Admins	tration and En	gineering - 15%		\$47,673
					TOTAL COST	Ī	\$365,493
				PROBAE	BLE COST USE		\$365,000

			Job No.	24482-01-00				
Stanley Consultants »c.			Subject	RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	,	Chilled Water S	Study			
Checked by	rigio definicen	Date			ough the Buildin	ıa		
Approved by		Date		Option A - Ph 1	,2,3	9		
	Item Descripti	00	(Quantity	tity			Total Cost
	item Descripti	OII	No. of Unit	UOM	Material	Labor	Total Unit Cost	Total Cost
PHASE 3								
8" Direct Buried AW	/WA Pine		236	5 LF	\$11.85	\$15.25	\$27.10	\$64,092
8" AWWA LR Elbov	v			2 EA	\$144.00	\$99.00		\$2,916
8" Steel Pine	•			0 LF	\$55.50	\$44.82		\$16,051
8" Steel Pipe 8" Pipe Insulation w	ith Jacket			0 LF	\$14.80	\$7.55		\$3,576
8" Steel Elbow	iii odonot			4 EA	\$855.00	\$156.00		\$4,044
12"x8" Steel Reduc	er			2 EA	\$3,825.00	\$179.00		\$8,008
Secondary CHWP (SC) 15 HP (520 GF	PM. 60' TDH)		2 EA	\$9,625.00	\$780.00		\$20,810
					SUBTO	OTAL PHASE 3	:	\$119,497
				Line	developed Desig	ın Details - 30%		\$35,849
				One		Overhead - 15%		\$23,302
						tor Profit - 10%		\$17,865
				Admir	stration and En			\$11,552
						TOTAL COST		\$208,065
					PROBAB	LE COST USE	<u>_</u>	\$208,000
				TOTAL	- OPTION B (AL	_L 3 PHASES)		\$1,751,000
					,	,		, , , , , , , , , , , , , , , , , , , ,

Computed by									
Comparison by Mark Library Date Library Date	Stanley Consultants ac.				00				
Checked by	Computed by Kylo Johnson	Data 12 Dag 12	Subject		tor Study				
Page						Ruildina			
Distribution Outside the Building - OPTION A						Juliuling			
Description Outside the Building - OPTION A PhASE	Ph		Qı	•	Unit Cost				
Distribution Quiside the Building - OPTION A PHASE 12° Direct Buried AWWA Pipe 1025 LF \$13.69 \$16.89 \$30.58 \$31.345 Phase 20° Direct Buried AWWA Pipe 20° DF \$11.85 \$15.25 \$27.10 \$7.046 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 1600 LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$14.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.27 \$24.91 \$40.354 Promet Buried AWWA Pipe 20° LF \$10.64 \$11.60 \$15.50 \$40.00 \$40.00 Promet Buried AWWA Pipe 20° LF \$26.40 \$20.91 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.40 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.08 Promet Buried AWWA Tree 20° LA \$24.00 \$15.00 \$39.40 \$7.00 \$1.00 Promet Buried AWWA Tree 20° LA \$24.00 \$24.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$24.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$24.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00 \$2.00 \$2.00 Promet Buried AWWA Tree 20° LA \$2.00 \$2.00 \$2.00	Item Descripti	on	No. of Unit	LION	Moto	riol	Labor	Total Unit Cost	Total Cost
PHASE	E		No. of Unit	UOIV	i Mate	riai	Labor	Total Unit Cost	
8**Direct Buried AWWA Pipe** 1620 LF		PTION A							
8' Direct Buried AWWA Pipe 1620 LF	12" Direct Buried AWWA Pipe		1025	LF	\$	13.69	\$16.89	\$30.58	\$31,345
4* Direct Buried AWWA Pipe 240 LF 98.54 st 313.52 \$20.06 \$8.1814 1**Z*12**AWWA Tee	8" Direct Buried AWWA Pipe		260	LF	\$	11.85	\$15.25	\$27.10	\$7,046
12*12* AWWA Tee	6" Direct Buried AWWA Pipe		1620	LF	\$	10.64	\$14.27	\$24.91	\$40,354
12-x4 NWNA Tec 2 EA	4" Direct Buried AWWA Pipe		240	LF		\$6.54	\$13.52	\$20.06	\$4,814
8/st AWMA Tee	12"x12" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006
876 MWA Tee	12"x4" AWWA Tee		2	EA	\$3	06.00	\$197.00	\$503.00	\$1,006
81-86* AWWA Tee 2 EA \$40,00 \$154.00 \$394.00 \$788 6* AWWA LR Ebow 8 EA \$76,00 \$58.00 \$314.00 \$10,00 8 EA \$76,00 \$58.00 \$134.00 \$10,00 8 EA \$76,00 8 EA \$76,00 \$10,00 8 EA \$76,00 8 EA \$76	4" AWWA Tee		2	EA	\$2	40.00	\$154.00	\$394.00	\$788
12 AWMA LP Elbow									
8 EA \$75.00 \$88.00 \$134.00 \$1.072 \$2.094 \$2.00 \$2.094 \$2.00 \$2.000 \$									
8 AWMA Direct Buried Valve 2 EA \$825.00 \$217.00 \$1,042.00 \$2.004 127.97 AWMA Pretucer 2 EA \$475.00 \$10.60 \$4.005 127.97 AWMA Reducer 2 EA \$475.00 \$10.60 \$4.005 197.67 AWMA Reducer 2 EA \$475.00 \$10.60 \$24.46 \$486 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 40 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$37.50 \$35.97 \$73.47 \$2.936 67 Steel Pipe 10 LF \$32.50 \$2.293 \$46.43 \$5.572 47 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$9.95 \$6.20 \$16.15 \$1.933 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$5.95 \$14.60 \$2.336 67 Steel Pipe 10 LF \$8.65 \$6.00 \$1.60.00 \$8.65.00 \$56.95.0									
12 MWA Direct Burled Valve									
12-x8f XMWA Reducer									
8'Af AWWA Reducer									
6° Sleel Pipe 6° Pipe Insulation with Jacket 40 LF 512-40 56° Pipe Insulation with Jacket 40 LF 512-40 58-80 513-20 578-84 58-81 58-97 578-47 58-99 58-99 58-90 58									
6° Pipe Insulation with Jacket 40 LF \$12.40 \$8.80 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$78.88 \$19.20 \$10 LF \$23.50 \$22.93 \$46.43 \$5.572 \$4° Pipe Insulation with Jacket 120 LF \$3.95 \$8.20 \$16.15 \$1.33 \$7.99 \$10 LF \$17.20 \$19.93 \$37.13 \$5.941 \$7.99 \$10 LF \$3.65 \$1.93 \$37.13 \$5.941 \$1.99 \$1.93 \$37.13 \$5.941 \$1.99 \$1.93 \$37.13 \$5.941 \$1.99 \$1.93 \$37.13 \$5.941 \$1.90 \$1									
4" Sleel Pipe 4" Pipe Insulation with Jacket 120 LF \$23.50 \$22.93 \$46.43 \$5.572 4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1.938 3" Sleel Pipe 160 LF \$17.20 \$19.93 \$37.13 \$5.941 3" Pipe Insulation with Jacket 160 LF \$16.50 \$8.65 \$5.95 \$46.00 \$2.338 AHU (12.5 Tons, 5000 CFM) 1 EA \$26.500.00 \$1.600.00 \$26.100.00 \$26.100.00 AHU (30 Tons, 12000 CFM) 1 EA \$54.500.00 \$2.450.00 \$56.950 AHU (40 Tons, 16000 CFM) 1 EA \$79.500.00 \$2.100.00 \$26.100.00 Secondary CHWP (CF) To HP (450 GPM, 60' TDH) 1 EA \$7.900.00 \$20.00 \$5.50.00 Secondary CHWP (CF) 7.5 HP (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$3.725.00 \$475.00 \$4.200.00 Secondary CHWP (HP) 7.5H P (312.5 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.685.00 \$214.00 \$1.899.00 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 2 HP (50 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 3 HP (30 GPM, 60' TDH) 1 EA \$1.85 \$15.25 \$27.10 \$1.000 Secondary CHWP (SH) 3 HP (30 GPM, 60' TDH) 1 EA \$1.80 \$1.80 \$1.80 \$1.000 Secondary CHWP (SH) 3 HP (30 GPM, 60' TDH) 1 EA \$1.80 \$1.80 \$1.80 \$1.000 Secondary CHWP (SH) 3 HP (30 GPM, 60' TDH)	-								
4" Pipe Insulation with Jacket 120 LF \$9.95 \$6.20 \$16.15 \$1,938 \$1.50 \$10 LF \$17.20 \$19.30 \$3.71.31 \$5.941 \$10 LF \$1.50 \$19.30 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.93 \$3.71.31 \$5.941 \$1.30 \$1.30 \$1.30 \$1.30 \$2.450.00 \$2.450.00 \$2.250.00 \$2.250.00 \$2.250.00 \$1.30									
3" Stele Pipe 3" Stele Pipe 3" Pipe Insulation with Jacket 180 LF \$8.65 \$5.55 \$5.55 \$14.60 \$2.338 AHU (12.5 Tons, 5000 CFM) 1 EA \$6.6500.00 \$1.600.00 \$22,100.00 \$22,									
10 F									
AHU (12 5 Tons, 5000 CFM) 1 EA \$26,500.00 \$1,600.00 \$28,100.00 \$28,100 AHU (30 Tons, 12000 CFM) 1 EA \$35,500.00 \$2,450.00 \$56,950.00	3" Steel Pipe		160	LF	\$	17.20	\$19.93	\$37.13	\$5,941
AHU (30 Tons, 12000 CFM) AHU (30 Tons, 15000 CFM) 1 EA \$45,500.00 \$2,450.00 \$56,950.00 \$2,600.	3" Pipe Insulation with Jacket		160	LF		\$8.65	\$5.95	\$14.60	\$2,336
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00	AHU (12.5 Tons, 5000 CFM)		1	EA	\$26,5	00.00	\$1,600.00	\$28,100.00	\$28,100
AHU (40 Tons, 16000 CFM) AHU (40 Tons, 16000 CFM) 1 EA \$79,500.0 \$3,100.00 \$82,600.00			1	EA					
Secondary CHWP (CC) 10 HP (450 GPM, 60' TDH)	AHU (40 Tons, 16000 CFM)	,		EA					
Secondary CHWP (CF) 7.5 HP (312.5 GPM. 60' TDH)		PM 60' TDH)							
Secondary CHWP (Theater) 7.5 IHP (206.25 GPM, 60' TDH)									
Secondary CHWP (EH) 7.5 HP (232.5 GPM. 60' TDH)									
Secondary CHWP (SH) 2 HP (50 GPM. 60' TDH) 1 EA									
SUBTOTAL PHASE 1									
Undeveloped Design Details - 30%	Secondary CHWP (SH) 2 HP (50 GPM	. 60' TDH)	1	EA	\$1,6	85.00	\$214.00	\$1,899.00	\$1,899
Contractor Overhead - 15%					:				\$309,014
Contractor Profit - 10% Adminstration and Engineering - 15% \$76,226					Undeveloped				\$92,704
Adminstration and Engineering - 15% \$76,226 TOTAL COST \$584,399 PROBABLE COST USE \$584,000 PROBABLE COST USE \$584,000 PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 "Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1.084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1.006 \$8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4.013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60" TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$7.594 Contractor Overhead - 15% Contractor Overhead - 15% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873				Contractor Overhead - 15%				\$60,258	
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$30.68 \$30.68 \$10.00 \$								\$46,198	
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% F6,244 TOTAL COST \$447,873				А	dminstration a	ind Engin	eering - 15%		\$76,226
PHASE 2 12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% Adminstration and Engineering - 15% TOTAL COST \$47,873						Т	OTAL COST		\$584,399
12" Direct Buried AWWA Pipe 10 LF \$13.69 \$16.89 \$30.58 \$306 8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"X8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"X8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,066 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873					PR	OBABLE	COST USE	_	\$584,000
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	PHASE 2								
8" Direct Buried AWWA Pipe 40 LF \$11.85 \$15.25 \$27.10 \$1,084 12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 **SUBTOTAL PHASE 2** **Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 **TOTAL COST** **TO	12" Direct Buried AWWA Pinc		10	l E	ď	13.60	¢16 00	¢20 E0	¢20c
12"x8" AWWA Reducer 2 E \$475.00 \$10.60 \$485.60 \$971 12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 40.10 \$25,314 Undeveloped Design Details - 30% Contractor Overhead - 15% Contractor Profit - 10% \$3,754 Adminstration and Engineering - 15% TOTAL COST \$47,873									
12"x8" AWWA Tee 2 E \$306.00 \$197.00 \$503.00 \$1,006 8" Steel Pipe 40 LF \$55.50 \$44.82 \$100.32 \$4,013 8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 \$25,314 \$100.00 \$100								·	
8" Steel Pipe									
8" Pipe Insulation with Jacket 40 LF \$14.80 \$7.55 \$22.35 \$894 \$									
Secondary CHWP (ST) 10 HP (362.5 GPM. 60' TDH) 2 EA \$7,900.00 \$620.00 \$8,520.00 \$17,040 SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$4,936 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244									
SUBTOTAL PHASE 2 \$25,314 Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
Undeveloped Design Details - 30% \$7,594 Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873	Secondary CHWP (ST) 10 HP (362.5 G	GPM. 60' TDH)	2	EA	\$7,9	00.00	\$620.00	\$8,520.00	\$17,040
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					:	SUBTOT	AL PHASE 2		\$25,314
Contractor Overhead - 15% \$4,936 Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873					Undeveloped	Design I	Details - 30%		\$7 504
Contractor Profit - 10% \$3,784 Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
Adminstration and Engineering - 15% \$6,244 TOTAL COST \$47,873									
				А					
PROBABLE COST USE \$48.000						Т	OTAL COST		\$47,873
					PR	OBABLE	COST USE		\$48,000

			Job No.	24482-01-00				
Stanley Consultants :	c		Subject	RCTC				
Computed by	Kyle Johnson	Date 12-Dec-12	,	Chilled Water	Study			
Checked by		Date			tside the Building	g		
Approved by	•	Date		Option B - Ph				
	Item Description	on	C	Quantity		Unit Cost		Total Cost
DUMOE 0		-	No. of Unit	UOM	Material	Labor	Total Unit Cost	
PHASE 3								
8" Direct Buried AV 8" AWWA Reducer 8" Steel Pipe 8" Pipe Insulation v	VWA Pipe		2800) LF	\$11.85	\$15.25	\$27.10	\$75,880
8" AWWA Reducer	r) EA	\$234.00	\$10.60		\$2,446
8" Steel Pipe) LF	\$55.50	\$44.82		\$4,013
8" Pipe Insulation v	vith Jacket) LF	\$14.80	\$7.55		\$894
Secondary CHWP	(SC) 15 HP (520 GP	M. 60' TDH)	2	2 EA	\$9,625.00	\$780.00	\$10,405.00	\$20,810
					SUBTO	OTAL PHASE 3		\$104,043
				Un	developed Desig			\$31,213
						Overhead - 15% ctor Profit - 10%		\$20,288 \$15,554
				Admi	nstration and En			\$25,665
						TOTAL COST		\$196,763
					PROBAB	LE COST USE	_	\$197,000
				TOTAL	- OPTION A (AI	L 3 PHASES):		\$829,000

HEINTZ CENTER

HEAPR MANUAL Heintz Center Roof Replacement,1976 Addition

Req. No.: 04

 Institution
 Rochester Community and Technical College
 Date: December 2020

 Campus/Building
 Heintz Center

 Project Location
 Rochester, MN

General Classification of All Work (Provide est. construction costs by "classification of work")					
\$1,433,600 Exterior Envelope	(exterior roof, walls, windows, exterior doors)				
\$ Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)				
\$ Fire Suppression	(sprinkler systems, components, piping, equipment)				
\$ Plumbing	(plumbing systems, components, piping, fixtures, equipment)				
\$ HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)				
\$ Electrical	(Electrical systems, power distribution, lighting, equipment)				
\$ Life Safety and Secu	rity (Fire alarm systems, public address, building security)				
\$1,433,600 Total					

General Description of Existing Conditions and All Work

Roof is already past its useful life expectancy. Extensive leakage is causing class disruption and damage to infrastructure. Utility costs can be improved with better insulation. Ceiling damage in H Wing and Student Commons.

- 1. The existing steel deck has little or no structural slope; therefore, a fully-tapered insulation system is required.
- 2. Two large air handlers, vent stacks, and heat stacks must be raised to accommodate the necessary base flashing heights for the support curbs. All mechanical, electrical, and communication lines will need to be modified and rerouted. This work will require the services of mechanical and electrical consultants.
- 3. The sleeper curbs appear unstable and will be evaluated and reinforced accordingly. This work will require the services of a structural consultant.
- 4. The existing skylight will be removed and deck replacement provided or replaced with new. This work will require the services of a window consultant.
- All obsolete capped curbs, vent stacks and sleeper curbs will be removed and deck replacement provided where necessary.
- 6. The existing drains will be replaced and relocated where necessary in order to provide a symmetrical and unobstructed drainage layout. Overflow drains and scuppers will be provided. The drain work will require the services of a mechanical consultant.
- 7. The existing access ladder will be replaced with a new OSHA approved access ladder. This work will require the services of a structural consultant.
- 8. All obsolete capped curbs, vent stacks, and sleeper curbs will be removed and deck replacement provided where necessary.
- 9. All gas lines will be relocated to the interior of the building. This will require the services of a mechanical consultant.
- 10. The existing antennas will be relocated to the ground or exterior walls. This will require the services of electrical and structural consultants.

Due to white staining on the interior face of brick walls on the Student Commons in the Heinz Center, it appears moisture has come through the walls. The roofs were recently replaced in these areas, and brick appears to have been patched at a couple of these areas of staining. Investigation should determine if the efflorescence is still current or if it is old. If the latter, the brick can be cleaned. If the staining continues, there is moisture infiltrating the walls that should be further researched at the transition to the roof from the walls.

There are a few areas with stains on the ceiling tiles that appear to be moisture damage. Verify that these stains are old and change out the ceiling tiles. If the stains remain fresh and moisture is found, survey the area for the source of moisture and fix or replace elements as required and then replace the ceiling tiles.

Original 2011 Predesign estimate increased 27% to mid-year 2020.

HEAPR2020 Page 1 of 2

Project Title - Heintz Center Roof Replacement, 1976 Addtion

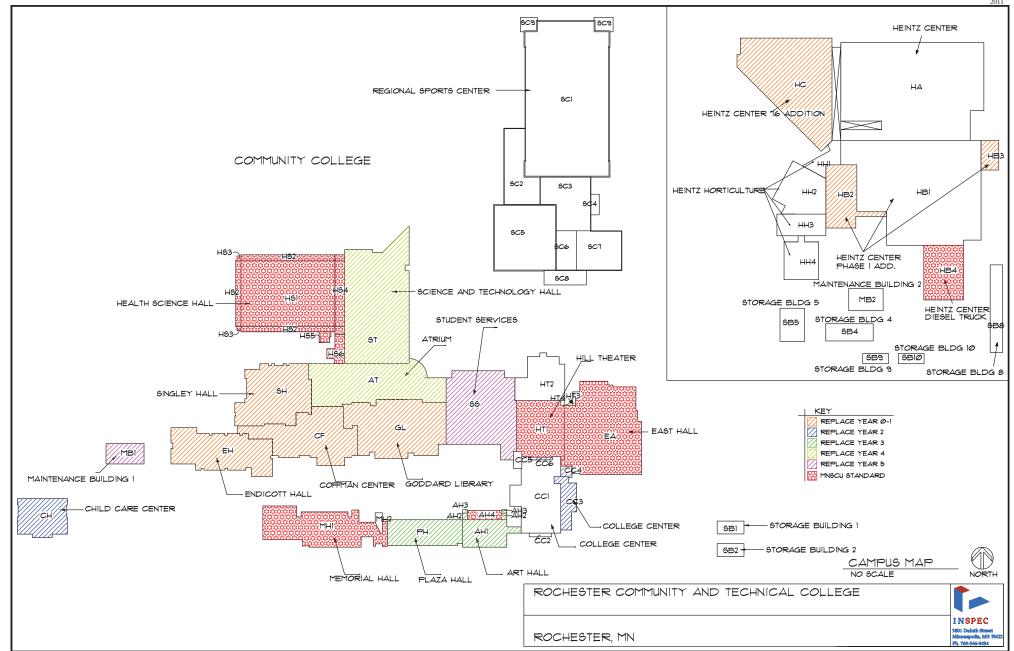
Priority Project(s) and General Work Description: (Provide estimated <u>construction</u> costs for specific priority project with general description)

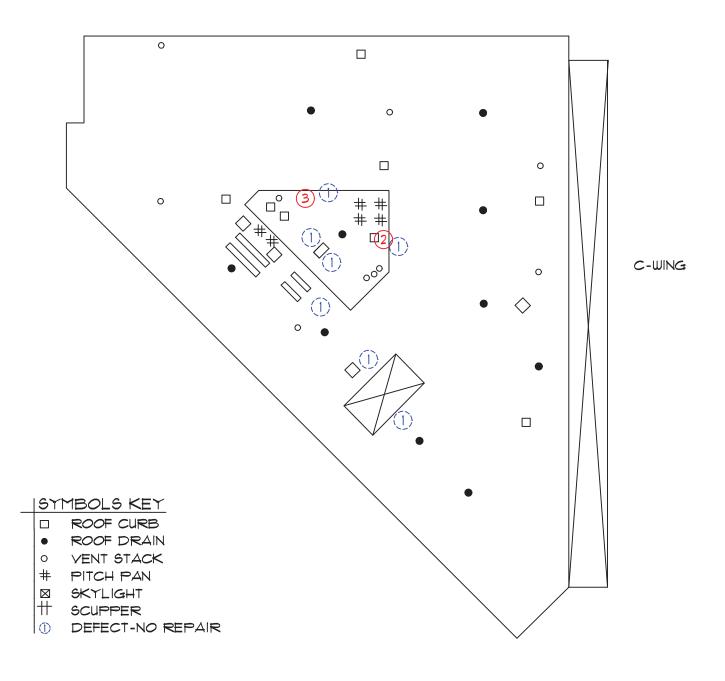
\$1,433,600	Heintz Center Roof Replacement, 1976 Addition (includes minor repairs to other areas)
\$	
\$	

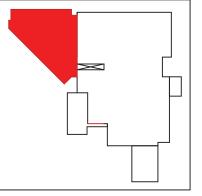
Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

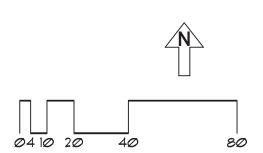
Damaged classrooms, ceilings, walls, roof structures. Ongoing expensive repairs and interior finish replacement. Excessive utility costs.

Project will reduce Heintz Center FCI from 0.07 to 0.02.

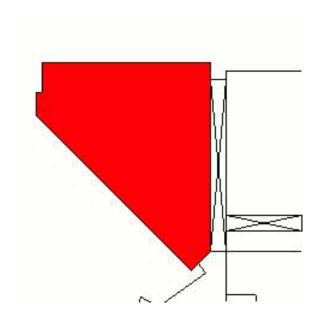

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)


- 1 Campus Roof Plan InSpec
- 2 1976 Addition Roof Plan


\$1,433,600 Total


- 3 1976 Addition Roof Report Roof Spec, Inc.
- 4 Diesel Truck Roof Report Roof Spec, Inc.
- 5 Roof Aerial Photo

HEAPR2020 Page 2 of 2


Full Facility Roof Report

Prepared for:

Heintz Center-1976 Addition

Prepared by:

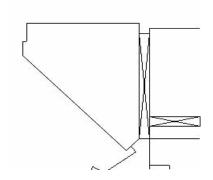
Jim Morgan Roof Spec, Inc. Phone: Fax:

Heintz Center-1976 Addition

Last Inspection Date: Sep 16, 2019

Facility: Heintz Center-1976 Addition

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 16, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount	
НС	2020	Repair	No	Expense	Moderate	\$1,500	
Remove all vegetation from the roof and repair all open seams and flashing.							
НС	2020	Replacement	No	Capital	High	\$1,121,001	

Budget cost estimate is based on replacement of Sections HC and Phase I Addition HB2 at the same time.

The budget cost is based on the 2011 predesign report. Recommend updating the predesign report.

\$1,122,501

Recommendation Summary						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
HC	2020	Repair	No	Expense	Moderate	\$1,500
HC	2020	Replacement	No	Capital	High	\$1,121,001
						\$1,122,501

Roof Name: E26148C0276

Roof Size: 25,500 sq. ft.

Est. replacement Cost: \$874,140.00

Existing System Type: (EPDM-B) Ballasted Ethylene-Propylene-Diene-Monomer

Year Installed: 1987

Assessed Service Life Remaining (Years) :

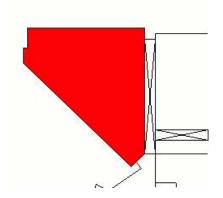
Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate

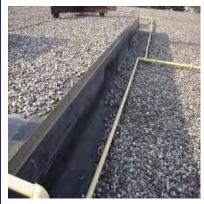
Currently Leaking? No


History of Leaking? No

Drainage and Leak The estimated replacement cost is based on the

Details: 2011 predesign report. Recommend updating the

predesign report.


Membrane Defects - Outstanding						
Defect Type Severity Quantity Unit						
Defect #01	Monitor	200	Ea.			

ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Base Flashing -Slippage, wrinkling, blistering or bridging

REPAIR: Monitor for repair need prior to reroofing

COMMENTS:

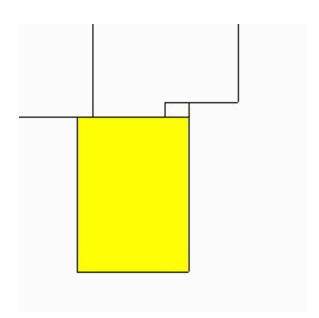
Defect Type	Severity	Quantity	Unit
Defect #04	Monitor	1	Ea.

ID #4 OBSERVED: 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Contaminant on roof

REPAIR: Monitor for possible future repair.

COMMENTS:


Full Facility Roof Report

Prepared for:

Heintz Center-Diesel Truck

Prepared by:

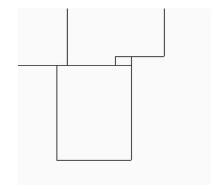
Jim Morgan Roof Spec, Inc. Phone: Fax:

Heintz Center-Diesel Truck

Last Inspection Date: Sep 16, 2019

Facility: Heintz Center-Diesel Truck

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 16, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount	
HDT	2020	Repair	Yes	Expense	Low	\$1,000	
Remove vegetation from around drains and replace damaged drain strainer.							
\$1,000							

Recommendation Summary							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount	
HDT	2020	Repair	Yes	Expense	Low	\$1,000	
						\$1,000	

Roof Name: E26148C0379

Roof Size: 8,162 sq. ft.

Est. replacement Cost: \$122,430.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

Year Installed: 1998

Assessed Service Life Remaining (Years) :

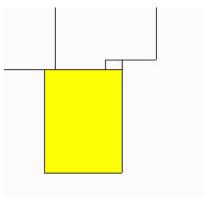
Height: 0 Ft.

iloigiit.

Slope:

Interior Sensitivity:

Drainage: Adequate


Currently Leaking? No

History of Leaking? No

Drainage and Leak

Details:

Membrane Defects - Outstanding				
Defect Type	Severity	Quantity	Unit	
Defect #01	Monitor	3	Ea.	

ID #1 OBSERVED: 6/22/2016, 6/19/2017

Blistered base flashing

REPAIR: Monitor for possible future repair.

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Monitor	2	Ea.

ID #2 OBSERVED: 6/22/2016, 6/19/2017

Erosion of aggregate surfacing

REPAIR: Monitor for possible future repair.

COMMENTS:

Membrane Defects - Outstanding Continued			
Defect Type	Severity	Quantity	Unit
Defect #03	Repair	2	Ea.

ID #3 OBSERVED: 9/16/2019

Vegetation/Debris

REPAIR: Removes vegetation from around drain strainers.

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #04	Repair	1	Ea.


ID #4 OBSERVED: 9/16/2019

Broken drain strainer

REPAIR: Replace broken drain strainer.

COMMENTS:

HEAPR MANUAL Heintz Center Exterior Envelope Repairs

Req. No.: 05

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Heintz Center

Project Location Rochester, MN

General Classification of All Work (Provide est. construction costs by "classification of work")				
\$360,500 Exterior Envelope	(exterior roof, walls, windows, exterior doors)			
\$ Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)			
\$ Fire Suppression	(sprinkler systems, components, piping, equipment)			
\$ Plumbing	(plumbing systems, components, piping, fixtures, equipment)			
\$ HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)			
\$ Electrical	(Electrical systems, power distribution, lighting, equipment)			
\$ Life Safety and Securi	ty (Fire alarm systems, public address, building security)			
\$360,500 Total				

General Description of Existing Conditions and All Work

Exterior bricks are spalled and falling from building, mortar joints missing, control joints need resealing. Flashing failing throughout. Damage to interior walls. Replace bricks, flashing and provide tuckpointing throughout. Repaint interiors where damaged.

Original 2012 Design Development estimate increased 24% to mid-year 2020.

Project Title - Heintz Center Exterior Envelope Repairs

Priority Project(s) and General Work Description: (Provide estimated <u>construction</u> costs for specific priority project with general description)

\$360,500 Heintz Center Exterior Envelope Repairs

\$360,500 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Mitigate exterior structure damage, hazard to students, and moisture migration to interior.

Project will reduce Heintz Center FCI from 0.07 to 0.06.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

- 1 Field Findings Summary Skyline Building Envelope Consultants
- 2 Exterior Repair Drawings Skyline Building Envelope Consultants
- 3 Cost Estimate Kane & Johnson Architects, Inc.

HEAPR2020 Page 1 of 1

SKYLINE BUILDING ENVELOPE CONSULTANTS

ADVANCED CONSULTING & PROJECT MANAGEMENT SERVICES FOR FACILITIES MANAGEMENT WHICH INCLUDE:

ALL TYPES OF ROOFING & WATERPROOFING, BUILDING ENVELOPE & FACADE EVALUATIONS & RESTORATION,

PARKING GARAGE EVALUATIONS & RESTORATION, FORENSIC EVALUATIONS.

HEINTZ CENTER SUMMARY OF FIELD FINDINGS

General Conditions and Recommendations:

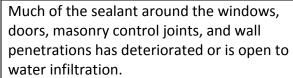
Phase I:

Phase I was constructed in 1968. The majority of the exterior façade consists of brick veneer with cavity wall construction and maintenance free double pane windows.

The Southern elevation consists of Concrete Masonry Units (CMU's) which are painted to match the color of the adjoining EIFS wall systems.

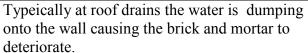
The upper perimeter of the walls consists of "transite asbestos panels" which are considered hazardous materials. Many of the panels have large cracks and evidence of moisture infiltration (efflorescence) was present at the underlying brick.

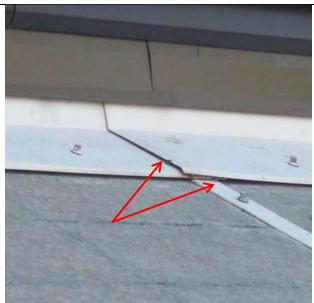
Existing building plans indicate through-wall was installed. No through-wall flashings were visible. The brick veneer and possibly the through-wall flashings were covered by gradation throughout the building.



Through-wall flashings installed around this time period have been prone to failure depending on the type of material used. A destructive test opening is recommended to determine the type and condition of the existing through-wall flashing material. Areas where the through-wall flashing has been covered with gradation should be uncovered to allow proper drainage of the cavity wall.

The brick and mortar are in good condition with isolated areas of deteriorated mortar and cracked or damaged brick.





Leakage was reported along the skylights between the Phase I and Phase V construction. Some gaps were visible at the metal counterflashings and batten strips. A water test should be performed to determine the source of leakage.

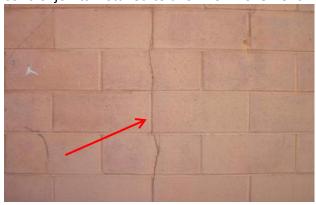
Phase II:

Phase II was constructed in 1976. The exterior façade consists of brick veneer with cavity wall construction and maintenance free double pane windows.

The upper perimeter of the walls consists of "transite panels" which are considered hazardous materials. Many of the panels have large cracks which may allow water infiltration.

Phase III & IV:

Phase III & IV were constructed in 1978 and 1979. The exterior façade consists of brick veneer on the East elevation and concrete masonry units (CMU's) on the South and West elevations.



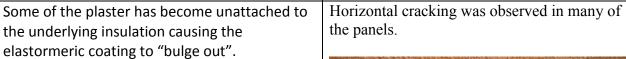
The upper perimeter of the East wall consists of "transite asbestos panels" which are considered hazardous materials. Many of the panels have large cracks which are allowing water infiltration.

There were multiple vertical cracks through the Concrete Masonry Units (CMU's) on the South and West elevations. The cracked CMU's should be repaired or replaced and additional masonry control joints installed to allow for movement.

The steel lintels above the garage doors have begun to rust. Some of the rust appears to go through the entire width of the lintel. Clean, prime and paint overhead lintels. Install new through-wall flashings above lintels.

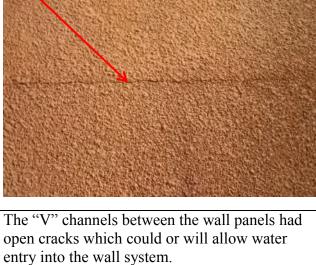
Much of the sealant around the masonry control joints, and wall penetrations has deteriorated or is open to water infiltration.

Much of the sealant around the windows, louvers, masonry control joints, and wall penetrations has deteriorated or is open to water infiltration.



Phase V:

Phase V was constructed in 1986. The South exterior façade consists of wall insulation board covered by a plaster coating over a reinforcement mesh.

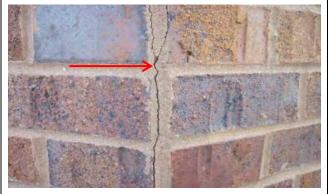


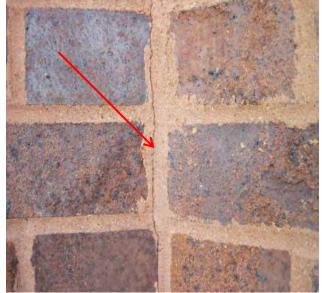
Some physical damage exposing the underlying reinforcement mesh and insulation was also observed.

The East addition exterior façade consists of brick veneer with cavity wall construction.

The lintel above the east entry has surface rust and should be primed and painted.

Two wall penetrations had open sealant.




The Northwest addition exterior façade consists of brick veneer with cavity wall construction and double pane windows.

Most of the corners of the brick veneer at grade and on the roof have mortar that has cracked or become un-bonded. These areas should have mortar cut back and foam backer rod and sealant installed.

Much of the sealant around the windows, doors, masonry control joints, and wall penetrations has deteriorated or is open to water infiltration.

There were two areas on the roof and at grade where vertical cracking occurred through the brick veneer. The cracked brick should be replaced with matching units.

There was one wall on the roof that had sealant installed over the existing mortar. The sealant should be removed and the joint tuck-pointed.

Evidence of through-wall flashing was present at some locations and did not extend out to the brick face to create a drip edge. We recommend performing a test opening of the wall to determine the existing condition of the through-wall flashing material.

II. Building Summary:

There were no immediate safety concerns at this time. The leakage occurring at the skylights should be the top priority in resolving to minimize any further interior damage. SBEC can perform a water test to determine the exact cause of water infiltration. The next immediate need would be replacement of the transite asbestos panels to eliminate further deterioration of the adjacent brick veneer.

Wall test openings should be performed at the different phase locations to determine the condition of the existing through-wall flashings. Through-wall flashings are keys to draining moisture out of the walls, and if they are deteriorated or not properly installed, they should be replaced according to current MNSCU standards. Areas where the through-wall flashings have been covered with gradation should be uncovered to allow proper drainage of the wall systems.

The **Plaster** wall system on the South elevations is starting to separate between the surface coating and underlying insulation. Many of the "V" channels are cracked and there is physical damage at other locations. The existing wall system was poorly installed and will continue to worsen with time. These areas should be replaced with an appropriate wall system that meets the Universities architectural and performance standards.

The remaining wall defects are typical for buildings these ages and should be repaired after the issues listed above have been taken care of. SBEC and Kane and Johnson will meet with qualified masonry contractors to obtain accurate repair estimates to be provided to the Campus for budget purposes.

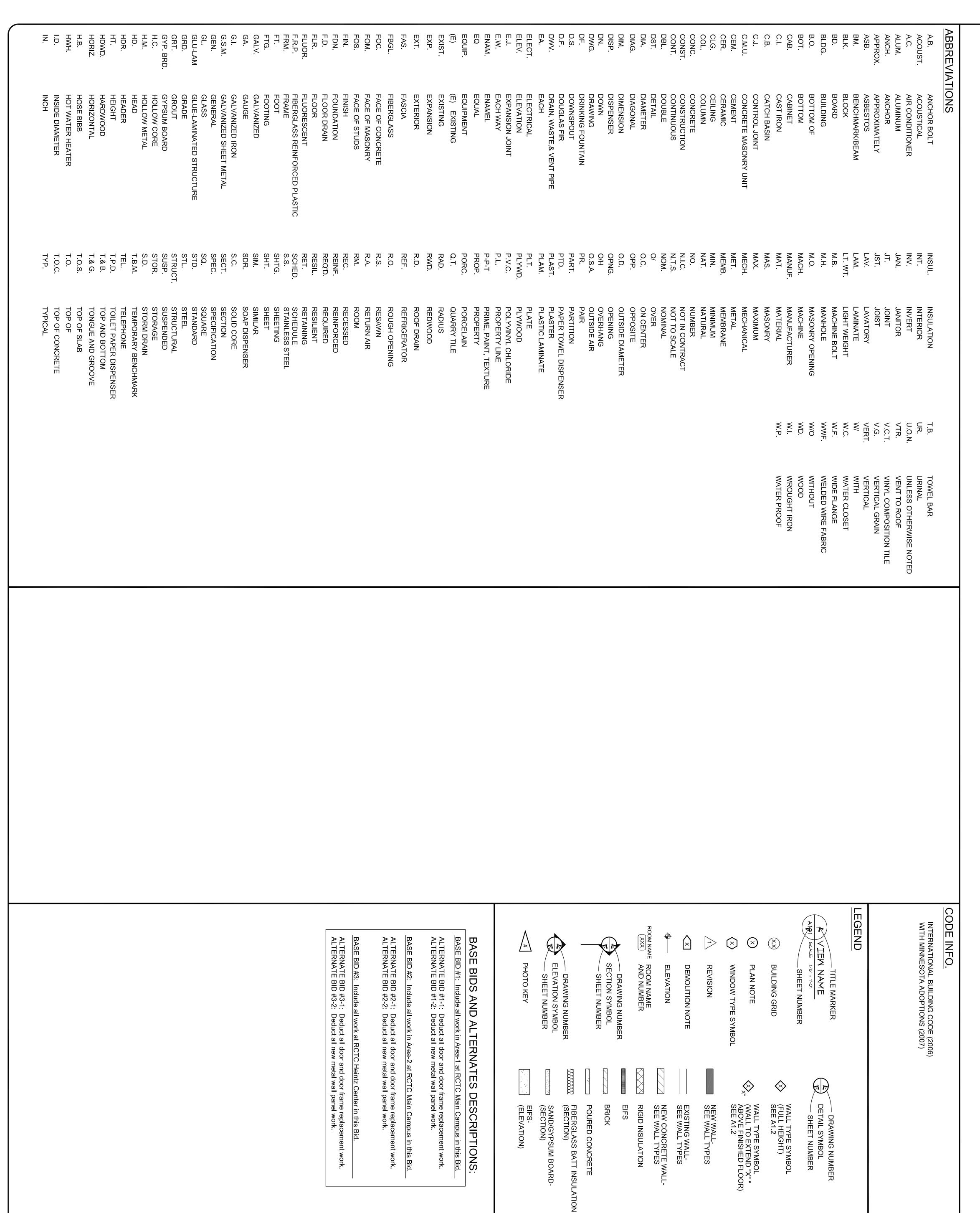
This is a summary of our findings on the Heintz Center Building. All quantities and repair recommendations are based on our visual inspections, existing plan review and building personnel background information.

Respectfully Submitted,

Pot Johnster

Rob Johnston Project Manager

Skyline Building Envelope Consultants

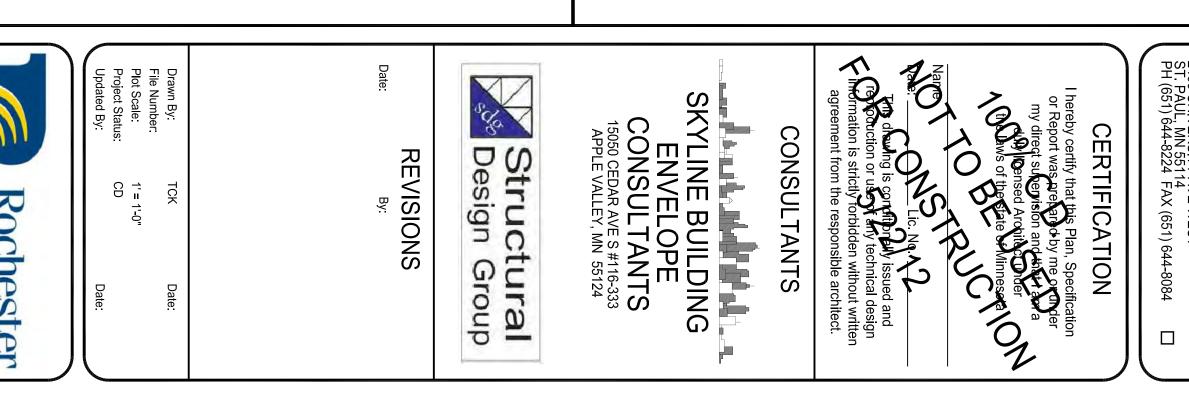

15050 CEDAR AVENUE S. / SUITE#116-333 / APPLE VALLEY, MN 55124 $\,$

OFFICE # 952-303-4824. OFFICE FAX # 952-405-6060 MOBILE: 763-229-2771

SHEET INDEX

%51 30TH AVE. S.H. ROCHESTER, Z Z 55904

ス E P A R S



ARCHITECTURAL A503 A504 A600 A700 A502 A501 A100 A000 SECTIONS DETAILS ENLARGED ELEVATIONS
ENLARGED ELEVATIONS OVERALL ROOF PLAN ENLARGED ELEVATIONS **ENLARGED ELEVATIONS** TITLE SHEET

KANE AND JOHNSON ARCHITECTS, INC.

2460 HIGHWAY 63 NORTH SUITE 100
ROCHESTER, MN 55906
PH (507) 288-1839 FAX (507) 288-1830

2469 UNIVERSITY AVE WEST ST. PAUL, MN 55114 PH (651) 644-8224 FAX (651) 644-8084

CONTACT INFORMATION

OWNER:

ARCHITECT:

ROCHESTER COMMUNITY & TECHNICAL 851 30TH AVE SE ROCHESTER, MN 55904

STRUCTURAL:

STRUCTURAL DESIGN GROUP 3270 19TH ST NW, SUITE 210 ROCHESTER, MN 55901 (507) 529-5310 ENGINEER: AL HINIKER

BUILDING ENVELOPE:

SKYLINE BUILDING ENVELOPE CONSULTANTS APPLE VALLEY, MN 55124 ROCHESTER, MN 55901 (763) 229-2771 PROJECT MANAGER: ROB JOHNSTON

KANE & JOHNSON ARCHITECTS
2460 HWY 63 NORTH, SUITE 100
ROCHESTER, MN 55906
(507) 288-1839
ARCHITECT: DAVID KANE
PROJECT MANAGER: JAMES COYLE

College

VICINITY MAP

R.C.T.C. 851 30TH AVE SE ROCHESTER, MN 55904 -

CAMPUS

		- - - - - - -

KEY PLAN

(£)

as ava dart

e2 evA did

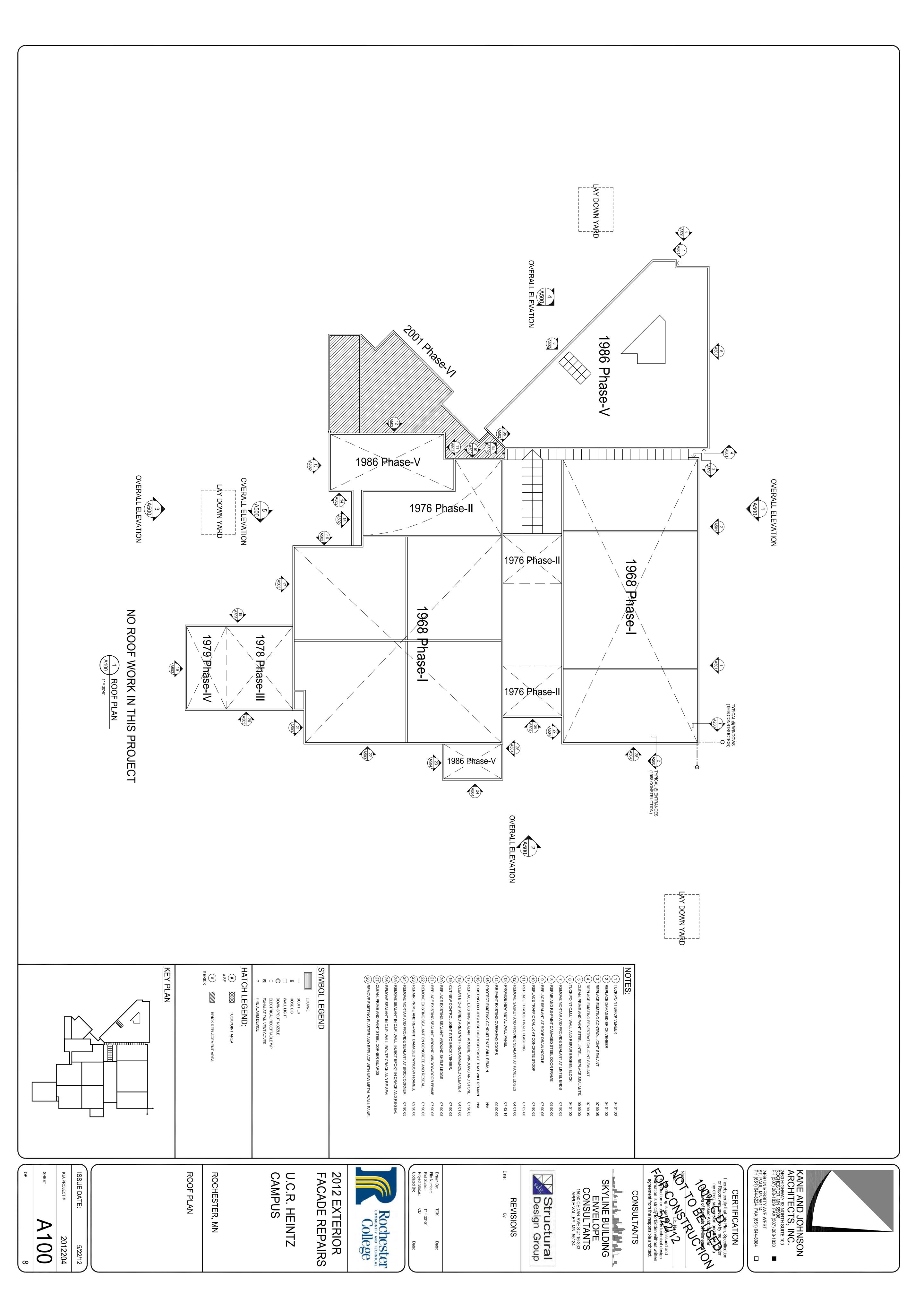
e2 evA rise

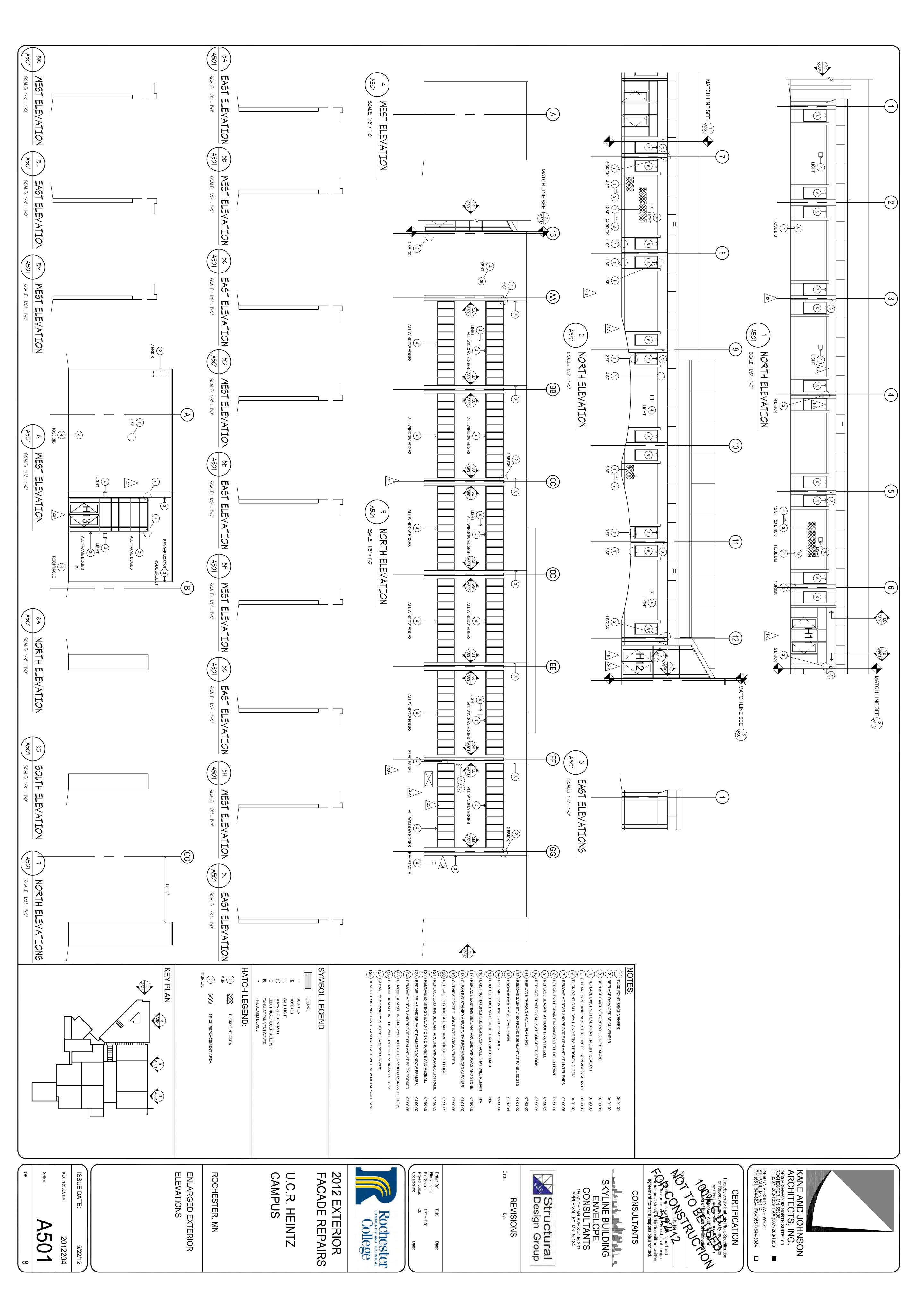
30th Ave Se

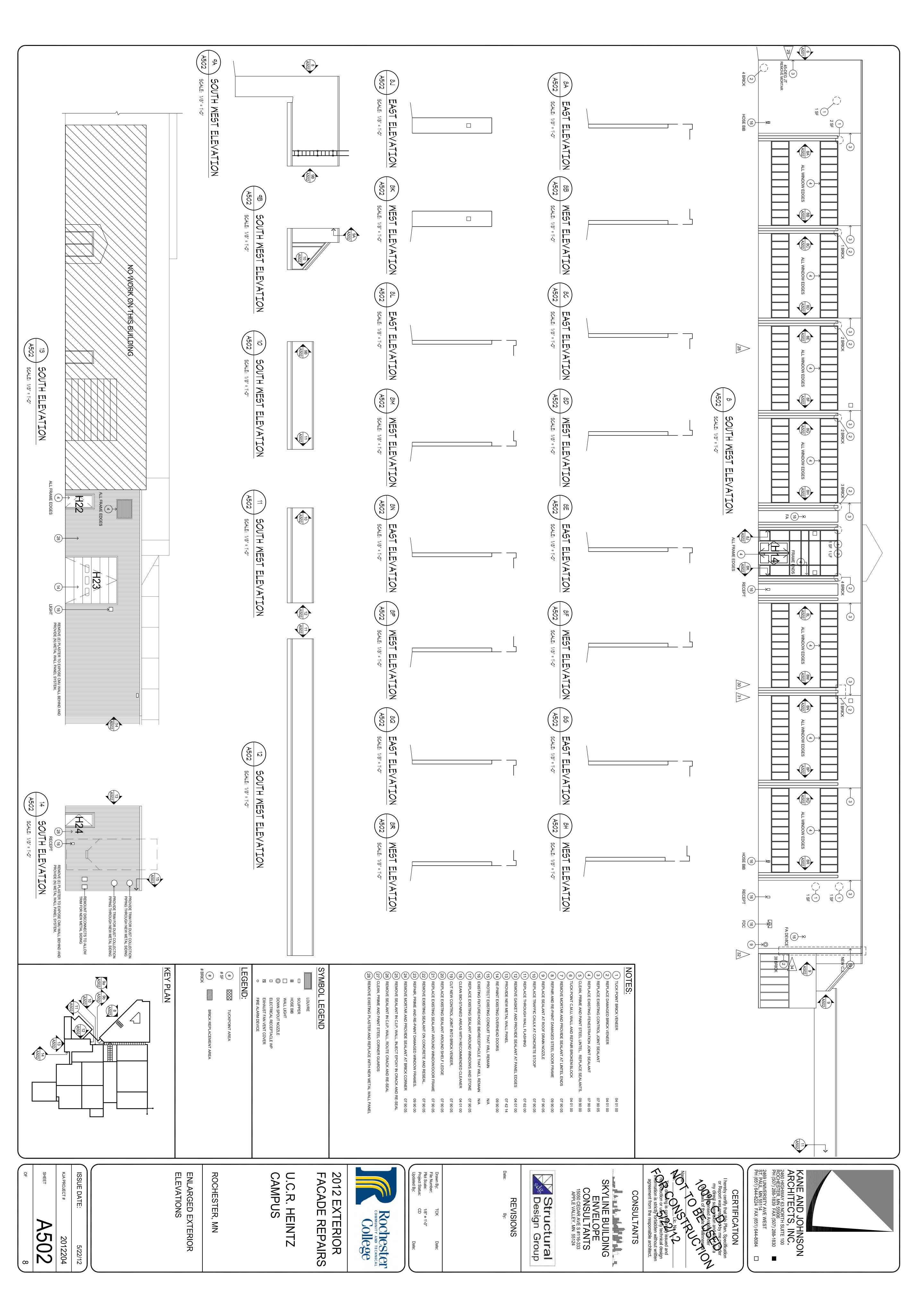
ROCHESTER, MN

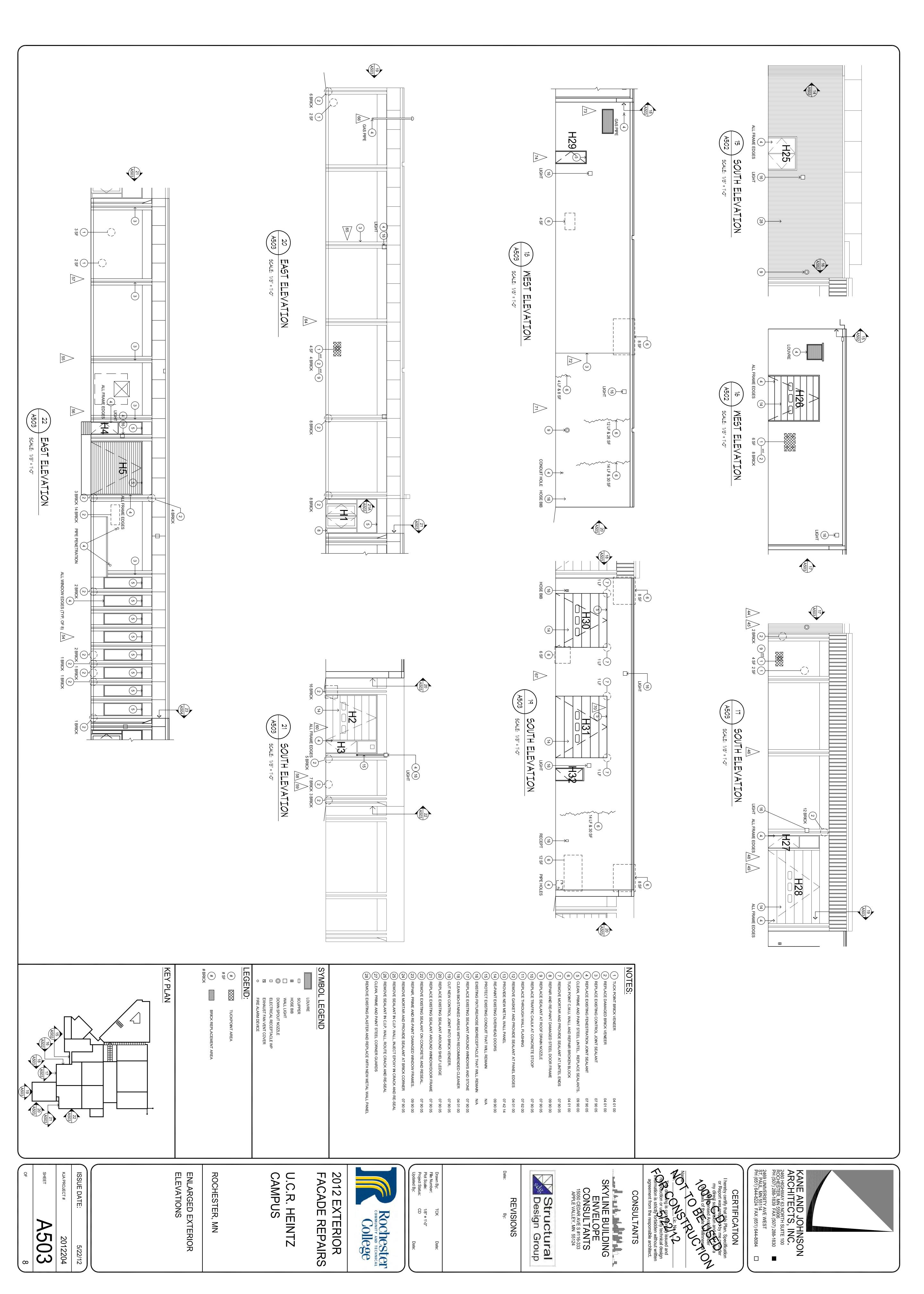
es evA ritt r

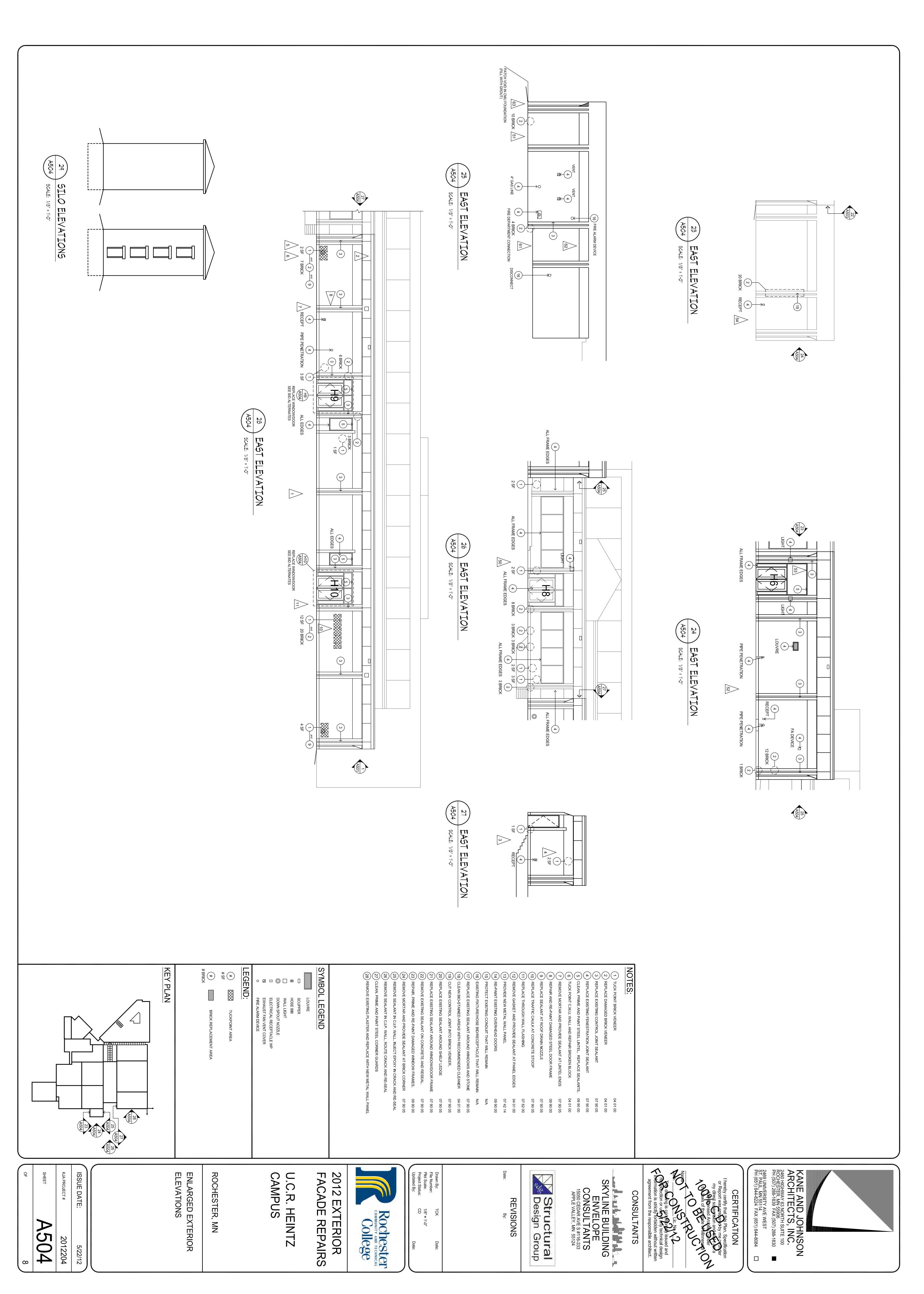
92 evA 1/18 92 BVA AIT

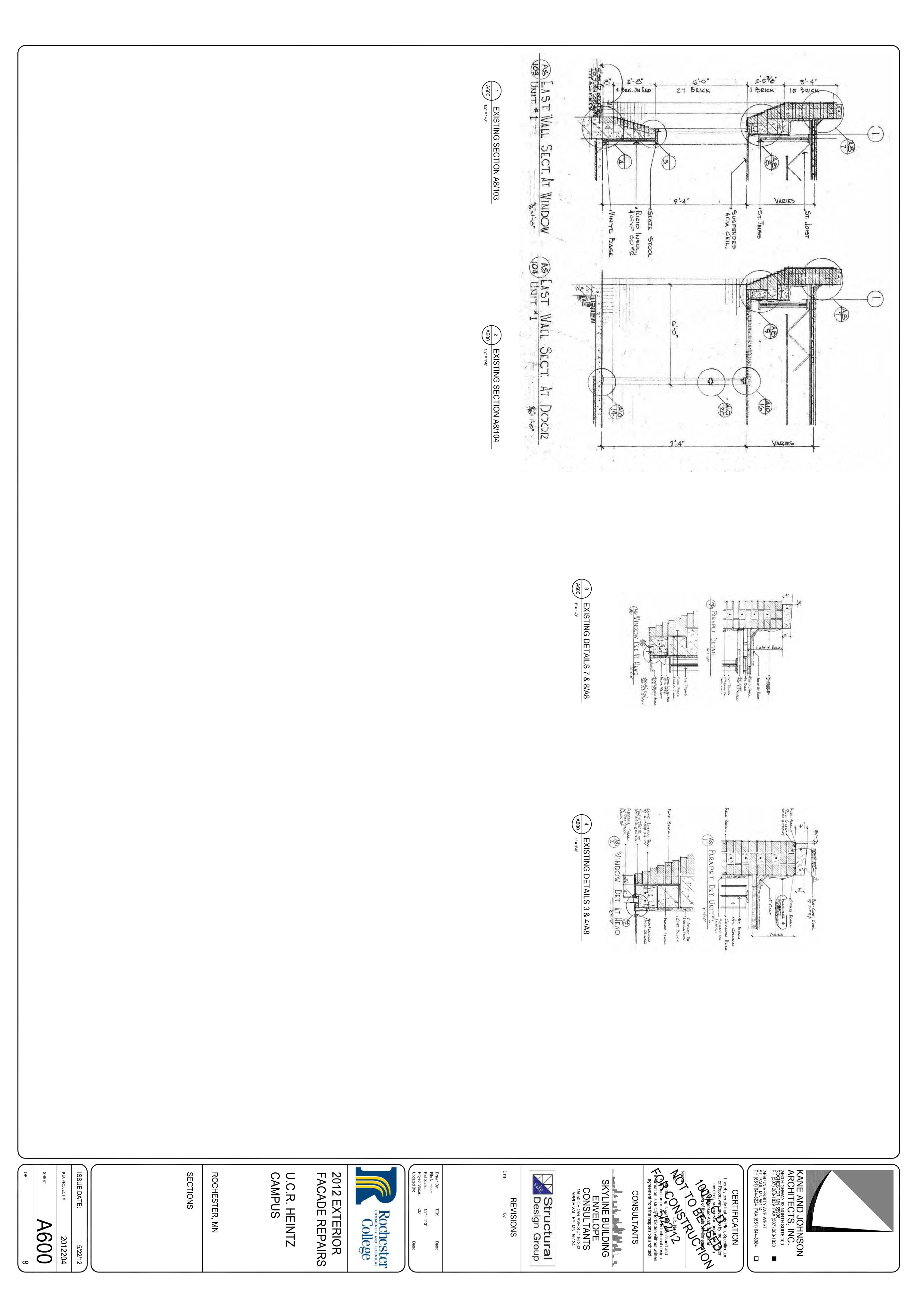

ast Park nd St Se

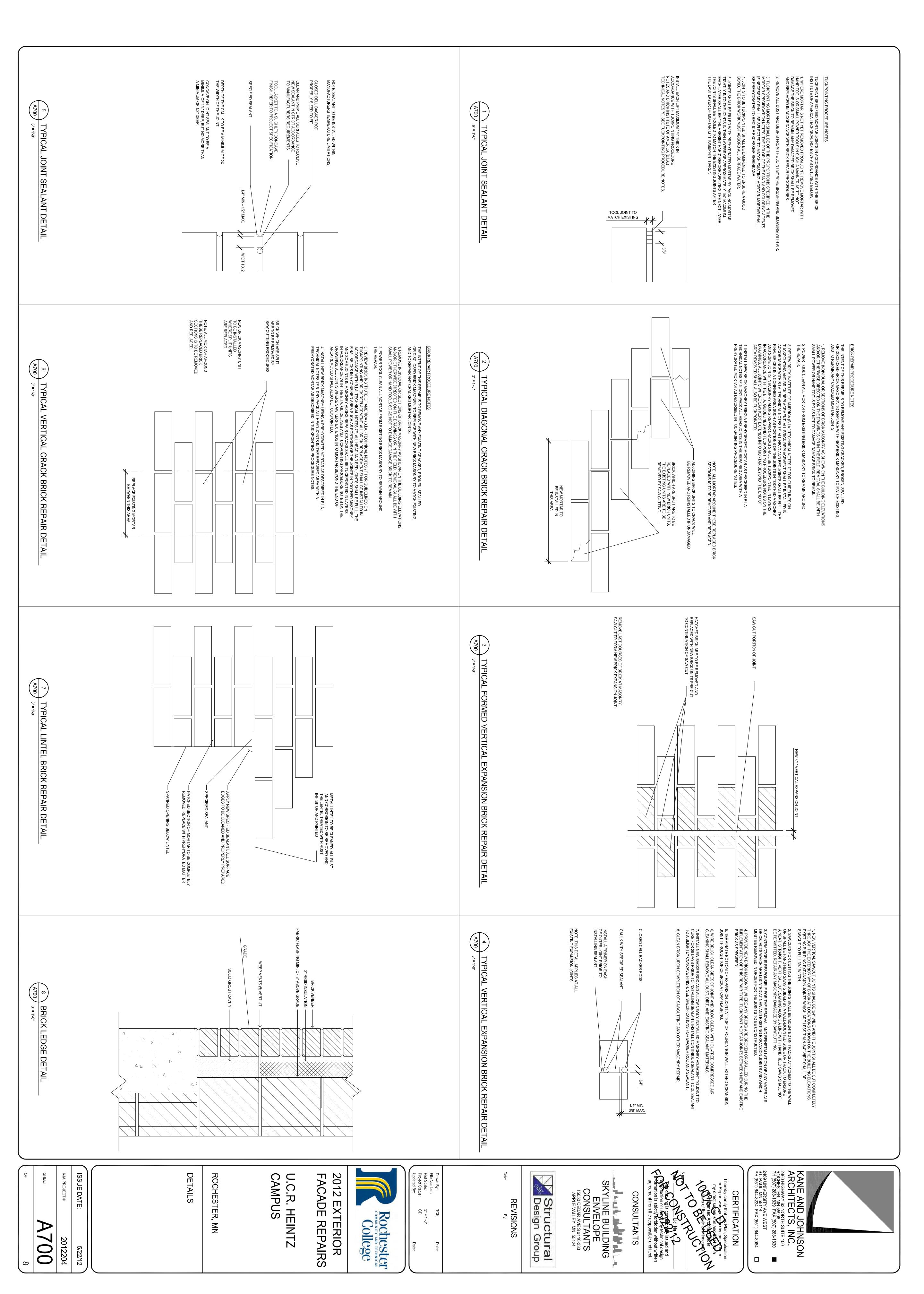

Ucr Dr Se

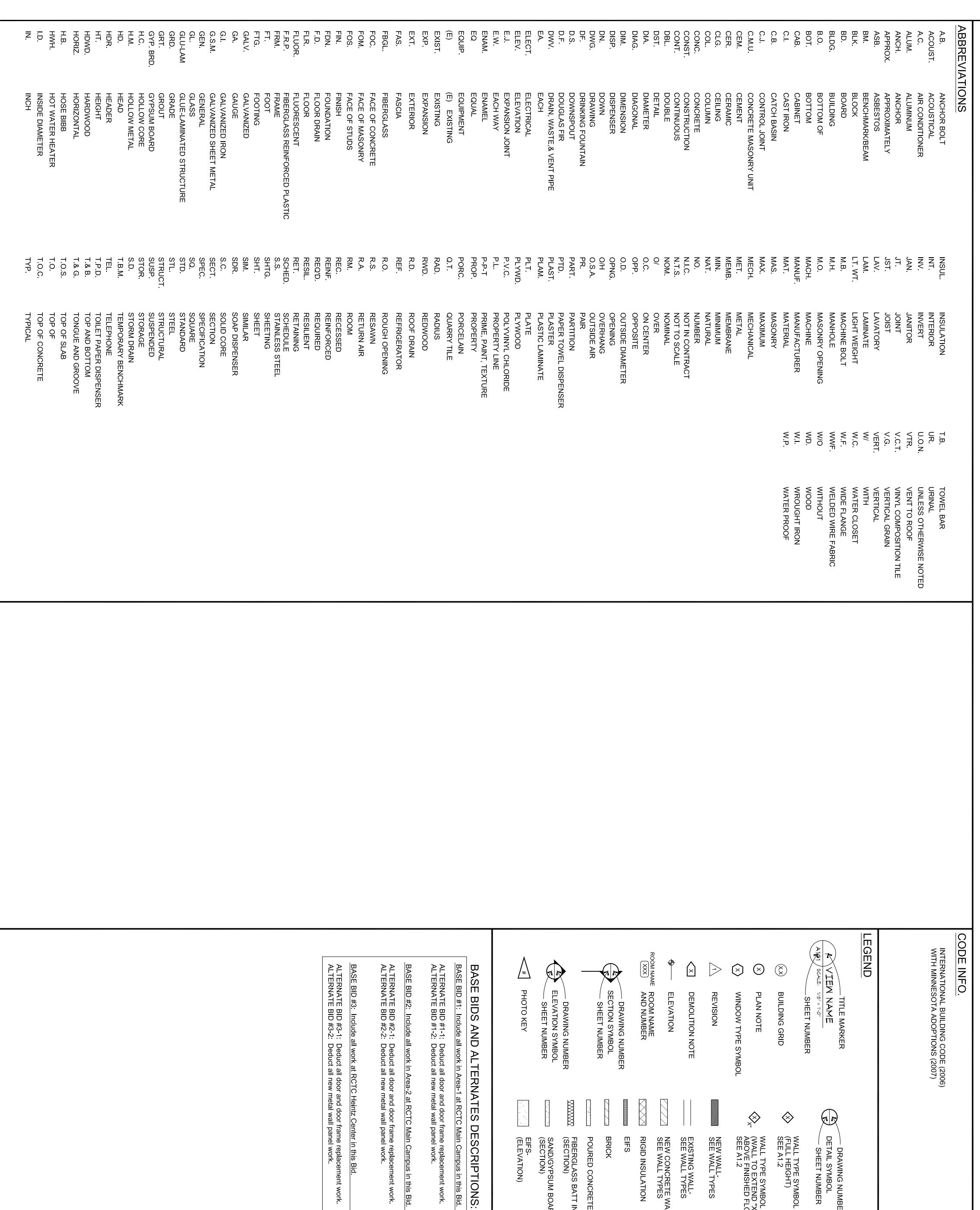

OF	SHEET	KJA PROJECT#
8	A000	2012204

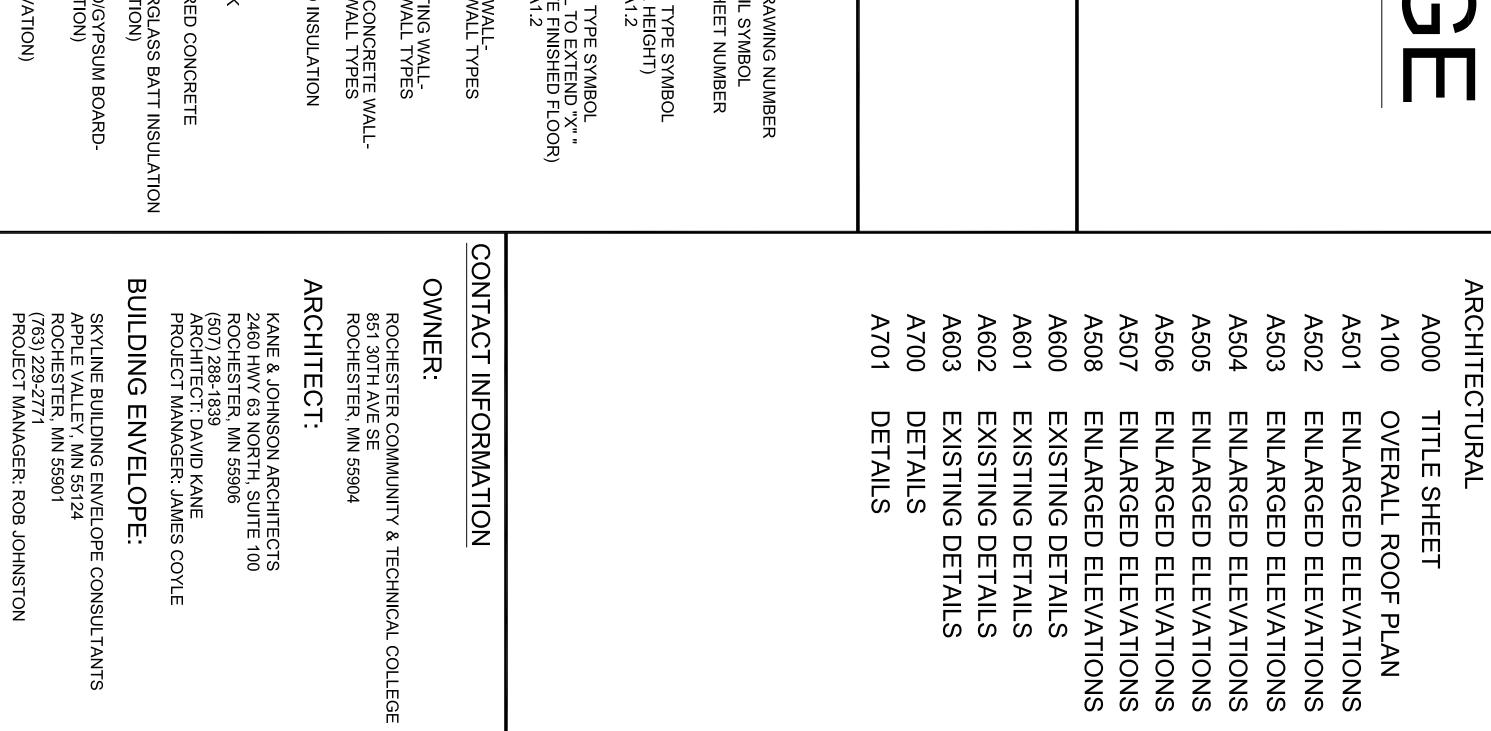

ISSUE DATE:


5/22/12









SHEET INDEX

%5 30TH S m ROCHESTER, MN 55904

REPAIRS Note that the second se

The drawing is conditionally issued and improduction or used any technical design agreement from the responsible architect.

CONSULTANTS

SKYLINE BUILDING ENVELOPE CONSULTANTS

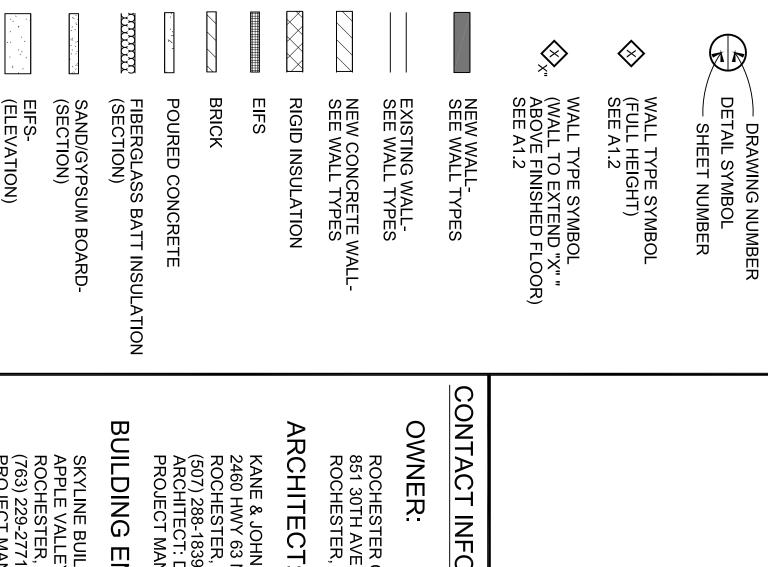
15050 CEDAR AVE S #116-333
APPLE VALLEY, MN 55124

Structural Design Group

REVISIONS

I hereby certify that this Plan, Specification or Report was prepared by me or under my direct supervision and that are a way licensed Architectunder the daws of the state of Minnessa.

Name

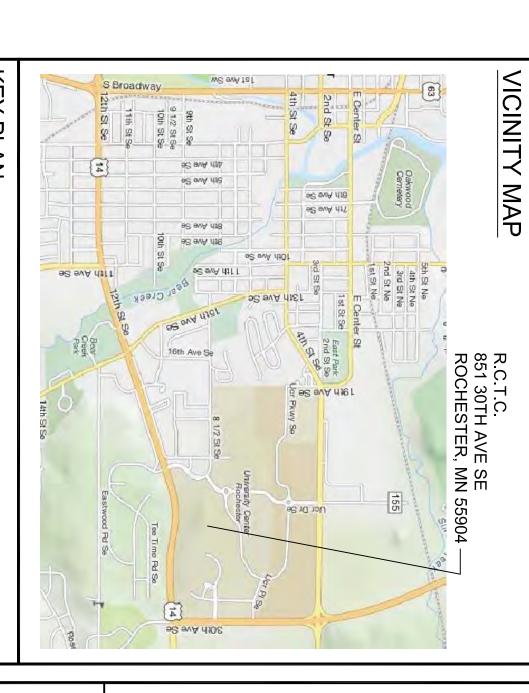

Lic. No. 1

KANE AND JOHNSON ARCHITECTS, INC.

2460 HIGHWAY 63 NORTH SUITE 100
ROCHESTER, MN 55906
PH (507) 288-1839 FAX (507) 288-1830

2469 UNIVERSITY AVE WEST ST. PAUL, MN 55114 PH (651) 644-8224 FAX (651) 644-8084

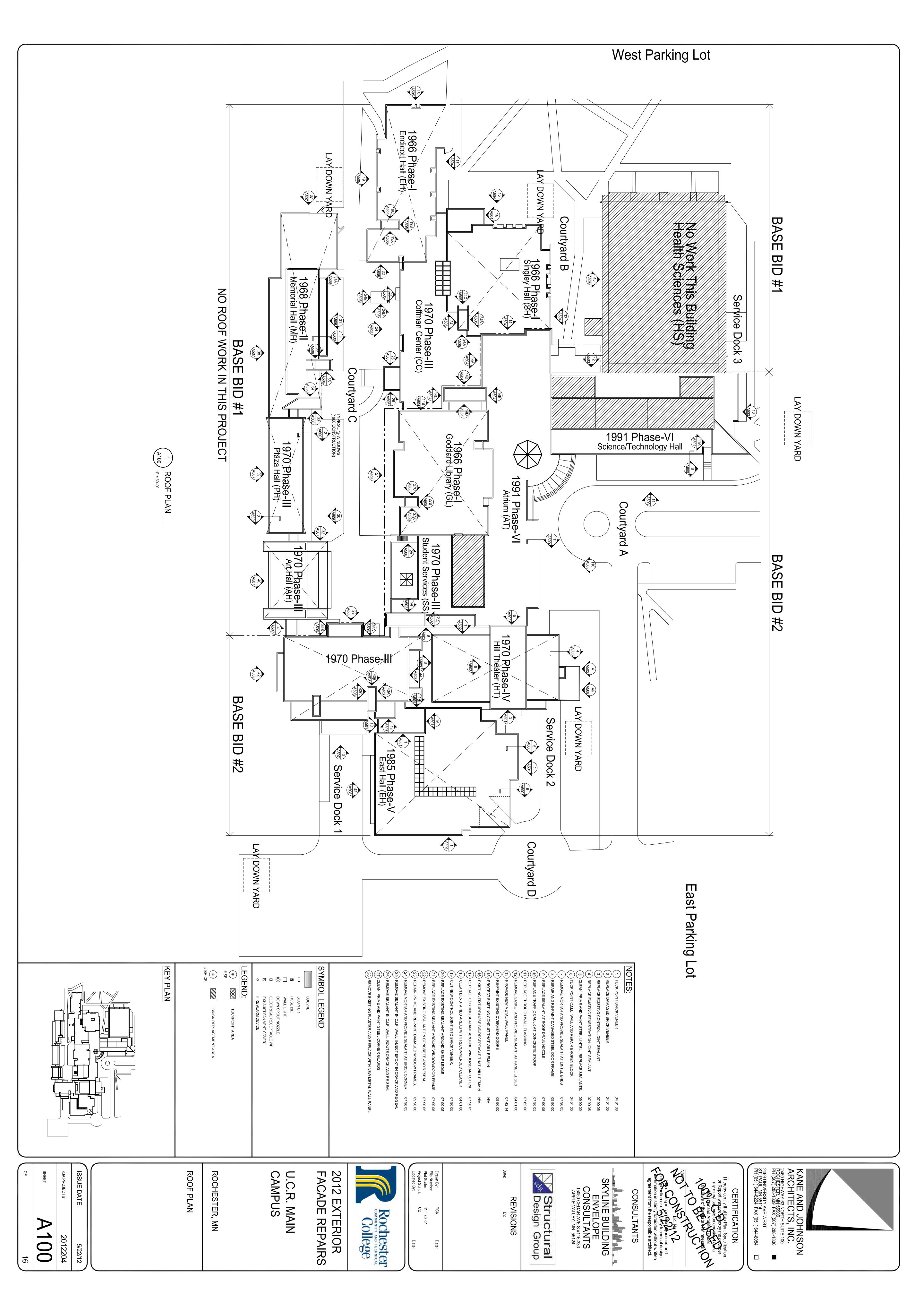
CERTIFICATION

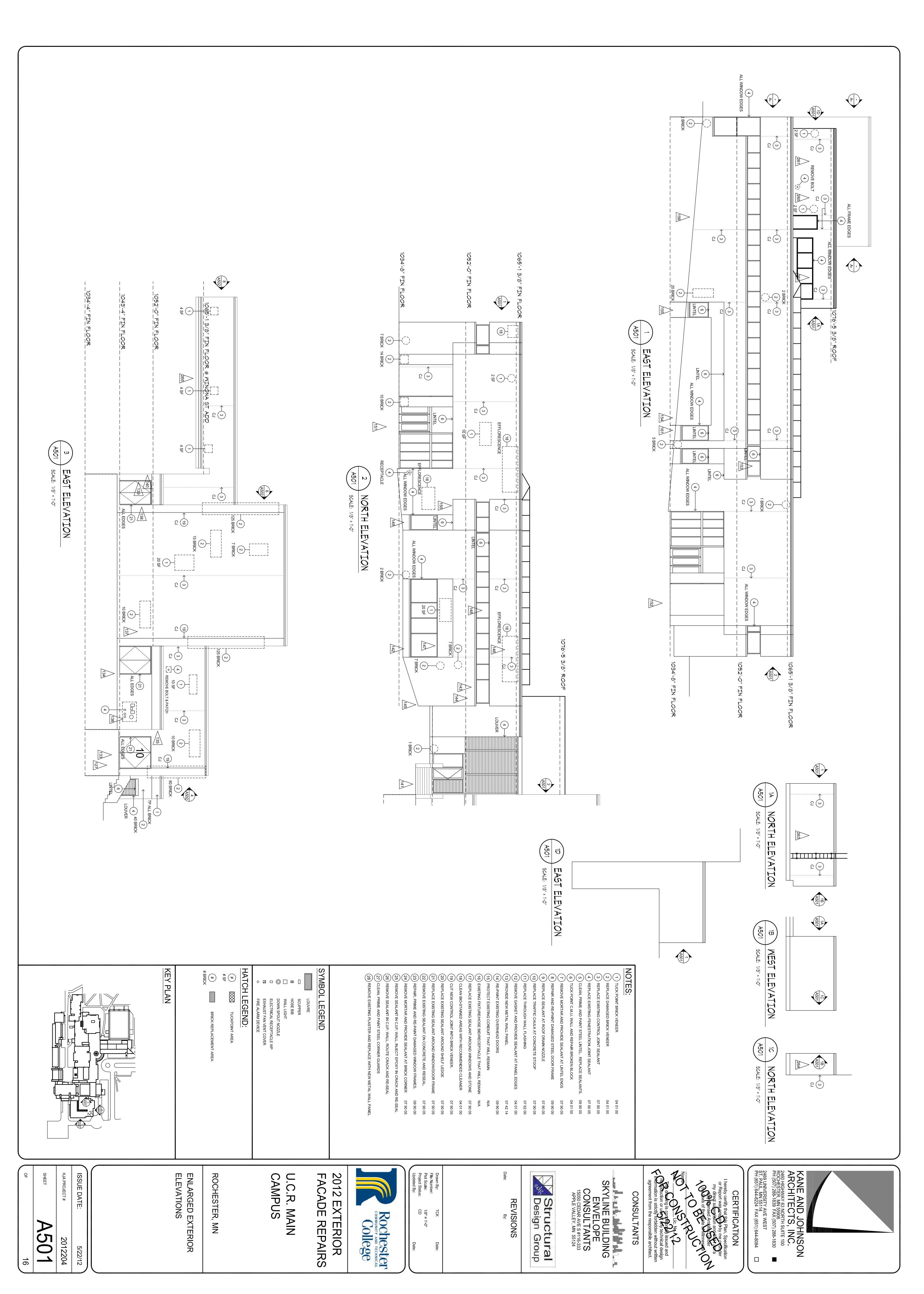


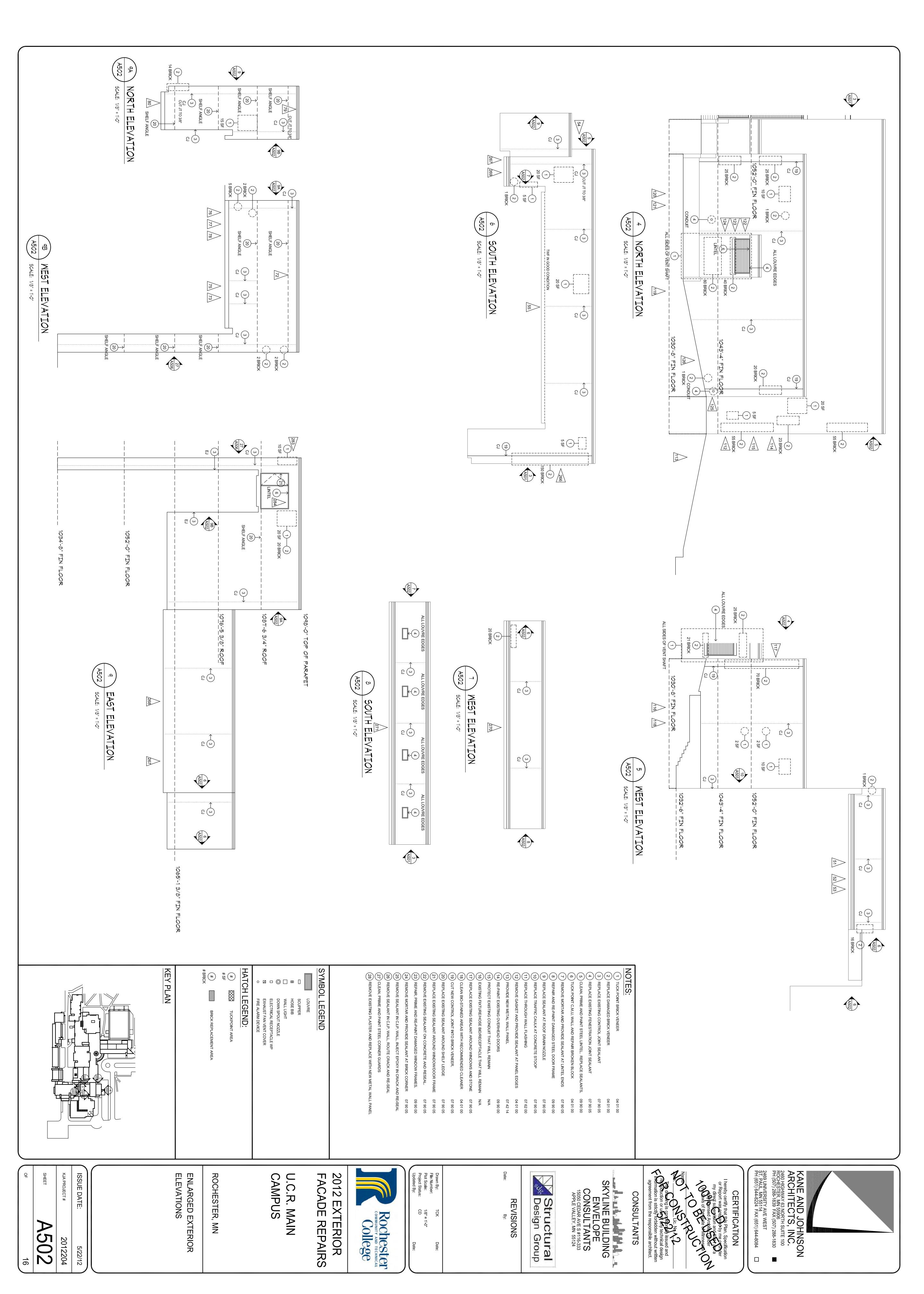
1' = 1'-0" CD

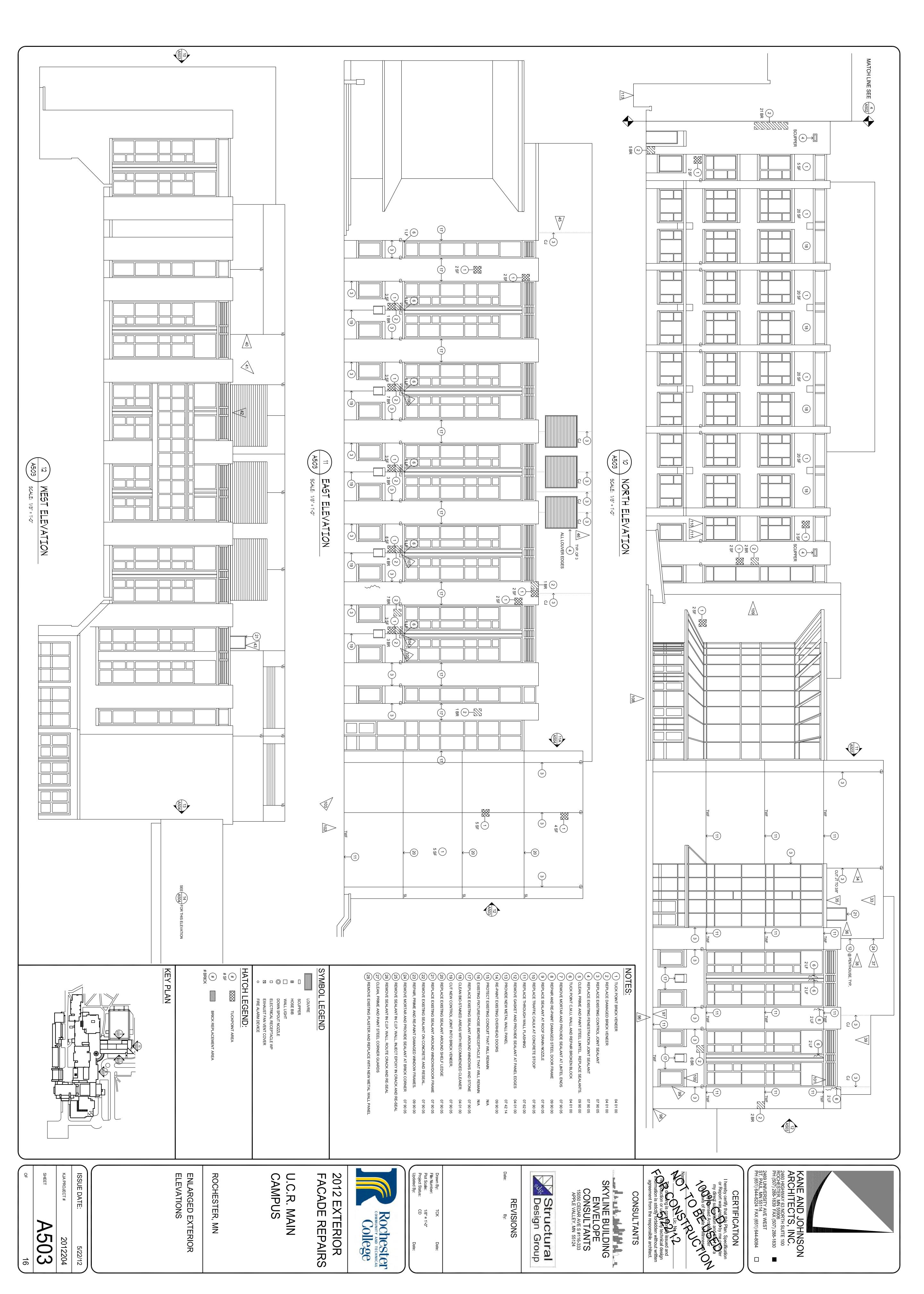
Rochester

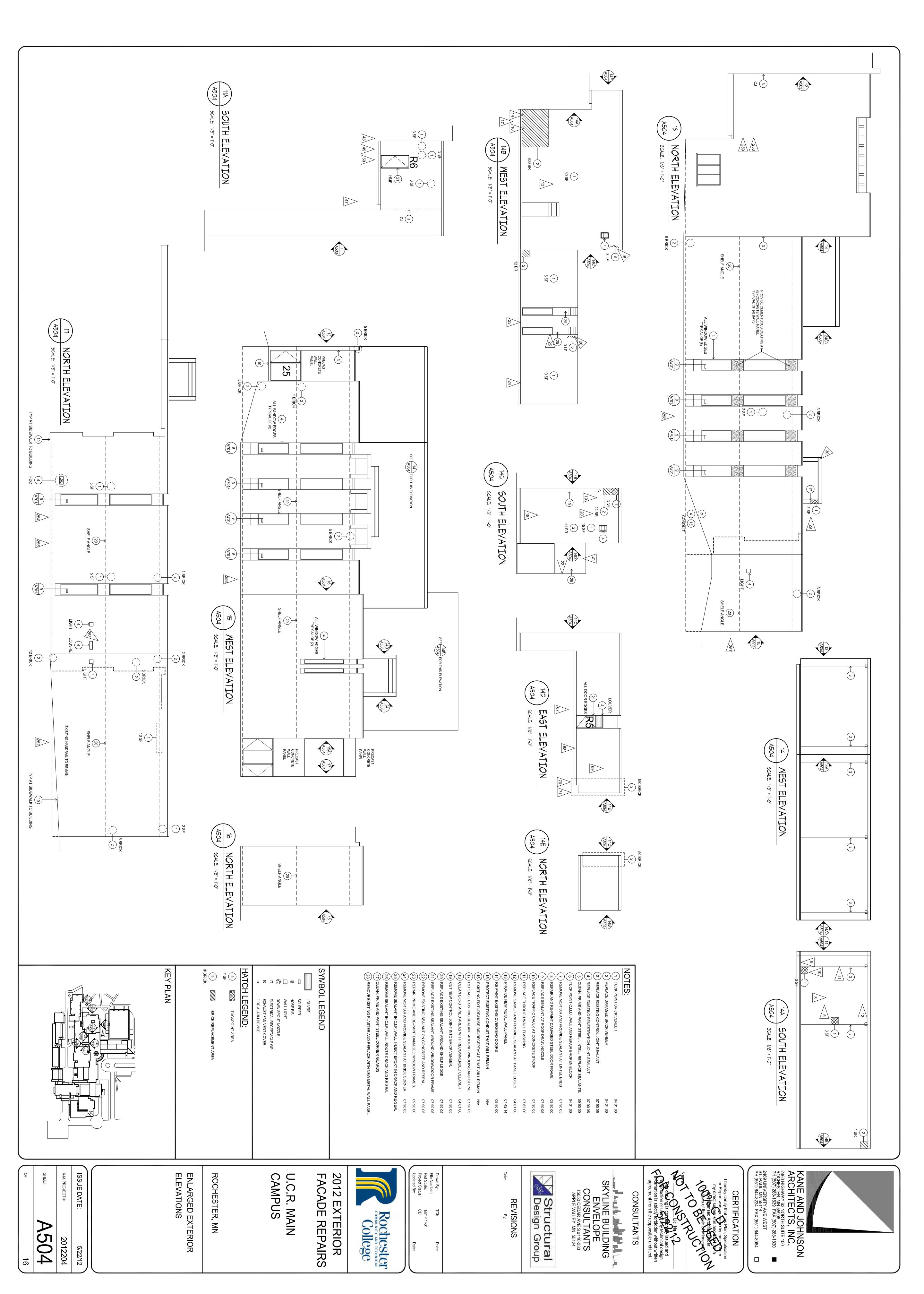
College

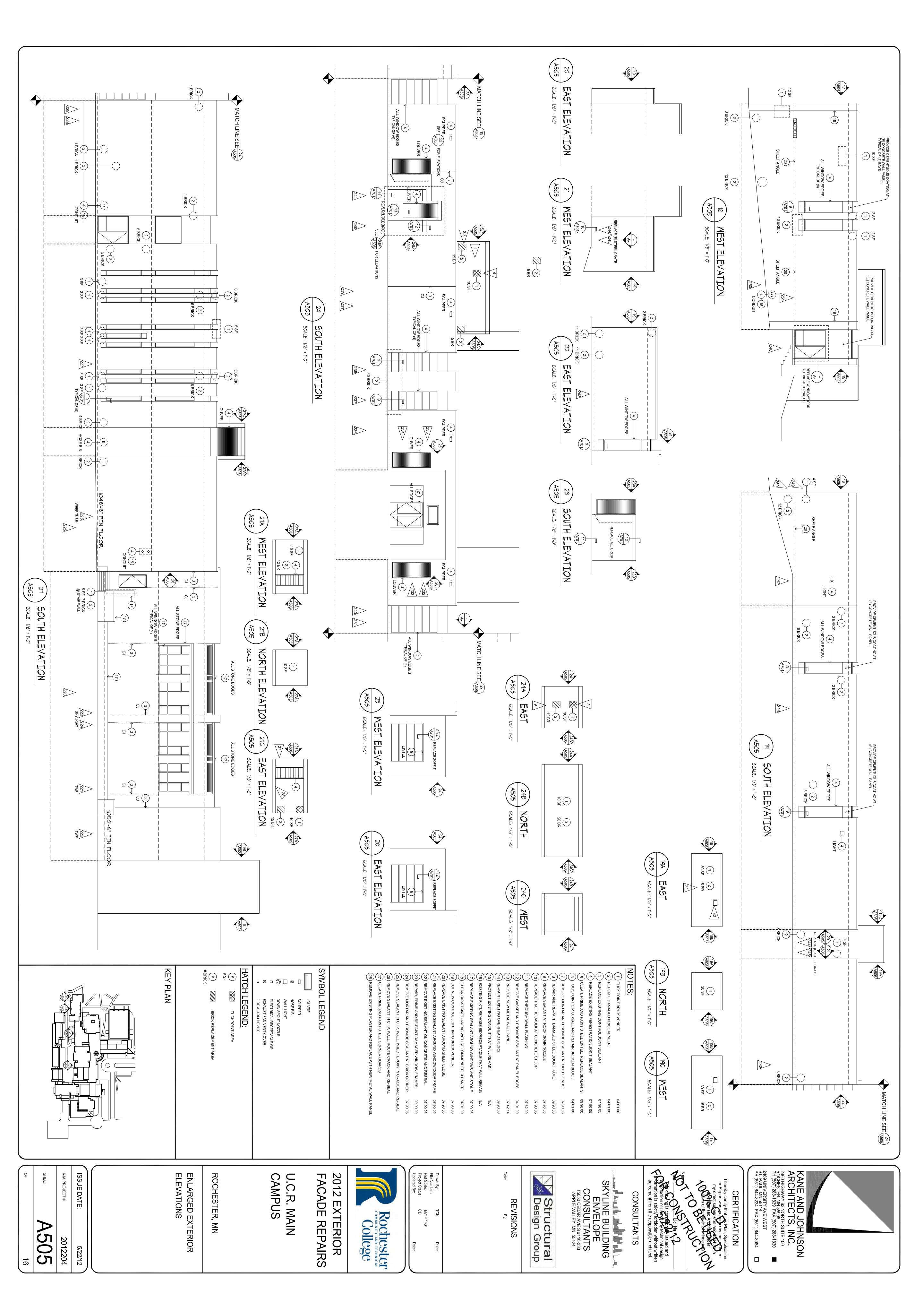


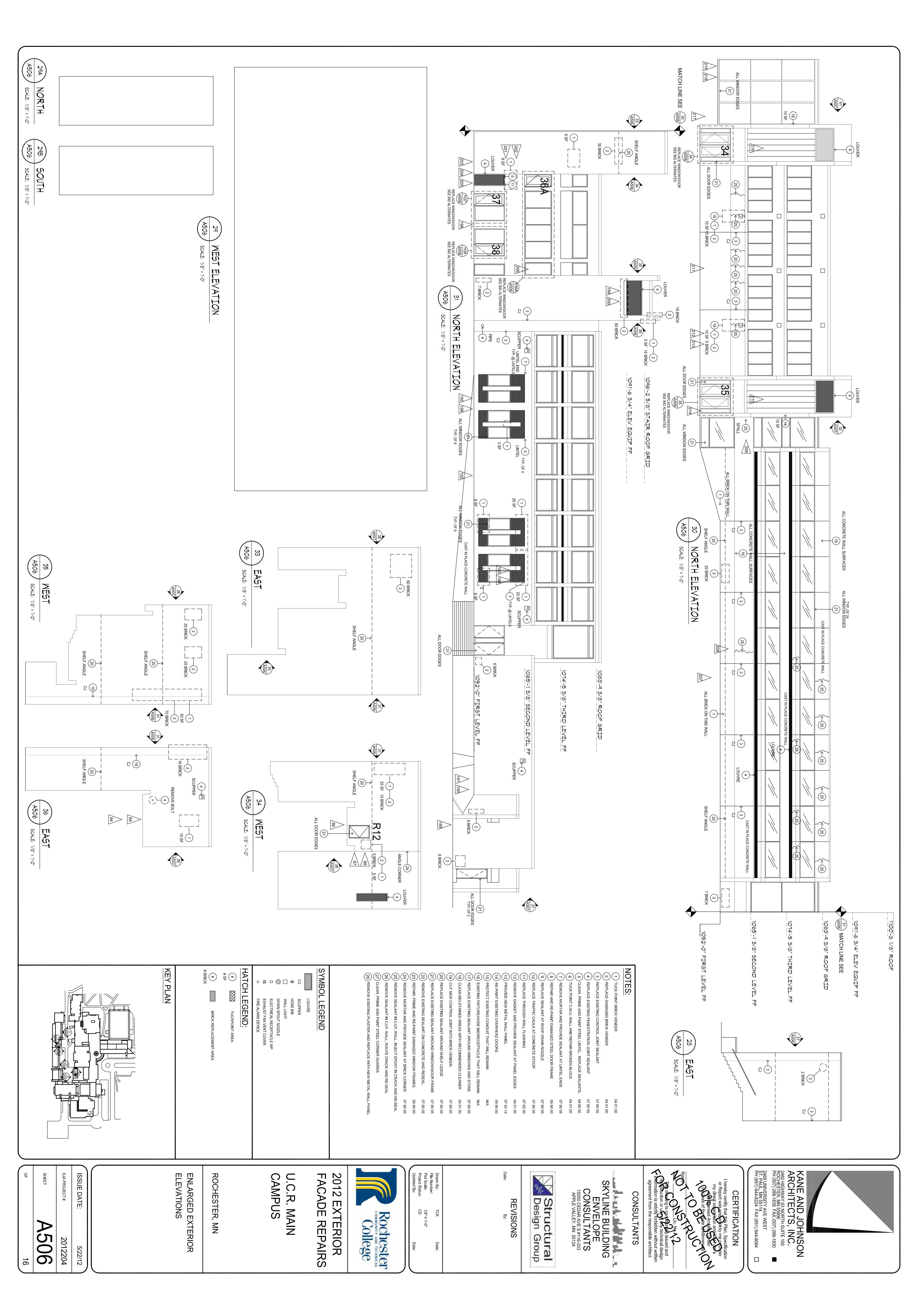

KEY PLAN

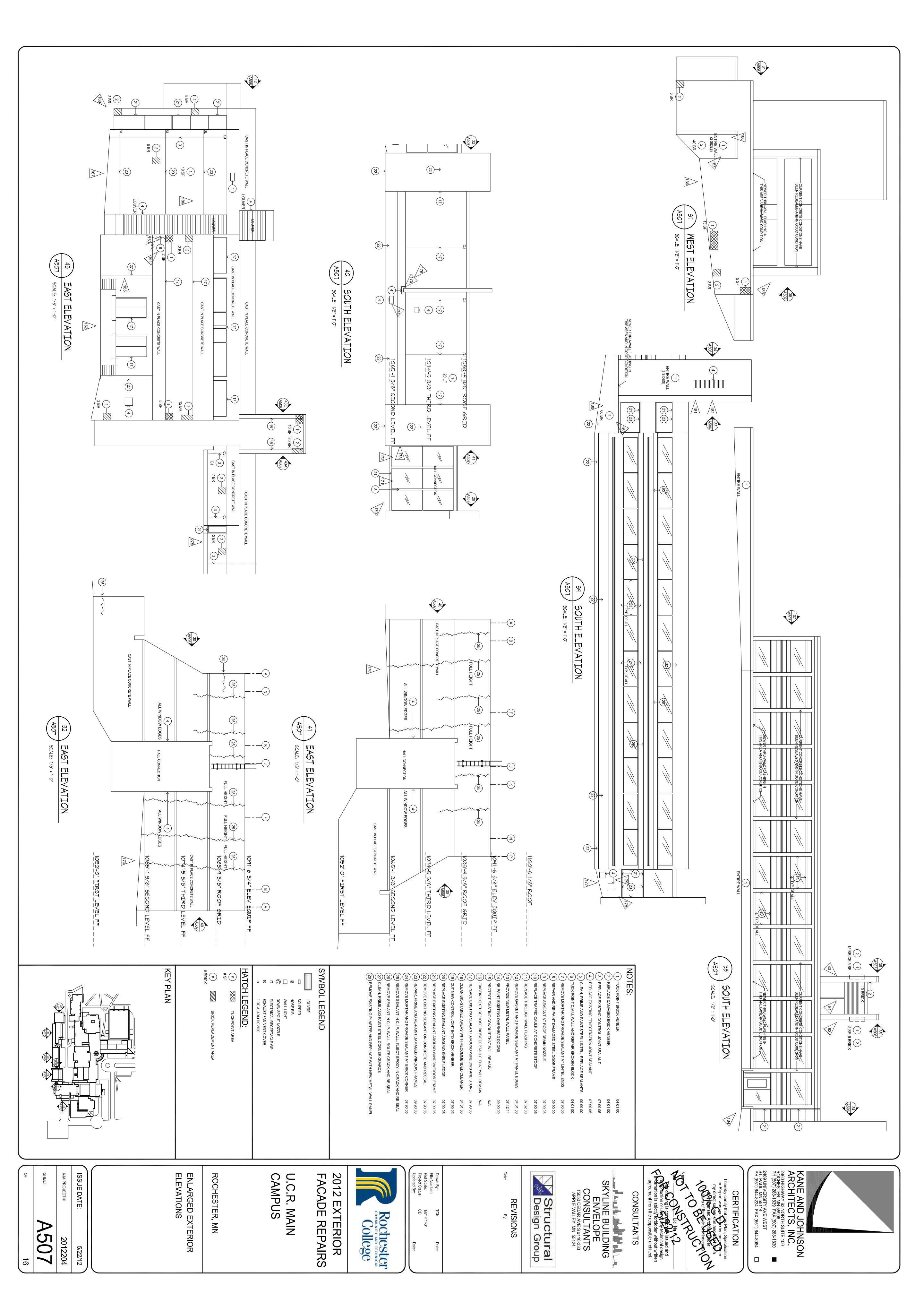

Farmond Baron		Pkwy Se University Cente Rochester Avy 4106	C. OTH AVE SE HESTER, MN 55904———————————————————————————————————	
	ROCHESTER, MN	U.C.R. MAIN CAMPUS	2012 EXTERIOR FACADE REPAIRS	

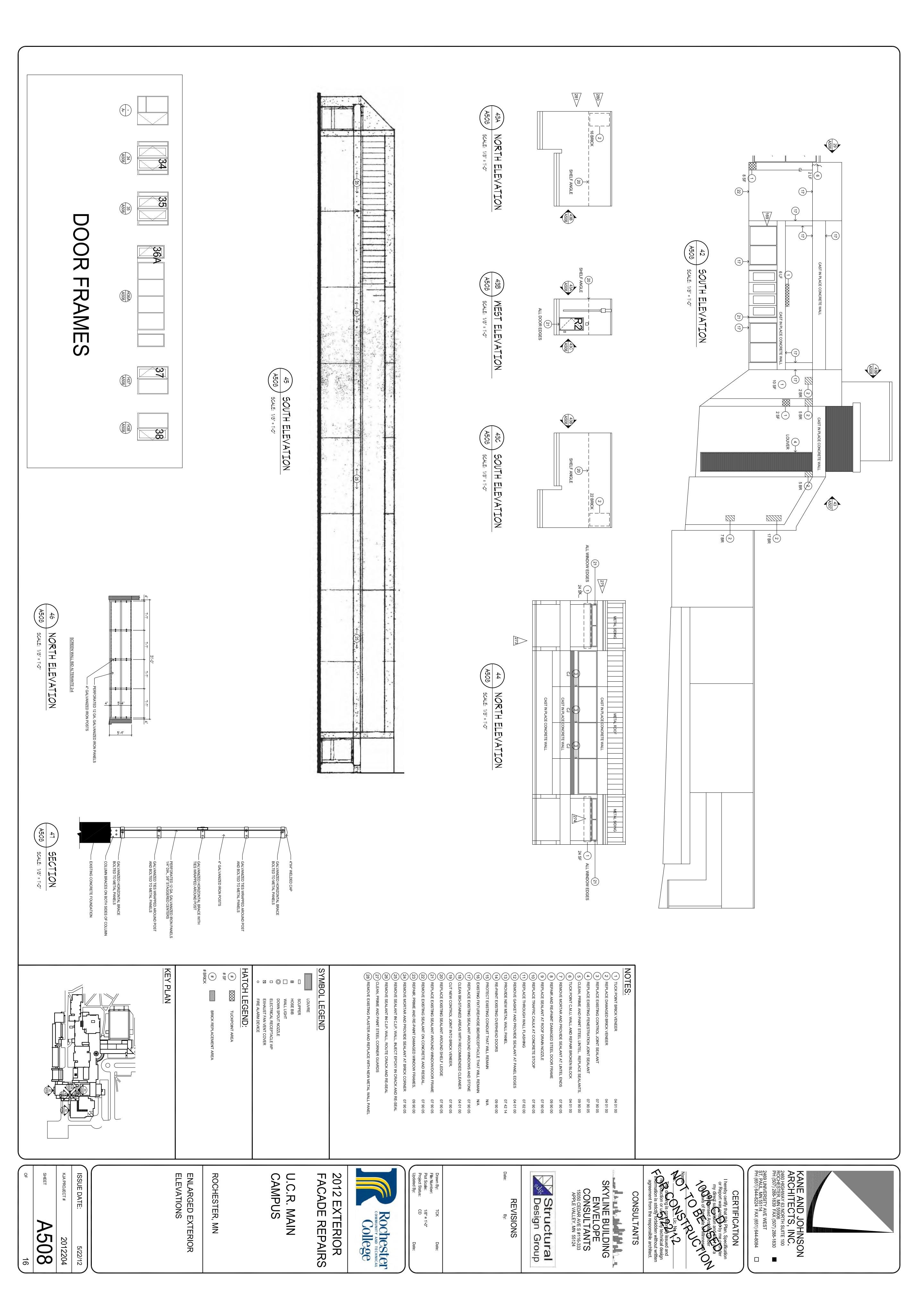

) SHEET	КЈА PROJECT# 2012204	ISSUE DATE: 5/2	
5	2204	5/22/12	

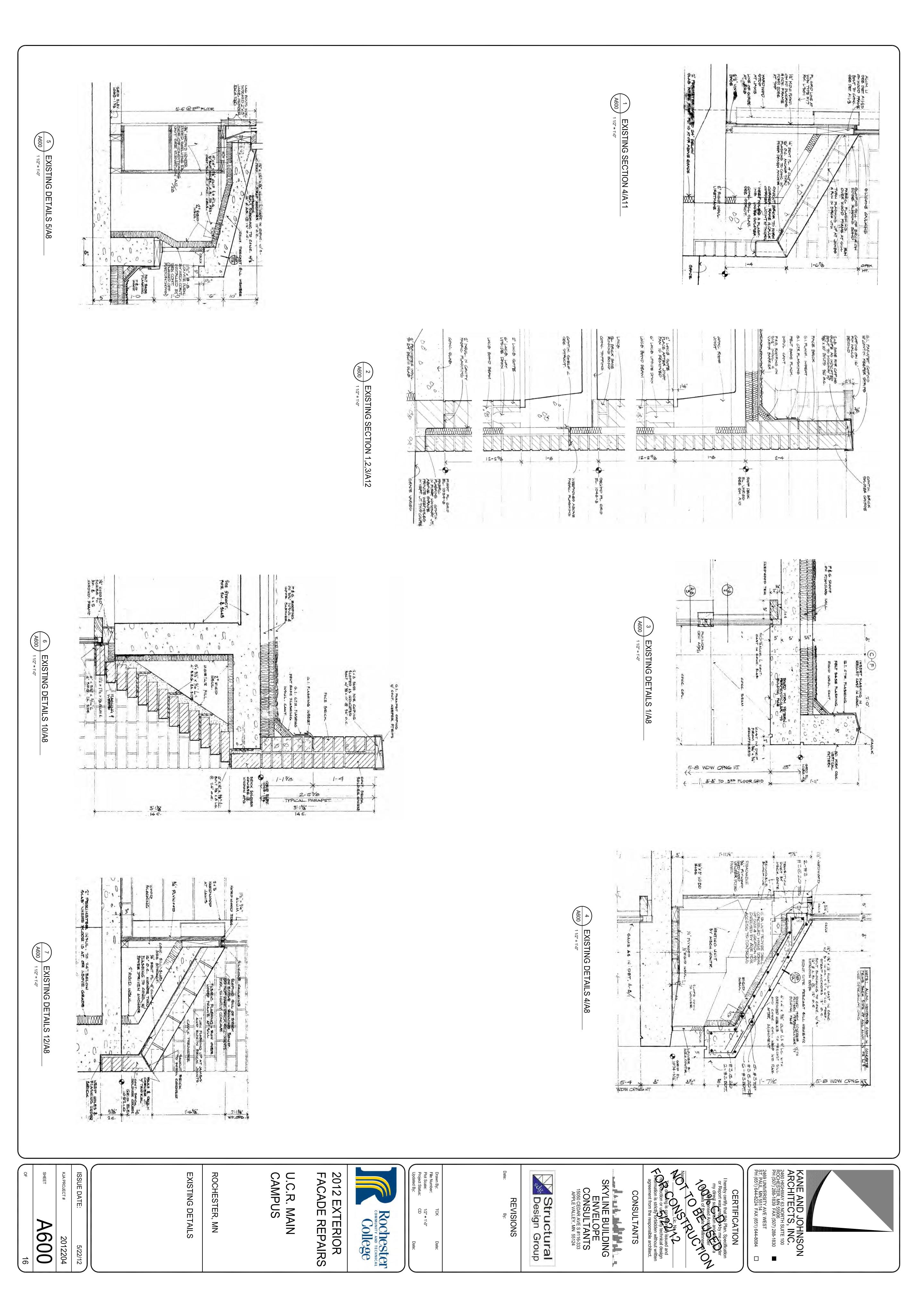

16

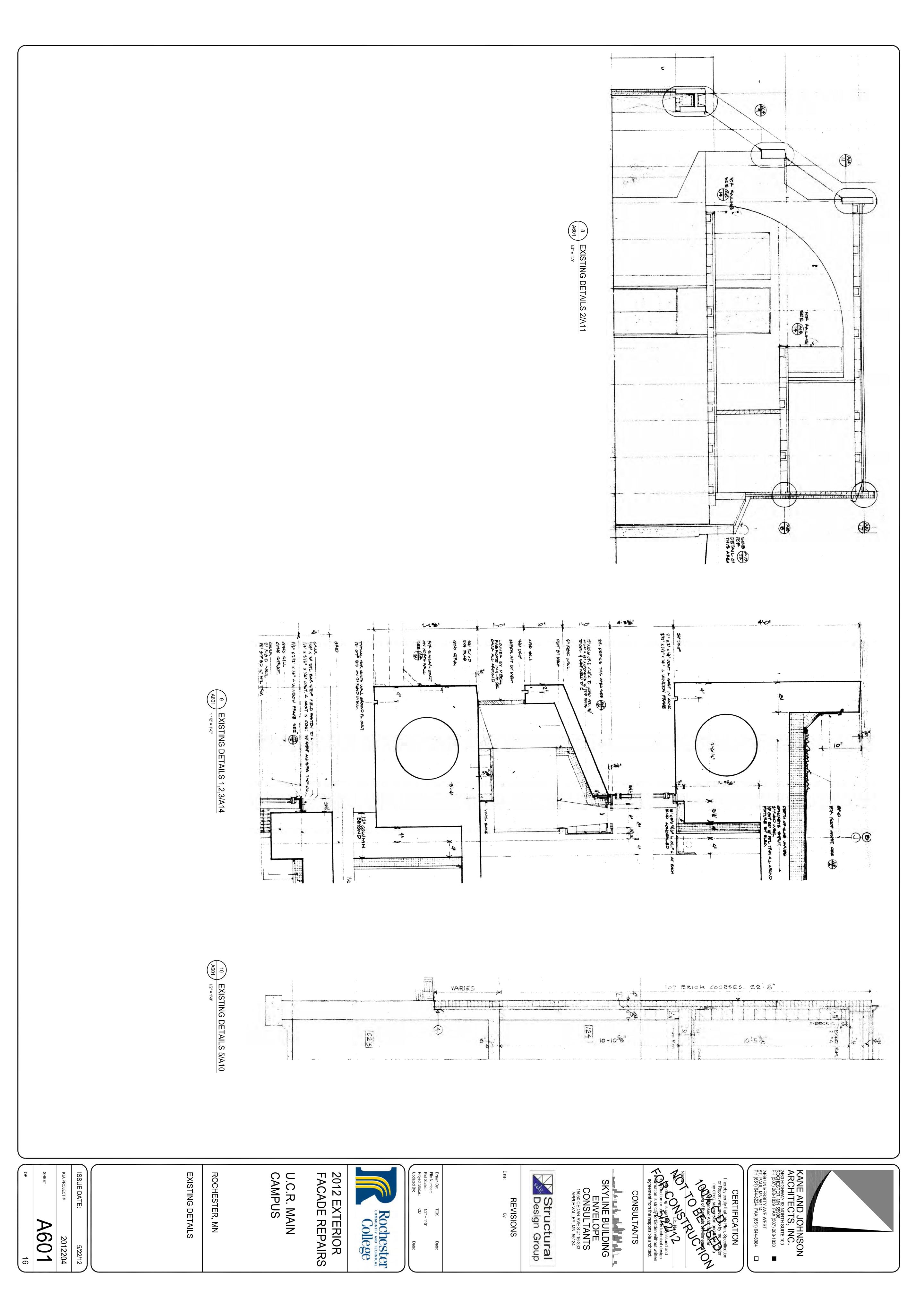


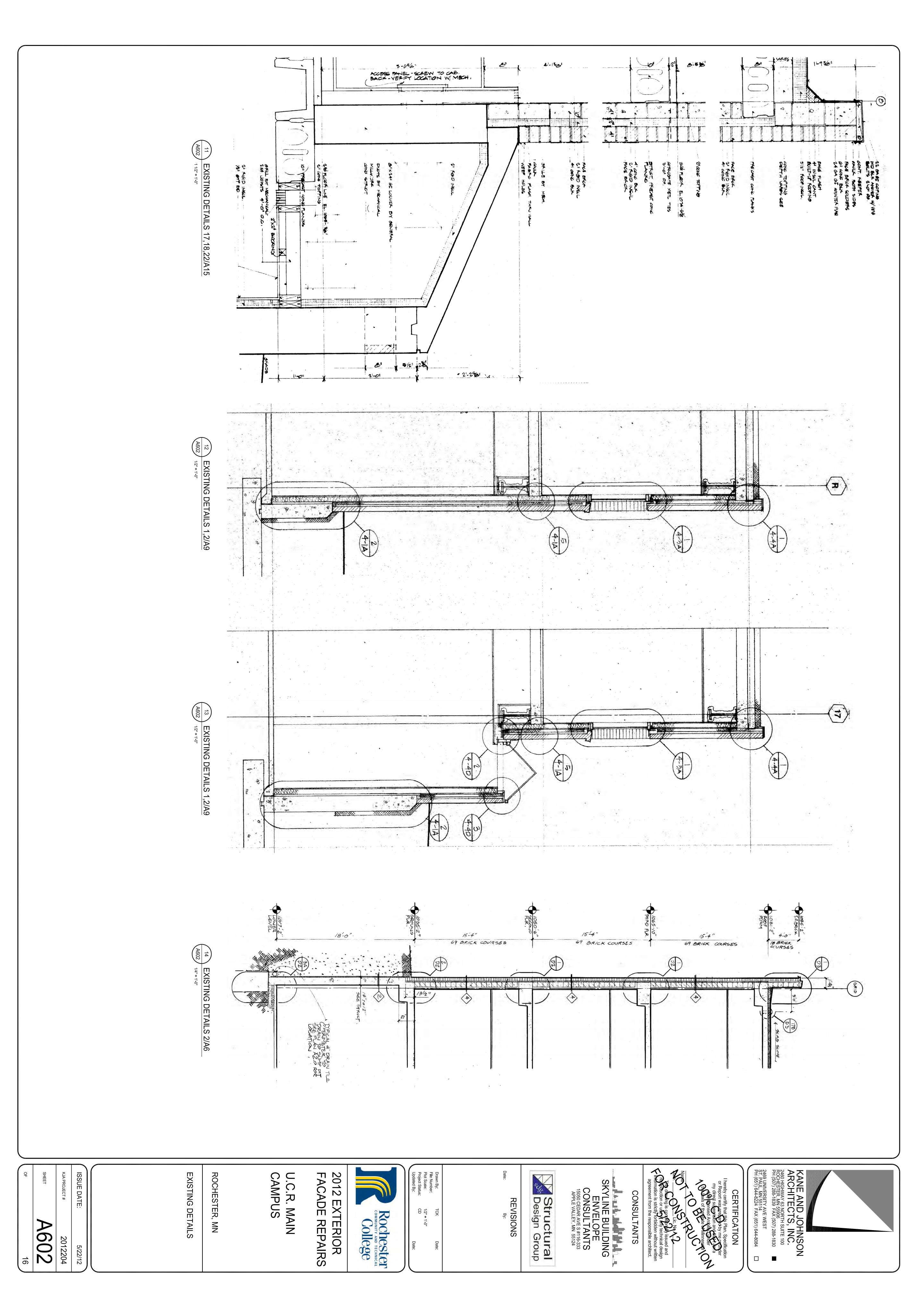


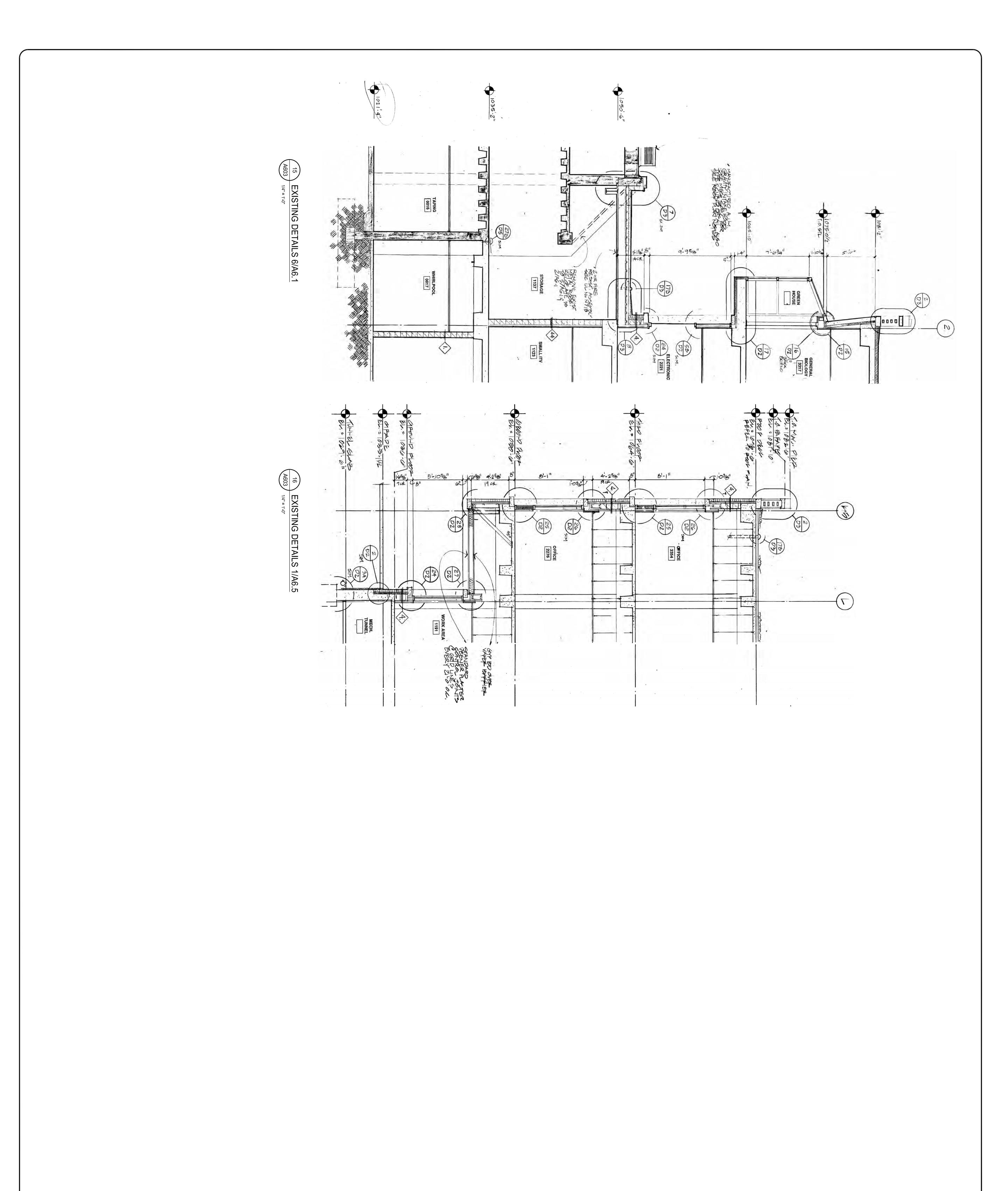


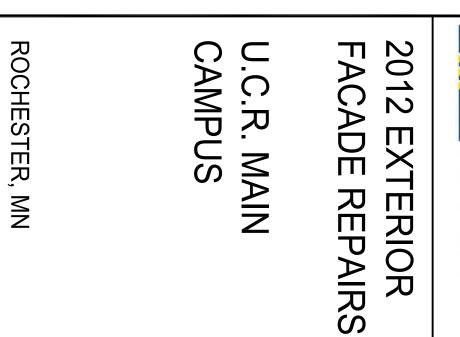




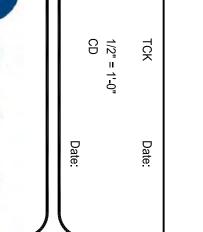


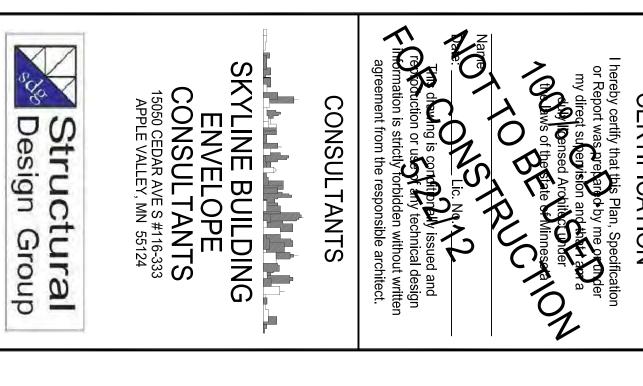


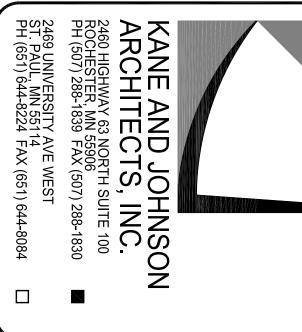


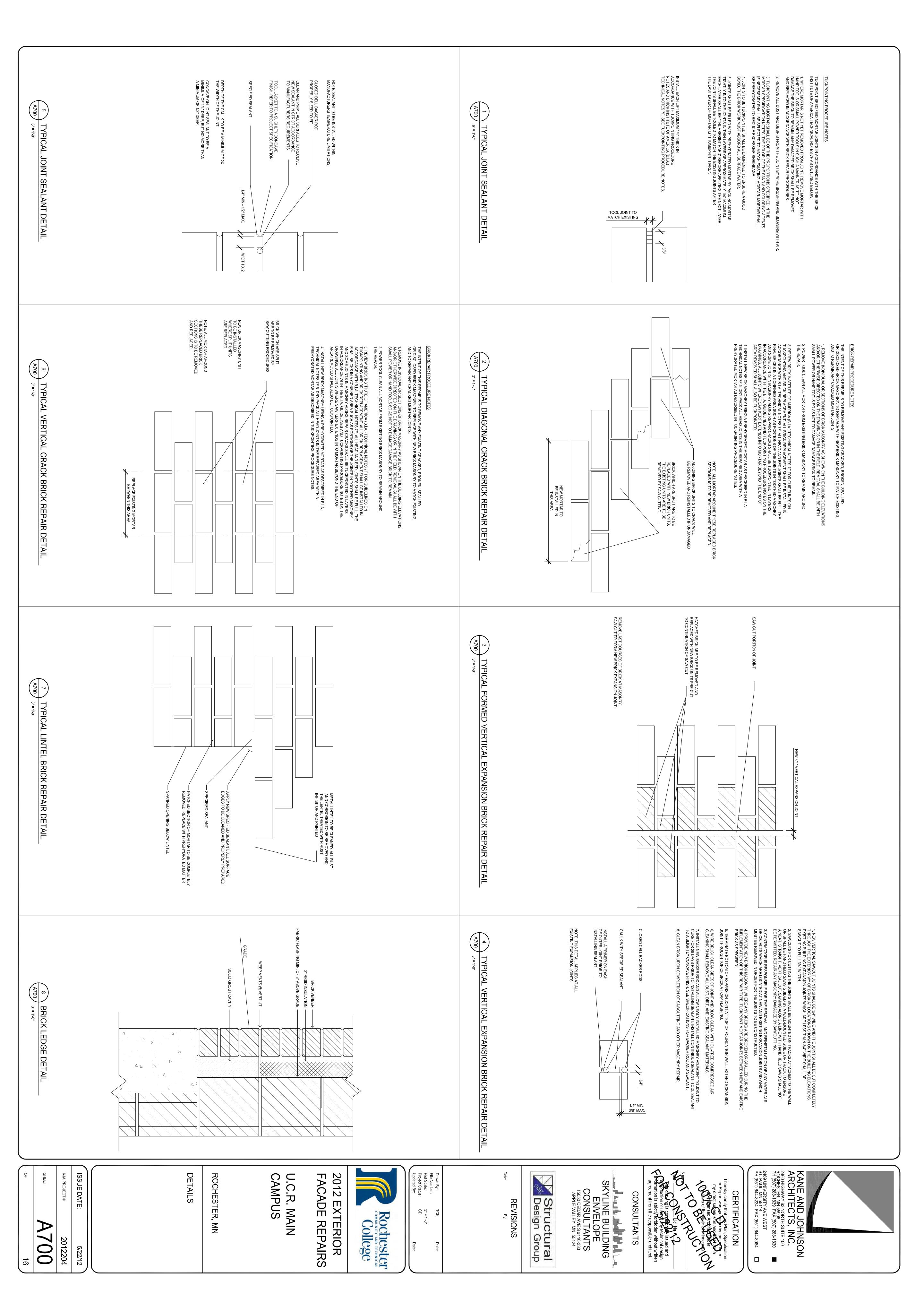


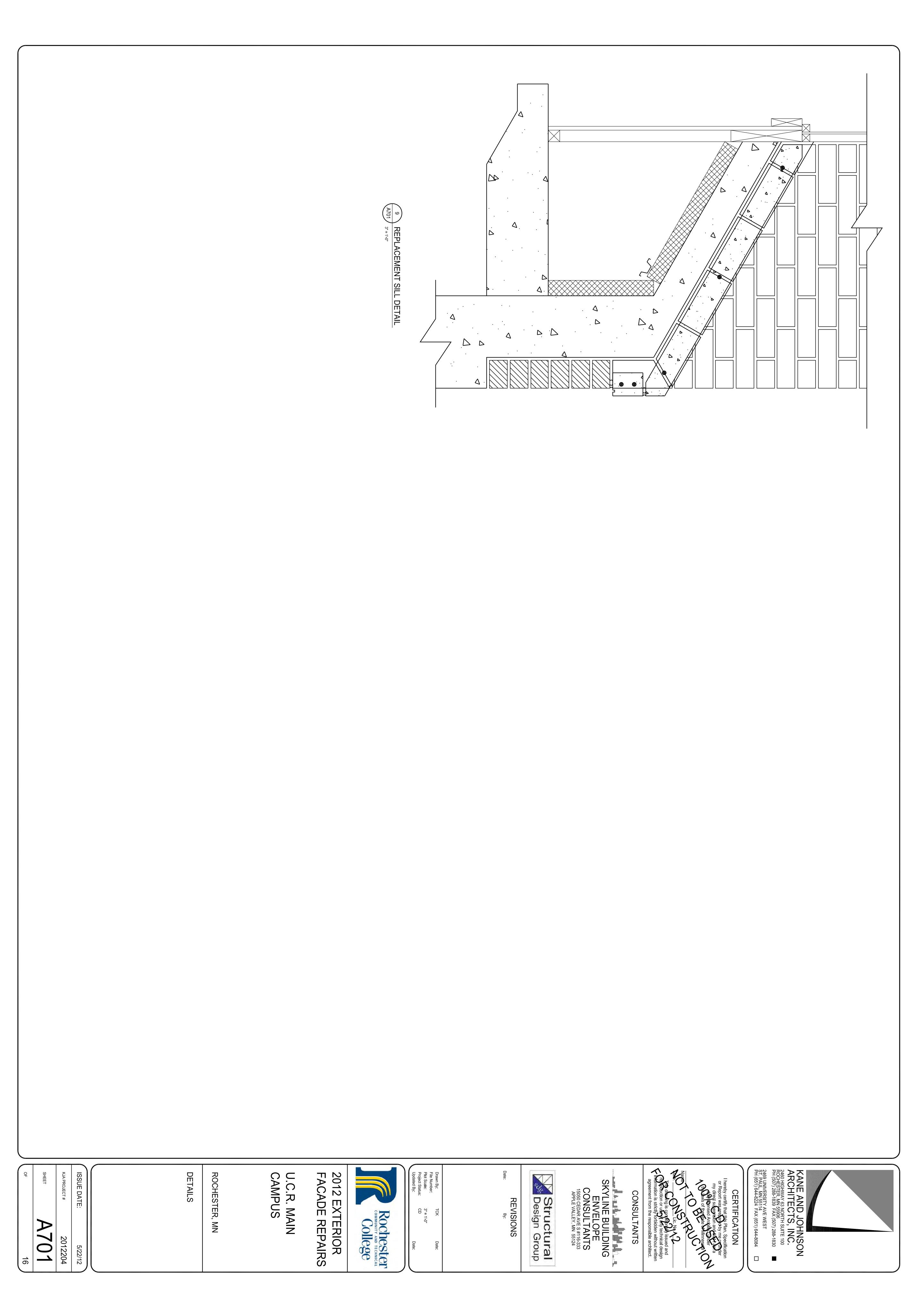
ISSUE DATE: A603 2012204 5/22/12


EXISTING DETAILS








REVISIONS

Project Construction Cost Estimate for:

Rochester Community & Technical College: 2012 Exterior Repairs @ Heintz Center Architect's #2012-204

Work Scope (MASONRY TUCKPOINT)

_	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Masonry Tuckpointing	4012	\$8	SF	3000	\$24,000.00	based on common running bond
TOTAL COST					\$24,000.00	

Work Scope (MASONRY RE-BUILD, TWF, WEEP SYSTEM and OTHER FLASHINGS)

	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Selective Demolition	4910	\$11	VLF	750	\$7,875.00	replace 5-brick for thru-wall
Debris Disposal	2200	\$70	TON	5	\$350.00	
4x2x8 Brick	4211	\$18	SF	2100	\$37,800.00	based on common running bond
Weep System	7600	\$9.00	LF	200	\$1,800.00	
Thru Wall Flashing	7600	\$90.00	LF	200	\$18,000.00	
TOTAL COST					\$65,830.00	

Work Scope (CAULKING REPLACEMENT)

	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Caulking Demolition	7900	\$2	LF	10000	\$21,000.00	
Caulking Replacement	7900	\$3	LF	10000	\$30,000.00	
TOTAL COST					\$51,000.00	

Work Scope (NEW METAL WALL PANEL)

	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Debris Disposal	2200	\$70	TON	7	\$490.00	
Plaster Demolition		\$4	SF	1500	\$6,000.00	
Water Proofing		\$2.50	SF	1500	\$3,750.00	
Flashing Repair		\$8	LF	250	\$2,000.00	
CMU Block Repair		\$12.00	SF	200	\$2,400.00	
Metal Wall Panel and Girt Framing		\$25.00	SF	1500_	\$37,500.00	_
TOTAL COST					\$52,140.00	

Work Scope (LINTEL REPLACEMENT)

_	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Demolition		\$9	SF	0	\$0.00	
Steel Support Systems		\$6	SF	0	\$0.00	
Replacement Lintels		\$25	SF	0	\$0.00	
TOTAL COST					\$0.00	

Work Scope (PAINTING)

	CSI	COST	UNIT	TAKEOFF	TOTAL	DESCRIPTION
Surface Preparation		\$3	SF	500	\$1,500.00	
Paint Steel Frames & Lintels		\$6	SF	500	\$3,000.00	
TOTAL COST					\$4,500.00	

Total Work Scope Cost Basis

Masonry Tuckpoint	\$24,000.00
Masonry Rebuild - TWF,WS & F	\$65,830.00
Caulking Replacement	\$51,000.00
New Metal Wall Panel System	\$52,140.00
Lintel Replacement	\$0.00
Painting	\$4,500.00
TOTAL COST	\$197,470.00

Contractor Cost Basis

Mobilization ON & OFF SITE					\$9,873.50 Based on 5% of Scope Total
General Project Conditions					\$9,873.50 Based on 5% of Scope Total
Overhead & Profit					\$19,747.00 Based on 10% of Scope Total
Insurance					\$2,962.05 Based on 1.5% of Scope Total
Bonding					\$2,962.05 Based on 1.5% of Scope Total
Equipment Rental		700	WEEK	8	\$5,600.00 Lift/Reach per 8-weeks
Scaffolding	1500	\$83.50	CSF	215	\$17,952.50 Rented installed/teardown
Swing Staging (24' section per month)	1540	\$1,350.00	EA	1.5	\$2,025.00 Rented installed/teardown
Fencing	1560	\$5.05	LF	500	\$2,525.00 Rented installed/teardown, 6'
TOTAL COST					\$73,520.60

Total Cost This Project

Total Work Scope Cost Basis \$197,470.00
Contractor Cost Basis \$73,520.60

Architect/Engineer Cost Basis NIC
10% Contingency \$19,747.00
Escalation Factor (use 3% for prior year estimate) NIC
Location Factor (use 12.2% for Minneapolis) NIC

\$290,737.60 TOTAL

Issue Date: 4-17-2012

HEAPR MANUAL Heintz Lighting Upgrades

Req. No.: 16

Institution Rochester Community and Technical College Date: December 2020

Campus/Building Heintz Center Building

Project Location Rochester, MN

General Classifica	ation of All Work (Provide	e est. construction costs by "classification of work")
\$	Exterior Envelope	(exterior roof, walls, windows, exterior doors)
\$	Building Interior	(ceilings, walls, non-painted wall finishes, floors, floor finishes, interior doors)
\$	Fire Suppression	(sprinkler systems, components, piping, equipment)
\$	Plumbing	(plumbing systems, components, piping, fixtures, equipment)
\$	HVAC	(HVAC systems, components, piping, equipment, heating & cooling plants)
\$108,700	Electrical	(Electrical systems, power distribution, lighting, equipment)
\$	Life Safety and Security	(Fire alarm systems, public address, building security)
\$108,700	Total	

General Description of Existing Conditions and All Work

The Heintz Center has fluorescent downlights installed throughout significant portions of the building including corridors and classrooms. The fixtures provide poor light quality, cover less area and thus more downlights are required, and are less energy efficient. The project will replace the downlights with fewer new 2x2 LED light fixtures in the majority of public areas.

Project Title – Heintz Center Lighting Upgrades

<u>Priority Project(s) and General Work Description</u>: (Provide estimated <u>construction</u> costs for specific priority project with general description)

\$108,700 Heintz Center Lighting Upgrades

\$ \$

\$108,700 Total

Explain how the project will reduce the backlog of Deferred Maintenance identified for your Campus:

Replace old fixtures, and reduce energy consumption and long-term maintenance.

Supporting Materials (Master Plans, Reports, Design Documents as available from campus)

1 2020 Lighting Study & Cost Estimate - TKDA

HEAPR2020 Page 1 of 1

444 Cedar Street, Suite 1500 Saint Paul, MN 55101 651.292.4400 tkda.com

LIGHTING STUDY HEINTZ CENTER ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

June 19, 2020

The owner has requested budget pricing to replace the existing light fixtures in public spaces within Heintz Center. It would be recommended some of the light fixture styles be changed within the corridors for a more modern look.

The fixtures were mostly fluorescent fixtures using a combination of T5 and T8 lamps. Some small areas have been updated with LED fixtures.

Lighting control at all modified spaces would also need to be upgraded to meet the current energy code. Until a fixture is selected, lighting control pricing is difficult to determine, however \$1.75 per sq/ft could be used for budgeting.

All downlights replaced with 6" LED downlights:

30 fixtures x \$150.00ea = \$4,500.00 material cost.

Installation approximately \$80.00 per fixture for direct replacement. $$80.00 \times 30 = $2,400.00$

Total cost not including OH &P, taxes etc. = \$6,900.00

2'x2' fluorescent replaced with 2'x'2 ' LED troffers:

2'x2' LED troffer: 20 fixtures x \$95.00 = \$1,900.00Installation approximately \$125.00 per fixture. $$125.00 \times 20 = $2,500.00$

Total cost not including OH &P, taxes etc. = \$4,400.00

2'x4' fluorescent replaced with 2'x4' LED troffers:

2'x4' LED troffer: 246 fixtures x \$100.00 = \$24,600.00 Installation approximately \$125.00 per fixture. \$125.00 x 246 = \$30,750.00

Total cost not including OH &P, taxes etc. = \$55,350.00

14"x14" up-lights replaced with similar LED fixture (commons area):

LED fixture 16 fixtures x \$250.00 = \$4,000.00Installation approximately \$175.00 per fixture. $$175.00 \times 16 = $2,800.00$

Total cost not including OH &P, taxes etc. = \$6800.00

RCTC Lighting Study Heintz Center June 19, 2020 Page 2

Corridor up/down fixtures replaced with similar LED fixture:

LED fixture 27 fixtures x \$250.00 = \$6,750.00Installation approximately \$175.00 per fixture. $$175.00 \times 27 = $4,725.00$

Total cost not including OH &P, taxes etc. = \$11,475.00

Corridor parabolic wall-wash fixtures replaced with similar LED fixture:

LED fixture 25 fixtures x \$225.00 = \$5,625.00 Installation approximately \$125.00 per fixture. \$125.00 x 25 = \$3,125.00

Total cost not including OH &P, taxes etc. = \$8,750.00

Miscellaneous Fluorescent fixtures replaced with similar LED fixture:

LED fixture 50 fixtures x 175.00 = 8,750.00Installation approximately 125.00 per fixture. $125.00 \times 50 = 6,250.00$

Total cost not including OH &P, taxes etc. = \$15,000.00

Total cost for all fixtures:

Material = \$56,125.00 Labor = \$52,550.00

Total = \$108,675.00

APPENDIX

Full Facility Roof Reports and Campus Maps from System Office

Note: See individual project sheets where roofing reports were superseded.

Full Facility Roof Report

Prepared for:

CC-Concession Building

Prepared by:

Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Concession Building

Last Inspection Date: Sep 10, 2019

Facility: CC-Concession Building

Contact Name:

Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 10, 2019

Type of building:

Type of Neighborhood:

	Recommendation Details								
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount			
Area A	2020	Repair	No	Expense	Low	\$500			
Remove veg	Remove vegetation from around roof drains and install counterflashing at roof curb.								
						\$500			

Recommendation Summary									
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount			
Area A	2020	Repair	No	Expense	Low	\$500			
						\$500			

Roof Name:

Roof Size: 0 sq. ft.

Est. replacement Cost: \$0.00

Existing System Type: (EPDM-FA) Fully Adhered Ethylene-Propylene-Diene-Mono

Year Installed: N/A

Assessed Service Life 12

Remaining (Years):

Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak

Details:

Membrane Defects - Outstanding							
Defect Type	Severity	Quantity	Unit				
Defect #02	Repair	1	Ea.				

ID #2 OBSERVED: 6/22/2016, 9/10/2019

Missing counterflashing

REPAIR: Install counterflashing where missing at curb.

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #01	Repair	6	Ea.

ID #1 OBSERVED: 6/22/2016, 6/19/2017, 9/10/2019

Vegetation/debris

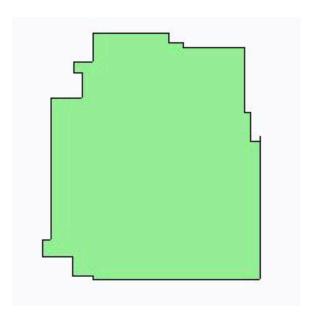
REPAIR: Remove vegetation from the roof area and around the roof drains.

Membrane Defects - Outstanding Continued						
Defect Type	Severity	Quantity	Unit			
Defect #03	Monitor	12	Ea.			

ID #3 OBSERVED: 6/22/2016, 9/10/2019

Low flashing height

REPAIR: Monitor for possible future repair.


Full Facility Roof Report

Prepared for:

CC-East Hall

Prepared by:

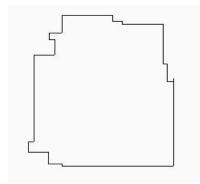
Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-East Hall

Last Inspection Date: Sep 10, 2019

Facility: CC-East Hall

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 10, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount	
EA	2020	Repair	No	Expense	Moderate	\$5,000	
Install additional aggregate surfacing in hot asphalt at areas where the original surfacing has eroded.							
						\$5,000	

Recommendation Summary							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount	
EA	2020	Repair	No	Expense	Moderate	\$5,000	
						\$5,000	

Full Facility Roof Report Facility: CC-East Hall E26148C1386 Roof - EA

Roof Name: E26148C1386

Roof Size: 16,129 sq. ft.

Est. replacement Cost: \$241,935.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

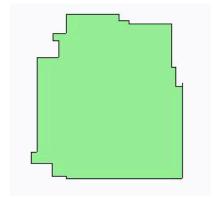
Year Installed: 2003

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:


Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

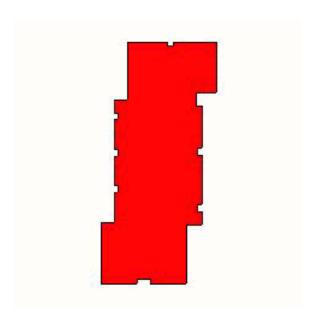
Full Facility Roof Report Facility:CC-East Hall E26148C1386 Roof - EA

Membrane Defects - Outstanding						
Defect Type Severity Quantity Unit						
Defect #01	Repair	20	Ea.			

ID#: 1 OBSERVED: 10/09/13, 9/1/2015, 6/19/2017, 9/10/2019

Surfacing loss with no membrane deterioration/damage

REPAIR: Restore surfacing


Full Facility Roof Report

Prepared for:

CC-Endicott Hall

Prepared by:

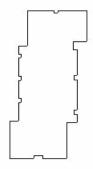
Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Endicott Hall

Last Inspection Date: Sep 10, 2019

Facility: CC-Endicott Hall

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 10, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount	
EH	2018	Replacement	No	Capital	Low	\$549,000	
The budget	cost is from the	2011 predesign report.	Recommend upd	ating the predesign	report.		
EH	2018	Repair	No	Expense	Moderate	\$500	
Emergency repairs should be performed as needed to maintain a watertight condition until replacement takes place.							
\$549,500							

Recommendation Summary							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount	
EH	2018	Replacement	No	Capital	Low	\$549,000	
EH	2018	Repair	No	Expense	Moderate	\$500	
						\$549,500	

Full Facility Roof Report Facility: CC-Endicott Hall E26148C0368 Roof - EH

Roof Name: E26148C0368

Roof Size: 10,000 sq. ft.

Est. replacement Cost: \$549,000.00

Existing System Type: (EPDM-B) Ballasted Ethylene-Propylene-Diene-Monomer

Year Installed: 1988

Assessed Service Life Remaining (Years) :

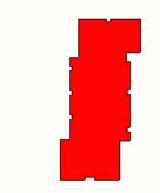
Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate

Currently Leaking? No


History of Leaking? No

Drainage and Leak The estimated replacement cost is based on the

Details: 2011 predesign. Recommend updating he predesign

report.

Full Facility Roof Report Facility:CC-Endicott Hall E26148C0368 Roof - EH

Membrane Defects - Outstanding						
Defect Type	Severity	Quantity	Unit			
Defect #01	Repair	900	Ea.			

ID#: 1 OBSERVED: 10/09/13, 9/1/2015, 6/22/2016, 6/19/2017

Displaced Ballast

REPAIR: Redistribute Ballast

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Monitor	100	Ea.

ID#: 2 OBSERVED: 10/09/13, 9/1/2015, 6/22/2016, 6/19/2017

Base flashing slippage, wrinkling, blistering or bridging

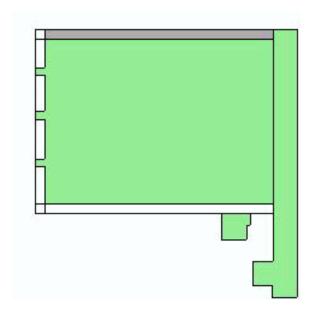
REPAIR: Monitor for repair need prior to reroofing

Full Facility Roof Report Facility:CC-Endicott Hall E26148C0368 Roof - EH

Membrane Defects - Outstanding Continued						
Defect Type	Severity	Quantity	Unit			
Defect #04	Monitor	5,000	Ea.			

ID#:4 OBSERVED: 9/1/2015, 6/22/2016, 6/9/2017

Ponding exists


Full Facility Roof Report

Prepared for:

CC-Health Science

Prepared by:

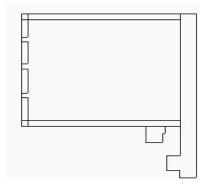
Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Health Science

Last Inspection Date: Sep 10, 2019

Facility: CC-Health Science

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 10, 2019

Type of building: Academic

Type of Neighborhood:

	Recommendation Details							
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount		
HS4, HS6	2020	Repair	No	Expense	Moderate	\$300		
Replace area of missing or deteriorated sealant.								
HS5	2018	Repair	No	Expense	Low	\$300		
Remove vegetation and debris from the roof.								
	\$600							

Recommendation Summary						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
HS4, HS6	2020	Repair	No	Expense	Moderate	\$300
HS5	2018	Repair	No	Expense	Low	\$300
						\$600

Roof Name: E26148C0570

Roof Size: 16,300 sq. ft.

Est. replacement Cost: \$244,500.00

Existing System Type: 4-Ply Built-up Asphalt Roofing

Year Installed: 2007

Assessed Service Life Remaining (Years) :

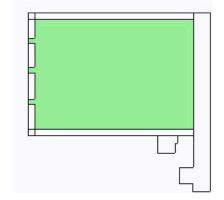
......

Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate


Currently Leaking? No

History of Leaking? No

Drainage and Leak

Details:

Membrane Defects - Outstanding			
Defect Type	Severity	Quantity	Unit
Defect #01	Monitor	6	Ea.

ID #1 OBSERVED: 6/22/2016, 6/19/2017, 9/10/2019

Erosion of aggregate surfacing

REPAIR: Monitor for possible future repair.

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Monitor	3	Ea.

ID #3 OBSERVED: 6/19/2017, 9/10/2019

Improper equipment support

REPAIR: Perimeter railing resting directly on the roof membrane. Monitor for possible future repair.

Membrane Defects - Outstanding Continued			
Defect Type	Severity	Quantity	Unit
Defect #03	Monitor	1	Ea.

ID #3 OBSERVED: 9/10/2019

Blistered base flashing

REPAIR: Monitor for possible future repair.

Roof Name: Not Updated

Roof Size: 3,800 sq. ft.

Est. replacement Cost: \$38,000.00

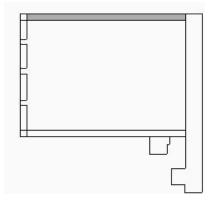
Existing System Type: Standing Seam Sheet Metal Roofing

Year Installed: 2007

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:


Interior Sensitivity:

Drainage: Inadequate

Currently Leaking? Unknown

History of Leaking? Unknown

Drainage and Leak Details:

Roof Name: E26148C0570

Roof Size: 2,920 sq. ft.

Est. replacement Cost: \$43,800.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

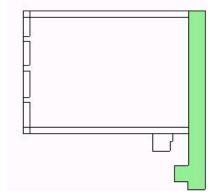
Year Installed: 2007

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:


Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

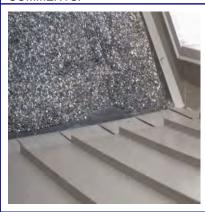
Membrane Defects - Outstanding			
Defect Type	Severity	Quantity	Unit
Defect #01	Repair	2	Ea.

ID#: 1 OBSERVED: 10/09/13, 9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Missing or failed sealant

REPAIR: Remove old and install new high quality sealant

COMMENTS:



Defect Type	Severity	Quantity	Unit
Defect #02	Monitor	6	Ea.

ID #2 OBSERVED: 6/22/2016, 6/19/2017, 9/10/2019

Erosion of aggregate surfacing

REPAIR: Monitor for possible future repair.

Roof Name: E26148C0570

Roof Size: 300 sq. ft.

Est. replacement Cost: \$4,500.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

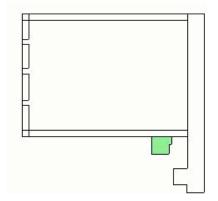
Year Installed: 2007

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

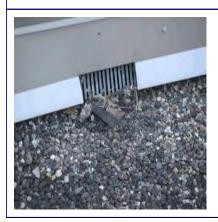
Interior Sensitivity:


Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

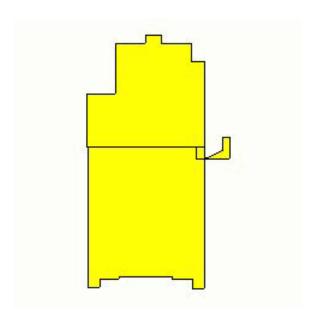


Membrane Defects - Outstanding			
Defect Type	Severity	Quantity	Unit
Defect #01	Repair	1	Ea.

ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Plugged roof drain screen

REPAIR: Remove material from drain screen


Full Facility Roof Report

Prepared for:

CC-Hill Theatre

Prepared by:

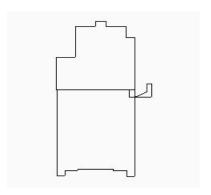
Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Hill Theatre

Last Inspection Date: Sep 10, 2019

Facility: CC-Hill Theatre

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 10, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
HT1	2020	Repair	No	Expense	High	\$2,500
Remove all	vegetation and	debris from the roof area	a. Resurface expo	sed areas of membr	rane.	
HT2	2020	Repair	No	Expense	High	\$2,000
Verify and re	eplace wet insu	lation.				
HT2	2020	predesign	No	Expense	Low	\$1,500
The roof is a accurate but		end of its anticipated se	ervice life. Recom	mend performing a p	oredesign study fo	r an
HT2	2024	Replacement	No	Capital	Moderate	\$177,048
HT3	2020	Replacement	No	Capital	Moderate	\$172,001
	Budget cost estimate is based on replacement of Sections HT3 and HT4 at the same time. The budget cost is based on the 2011 predesign report. Recommend updating the predesign report.					
HT4	2020	Replacement	No	Capital	Moderate	\$1
	Budget cost estimate of \$172,000.00 is based on replacement of Sections HT3 and HT4 at the same time. The budget cost is based on the 2011 predesign report. Recommend updating the predesign report.					
						\$355,050

Recommendation Summary						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
HT1	2020	Repair	No	Expense	High	\$2,500
HT2	2020	Repair	No	Expense	High	\$2,000
HT2	2020	predesign	No	Expense	Low	\$1,500
HT2	2024	Replacement	No	Capital	Moderate	\$177,048
HT3	2020	Replacement	No	Capital	Moderate	\$172,001
HT4	2020	Replacement	No	Capital	Moderate	\$1
						\$355,050

Roof Name: E26148C1174

Roof Size: 8,000 sq. ft.

Est. replacement Cost: \$120,000.00

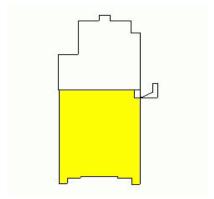
Existing System Type: MnSCU Std. 4-Ply Asphalt

Year Installed: 2003

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:


Interior Sensitivity:

Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

Membrane Defects - Outstanding				
Defect Type	Severity	Quantity	Unit	
Defect #01	Monitor	5	Ea.	

ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016,6/19/2017, 9/10/2019

Surfacing loss with membrane deterioration/damage

REPAIR: Repair deteriorated/damaged membrane and restore surfacing.

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Repair	10	Ea.

ID#: 2 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Debris/vegetation/foreign materials on roof

REPAIR: Remove debris/vegetation/foreign materials

Roof Name: E26148C1174

Roof Size: 4,918 sq. ft.

Est. replacement Cost: \$177,048.00

Existing System Type: 4-Ply Built-up Asphalt Roofing

Year Installed: 1997

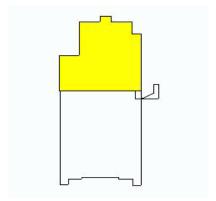
Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate


Currently Leaking? Yes

History of Leaking? Yes

Drainage and Leak

Details:

Membrane Defects - Outstanding				
Defect Type Severity Quantity Unit				
Defect #01	Investigate and repair	90	Ea.	

ID#: 1 OBSERVED: 08/23/12,9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Suspected wet insulation

REPAIR: Remove and replace wet insulation

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Monitor	15	Ea.

ID#: 2 OBSERVED: 9/24/14, 9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Surfacing loss with no membrane deterioration/damage

REPAIR: Install hot asphalt and aggregate surfacing at exposed areas of membrane.

Roof Name: E26148C1174

Roof Size: 100 sq. ft.

Est. replacement Cost: \$86,000.00

Existing System Type: (EPDM-B) Ballasted Ethylene-Propylene-Diene-Monomer

Year Installed: 1986

Assessed Service Life Remaining (Years) :

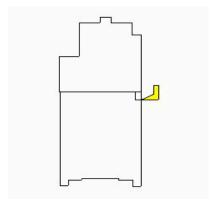
Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate

Currently Leaking? No


History of Leaking? No

Drainage and Leak The estimated replacement cost is based on the

Details: 2011 predesign report. Recommend updating the

predesign report.

Membrane Defects - Outstanding				
Defect Type	Severity	Quantity	Unit	
Defect #01	Monitor	5	Ea.	

ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/10/2019

Debris/vegetation/foreign materials on roof

REPAIR: Monitor for repair need prior to reroofing

COMMENTS: Significant amounts of vegetation.

Roof Name: E26148C1174

Roof Size: 100 sq. ft.

Est. replacement Cost: \$86,000.00

Existing System Type: (EPDM-FA) Fully Adhered Ethylene-Propylene-Diene-Mono

Year Installed: 1997

Assessed Service Life Remaining (Years) :

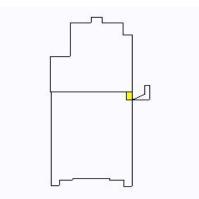
Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate

Currently Leaking? No


History of Leaking? No

Drainage and Leak The estimated replacement cost is based on the

Details: 2011 predesign report. Recommend updating the

predesign report.

Full Facility Roof Report

Prepared for:

CC-Regional Sports Center

Prepared by:

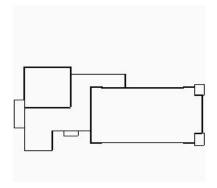
Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Regional Sports Center

Last Inspection Date: Sep 16, 2019

Facility: CC-Regional Sports Center

Contact Name:


Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 16, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
SC1	2020	Repair	No	Expense	Moderate	\$2,000
Replace any loose or missing fasteners. Replace sealant at joints in coping and intersection to the scuppers.						
SC2, 3, 6,	2020	Repair	No	Expense	Moderate	\$5,000
•	c cement and fa	abric over open flashing jinsulation.	joints. Install addi	tional sealant where	missing or deterio	orated.
SC4, 8, 9	2018	Repair	No	Expense	Low	\$500
Install plastic cement and fabric over open joints in the base flashing. Replace blistered base flashing. Remove debris from the roof.						
SC5	2020	Repair	No	Expense	Low	\$1,500
Install plastic cement and fabric over open flashing joints and repair displaced metal. Replace any loose or missing fasteners.						
						\$9,000

Recommendation Summary						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
SC1	2020	Repair	No	Expense	Moderate	\$2,000
SC2, 3, 6, 7	2020	Repair	No	Expense	Moderate	\$5,000
SC4, 8, 9	2018	Repair	No	Expense	Low	\$500
SC5	2020	Repair	No	Expense	Low	\$1,500
						\$9,000

Roof Name: E26148C1202

Roof Size: 47,392 sq. ft.

Est. replacement Cost: \$710,880.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

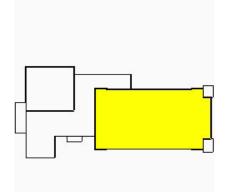
Year Installed: 2001

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:


Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

Membrane Defects - Outstanding				
Defect Type	Severity	Quantity	Unit	
Defect #01	Repair	10	Ea.	

ID#: 1 OBSERVED: 08/23/12 9/14 - some repaired, 6/22/2016, 6/19/2017, 9/16/2019

Missing or failed sealant

REPAIR: Remove old and install new high quality sealant

COMMENTS: Cap flashing joints and scuppers.

Defect Type	Severity	Quantity	Unit
Defect #02	Monitor	2	Ea.

ID#: 2 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Base flashing - Slippage, wrinkling, blistering or bridging

REPAIR: Monitor for repair need prior to reroofing

Membrane Defects - Outstanding Continued					
Defect Type	Severity	Quantity	Unit		
Defect #03	Repair	1	Ea.		

ID#: 3 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Loose or missing fasteners

REPAIR: Resecure or replace fastener

COMMENTS: Use oversized fasteners if required

Roof Name: E26148C1202

Roof Size: 25,376 sq. ft.

Est. replacement Cost: \$380,640.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

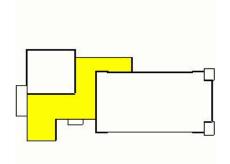
Year Installed: 2001

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:


Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

Membrane Defects - Outstanding				
Defect Type Severity Quantity Unit				
Defect #01	Monitor	15	Ea.	

ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Base flashing slippage, wrinkling, blistering or bridging

REPAIR: Monitor for repair need prior to reroofing

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Repair	4	Ea.

ID#: 2 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Missing or failed sealant

REPAIR: Remove old and install new high quality sealant

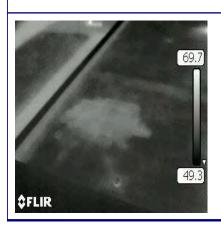
Membrane Defects - Outstanding Continued				
Defect Type Severity Quantity Unit				
Defect #03	Repair	25	Ea.	

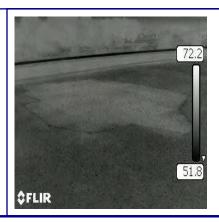
ID#: 3 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Open side laps

REPAIR: Reseal open side laps using appropriate materials

COMMENTS:




Defect Type	Severity	Quantity	Unit
Defect #04	Repair	150	Ea.

ID#: 4 OBSERVED: 10/23/14,9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Suspected wet insulation

REPAIR: Remove and replace wet insulation

Roof Name: E26148C1202

Roof Size: 4,702 sq. ft.

Est. replacement Cost: \$70,530.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

Year Installed: 2001

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:

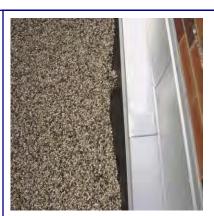
Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

Membrane Defects - Outstanding				
Defect Type Severity Quantity Unit				
Defect #01	Monitor	4	Ea.	


ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Base flashing slippage, wrinkling, blistering or bridging

REPAIR: Monitor for repair need prior to reroofing

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Repair	10	Ea.

ID #2 OBSERVED: 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Open Flashing Joint

REPAIR: install plastic cement and fabric over open flashing joints.

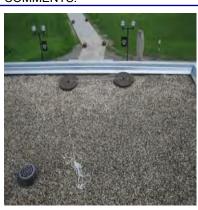
Membrane Defects - Outstanding Continued				
Defect Type Severity Quantity Unit				
Defect #03	Monitor	2	Ea.	

ID #3 OBSERVED: 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Erosion of Aggregate Surfacing

REPAIR: Monitor for possible future repair.

COMMENTS:



Defect Type	Severity	Quantity	Unit
Defect #04	Repair	4	Ea.

ID #4 OBSERVED: 6/22/2016, 6/19/2017, 9/16/2019

Debris on roof

REPAIR: Remove debris from the roof.

Roof Name: E26148C1202

Roof Size: 14,750 sq. ft.

Est. replacement Cost: \$221,250.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

Year Installed: 2001

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:


Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak Details:

Membrane Defects - Outstanding				
Defect Type Severity Quantity Unit				
Defect #01	Monitor	2	Ea.	

ID#: 1 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Base flashing slippage, wrinkling, blistering or bridging

REPAIR: Monitor for repair need prior to reroofing

COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Repair	3	Ea.

ID#: 2 OBSERVED: 08/23/12, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Metal flashing is missing or displaced

REPAIR: Properly reinstall or replace

Membrane Defects - Outstanding Continued				
Defect Type Severity Quantity Unit				
Defect #03	Monitor	23	Ea.	

ID#: 3 OBSERVED: 10/09/13, 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Surfacing loss with no membrane deterioration/damage

REPAIR: Monitor for repair need prior to reroofing

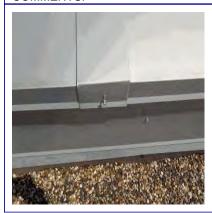
COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #04	Repair	30	Ea.

ID #4 OBSERVED: 9/1/2015, 6/22/2016, 6/19/2017, 9/16/2019

Open flashing joint

REPAIR: Install plastic cement and fabric over the joints in the base flashing.



Membrane Defects - Outstanding Continued				
Defect Type Severity Quantity Unit				
Defect #05	Repair	1	Ea.	

ID #5 OBSERVED: 6/19/2017, 9/16/2019

Loose/missing fastener

REPAIR: Replace any loose or missing fasteners

Full Facility Roof Report

Prepared for:

CC-Rochester Regional Stadium

Prepared by:

Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Rochester Regional Stadium

Last Inspection Date: Sep 16, 2019

Facility: CC-Rochester Regional Stadium

Contact Name:

Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 16, 2019

Type of building:

Type of Neighborhood:

	Recommendation Details					
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
Area A	2018	Repair	No	Expense	Low	\$1,000

Install counterflashing at three roof curbs where missing. Remove all debris from the roof and install sealant at various sheet metal openings. Replace missing drain strainer.

\$1,000

Recommendation Summary						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
Area A	2018	Repair	No	Expense	Low	\$1,000
						\$1,000

Roof Name:

Roof Size: 0 sq. ft.

Est. replacement Cost: \$0.00

Existing System Type: (EPDM-FA) Fully Adhered Ethylene-Propylene-Diene-Mono

Year Installed: N/A

Assessed Service Life Remaining (Years) :

Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Adequate

Currently Leaking? No

History of Leaking? No

Drainage and Leak

Details:

Membrane Defects - Outstanding				
Defect Type Severity Quantity Unit				
Defect #01	Repair	3	Ea.	

ID #1 OBSERVED: 6/22/2016, 9/16/2019

Missing counterflashing

REPAIR: Install counterflashing where missing at curbs.

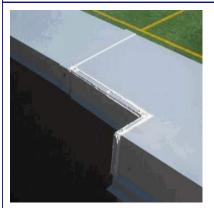
COMMENTS:

Defect Type	Severity	Quantity	Unit
Defect #02	Repair	1	Ea.

ID #2 OBSERVED: 6/22/2016, 6/19/2017, 9/16/2019

Debris on roof

REPAIR: Remove debris from the roof.


Membrane Defects - Outstanding Continued				
Defect Type Severity Quantity Unit				
Defect #03	Repair	6	Ea.	

ID #3 OBSERVED: 6/22/2016, 6/19/2017, 9/16/2019

Missing/deteriorated sealant

REPAIR: Install sealant at open joints in sheet metal.

COMMENTS: Sheet metal is spliced together at isolated coping locations and it may be necessary to replace these areas in the future.

Defect Type	Severity	Quantity	Unit
Defect #04	Repair	1	Ea.

ID #4 OBSERVED: 9/16/2019

Missing Drain Strainer

REPAIR: Replace missing drain strainer

Full Facility Roof Report

Prepared for:

CC-Singley Hall

Prepared by:

Jim Morgan Roof Spec, Inc. Phone: Fax:

CC-Singley Hall

Last Inspection Date: Sep 16, 2019

Facility: CC-Singley Hall

Contact Name:

Contact Telephone:

Contact Fax:

Date of Last Inspection: Sep 16, 2019

Type of building: Academic

Type of Neighborhood:

Recommendation Details						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
SH	2020	Repair	Yes	Expense	Low	\$300
Remove veg	Remove vegetation from the roof.					
	\$300					

Recommendation Summary						
Section ID	Budget Year	Activity Type	Action Item ?	Allocation	Urgency	Budget Amount
SH	2020	Repair	Yes	Expense	Low	\$300
						\$300

Full Facility Roof Report Facility: CC-Singley Hall Not Updated Roof - SH

Roof Name: Not Updated

Roof Size: 10,000 sq. ft.

Est. replacement Cost: \$150,000.00

Existing System Type: MnSCU Std. 4-Ply Asphalt

Year Installed: N/A

Assessed Service Life 18

Remaining (Years):

Height: 0 Ft.

Slope:

Interior Sensitivity:

Drainage: Inadequate

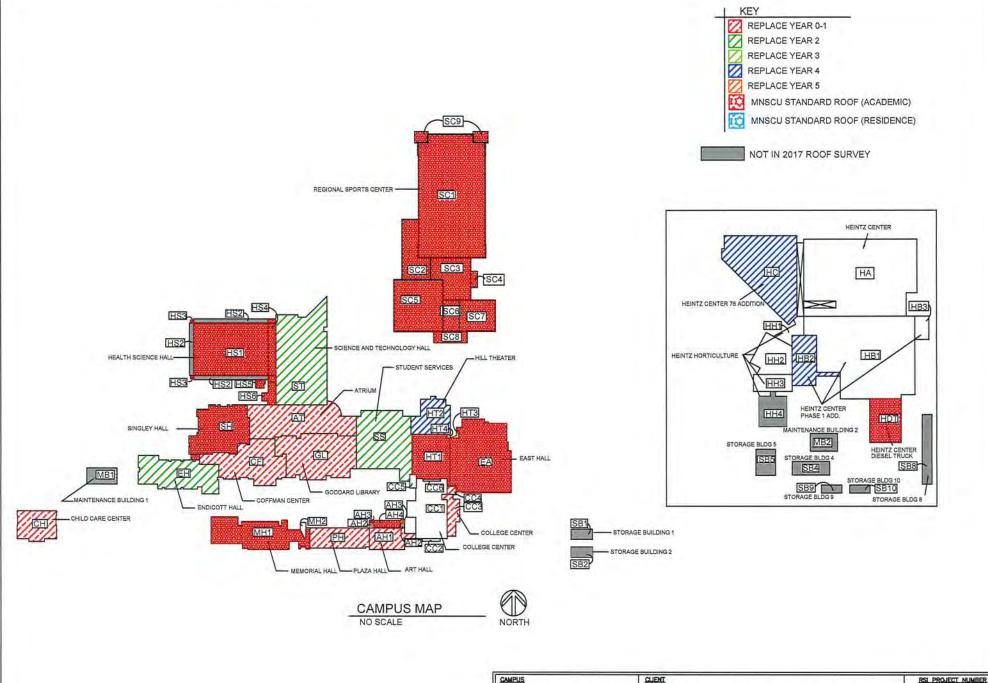
Currently Leaking? Unknown

History of Leaking? Unknown

Drainage and Leak

Details:

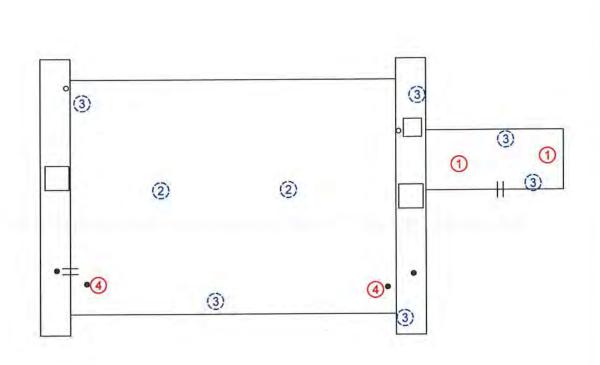
Full Facility Roof Report Facility: CC-Singley Hall Not Updated Roof - SH

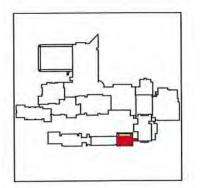

Membrane Defects - Outstanding				
Defect Type Severity Quantity Unit				
Defect #01	Repair	3	Ea.	

ID #1 OBSERVED: 9/16/2019

Vegetation debris

REPAIR: Remove vegetation from the roof.

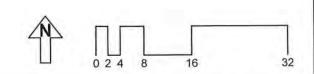



MINNESOTA STATE

ROCHESTER COMMUNITY AND

TECHNICAL COLLEGE

500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 19-9779-01 DATE 10/14/2019



SYMBOLS KEY

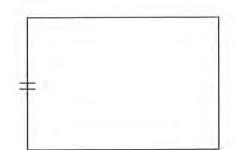
- ☐ ROOF CURB
 - ROOF DRAIN
- # SCUPPER
- VENT STACK
- #) DEFECT-REPAIR
- (#) DEFECT-MONITOR

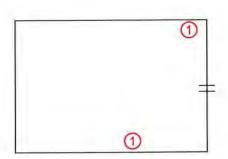
DEFECT KEY

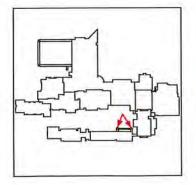
- 1 VEGETATION / DEBRIS
- (2) PONDING / EVIDENCE OF PONDING
- (3) MEMBRANE BRIDGING
- 4 PLUGGED DRAIN SCREEN

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

BUILDING ART HALL

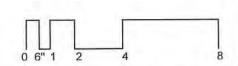

SECTION AH1


CLIENT


MINNESOTA STATE
500 WELLS FA
30 EAST 7THS
ST. PAUL, MIN

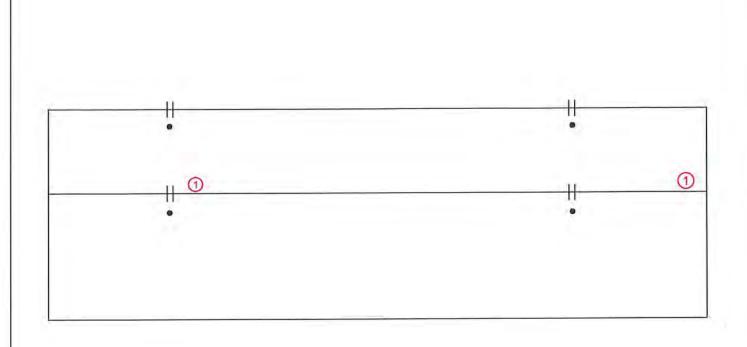
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST, PAUL, MINNESOTA 55101 RSI PROJECT NUMBER 19-9779-01 DATE

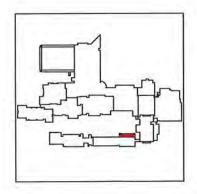
10/14/2019



SYMBOLS KEY SCUPPER DEFECT-REPAIR DEFECT-MONITOR DEFECT KEY 1 VEGETATION / DEBRIS

CAMPUS ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING ART HALL


SECTION AH3

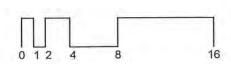
CUENT

MINNESOTA STATE
500 WELLS FARGO PLACE
30 EAST 7TH STREET
ST. PAUL, MINNESOTA 55101

RSI PROJECT NUMBER 19-9779-01 DATE 10/14/2019

SCUPPER

ROOF DRAIN

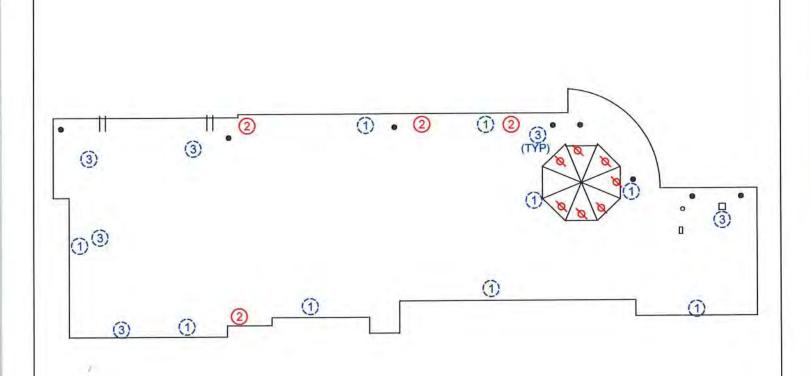

DEFECT-REPAIR

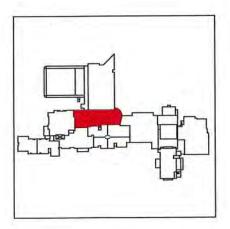
#) DEFECT-MONITOR

DEFECT KEY

1 VEGETATION / DEBRIS

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

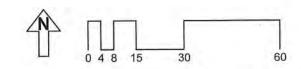

BUILDING ART HALL


SECTION AH4

CUENT

MINNESOTA STATE

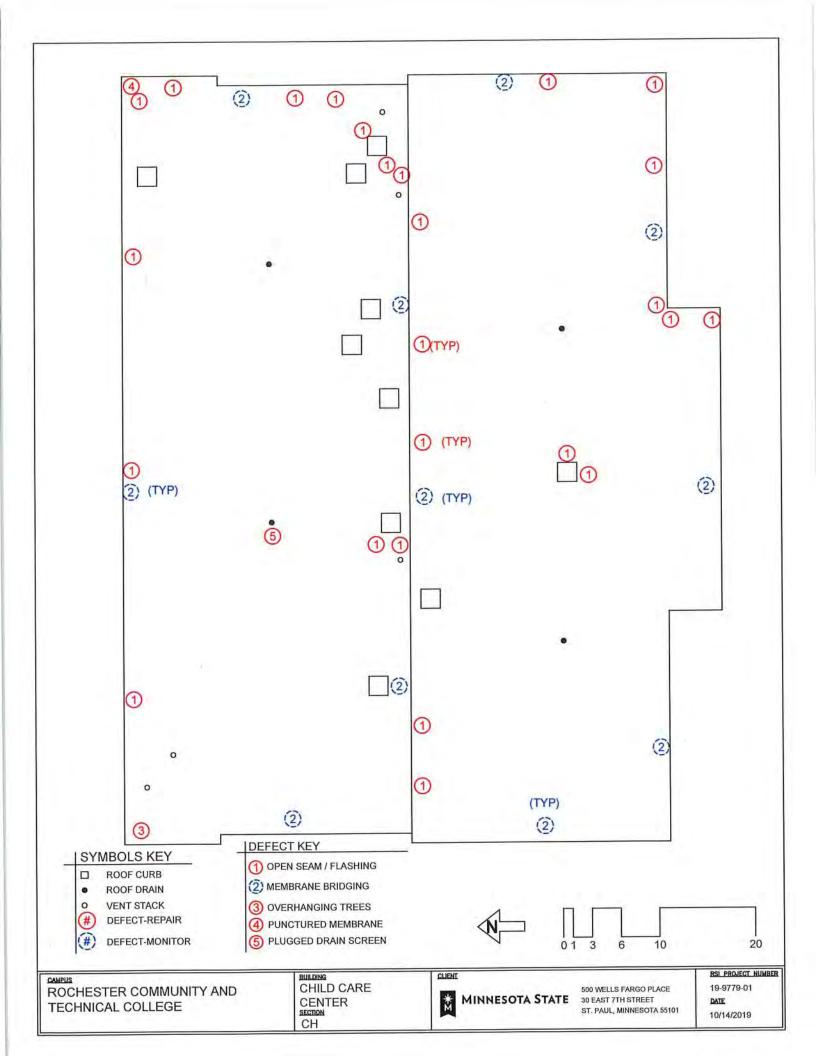
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 RSI PROJECT NUMBER 19-9779-01 DATE

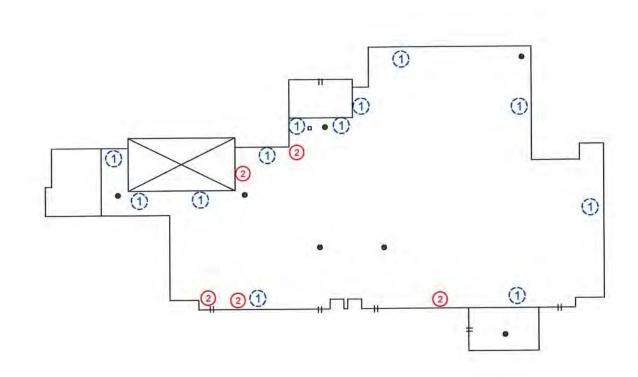


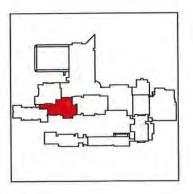
- ROOF CURB
- **ROOF DRAIN**
- VENT STACK
- SCUPPER
- PITCH PAN
- - DEFECT-REPAIR
- DEFECT-MONITOR

DEFECT KEY

- (1) MEMBRANE BRIDGING
- ② OPEN SEAM / FLASHING
- (3) BROKEN / DAMAGED PAVERS

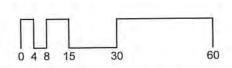

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


ATRIUM


AT

MINNESOTA STATE

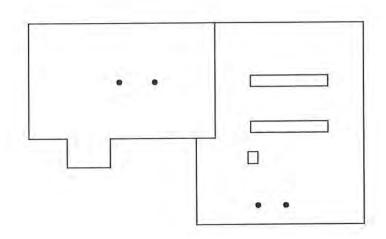
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 RSI PROJECT NUMBER 19-9779-01 DATE

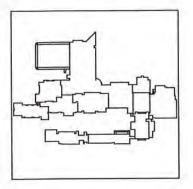

- **ROOF CURB**
- ROOF DRAIN
- VENT STACK
- SCUPPER
- SKYLIGHT
- DEFECT-REPAIR

DEFECT-MONITOR

DEFECT KEY

- (1) MEMBRANE BRIDGING
- ② OPEN SEAM / FLASHING


ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING COFFMAN CENTER SECTION CF1

MINNESOTA STATE

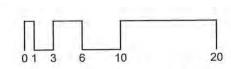
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

ROOF CURB ROOF DRAIN

#) [

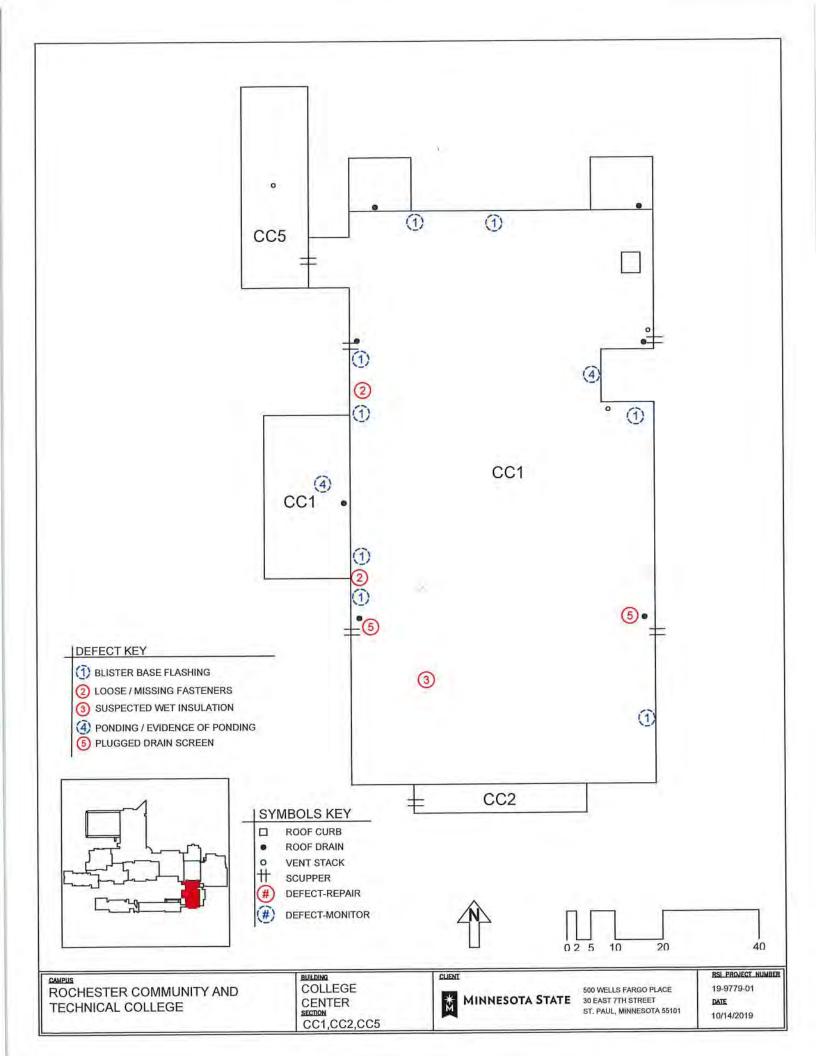
DEFECT-REPAIR

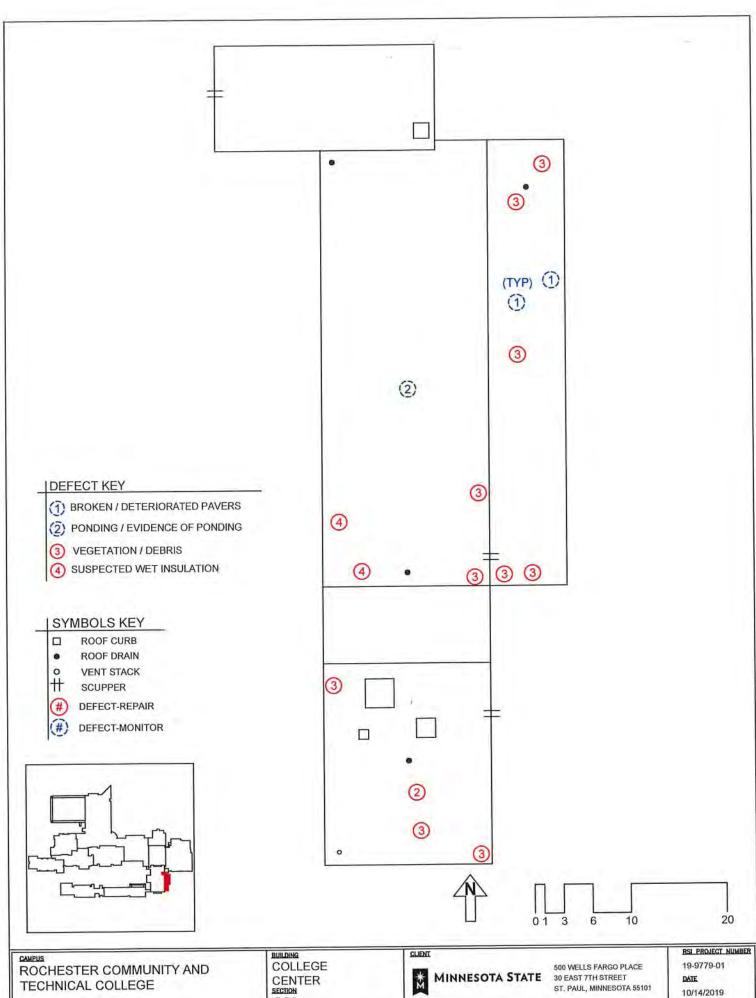
DEFECT-MONITOR

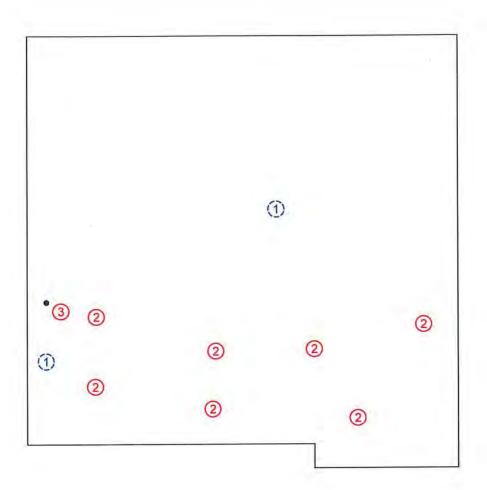

DEFECT KEY

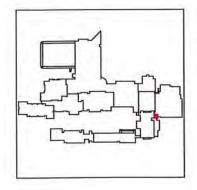
2019 NO DEFECT

2019 NO DEFECT


ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING
COFFMAN
CENTER
SECTION
CF2

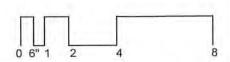

MINNESOTA STATE


500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

CC3

(#)

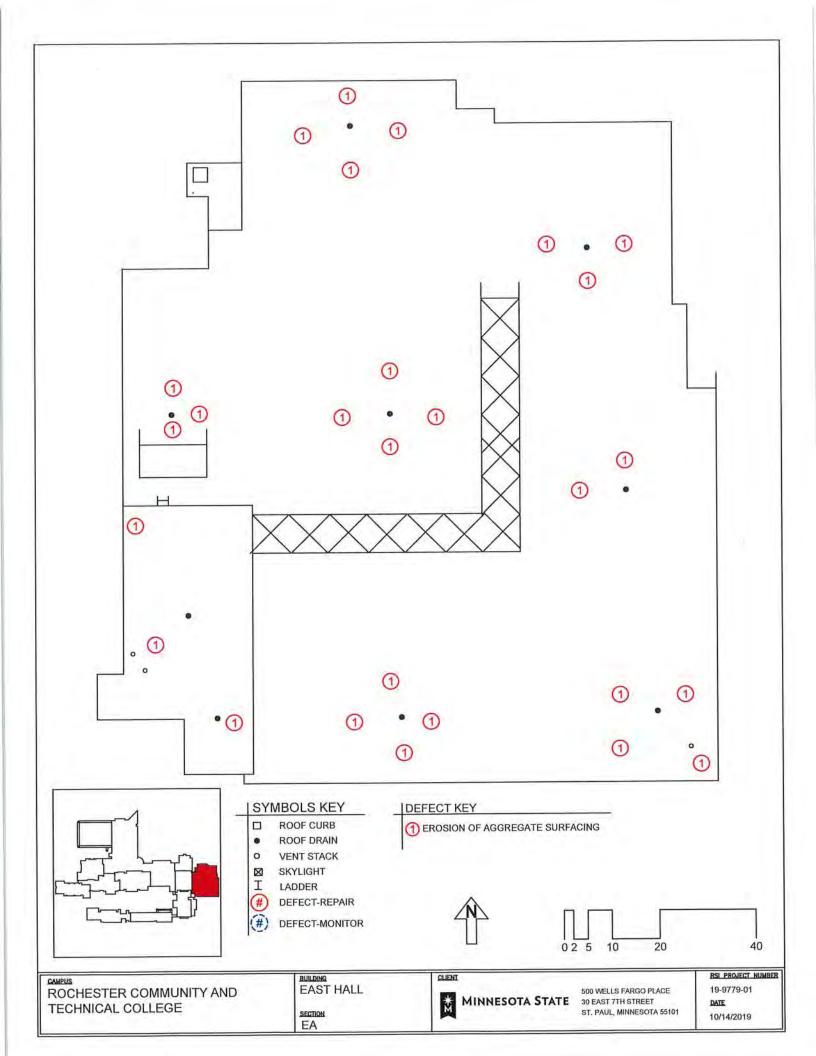
ROOF DRAIN
DEFECT-REPAIR

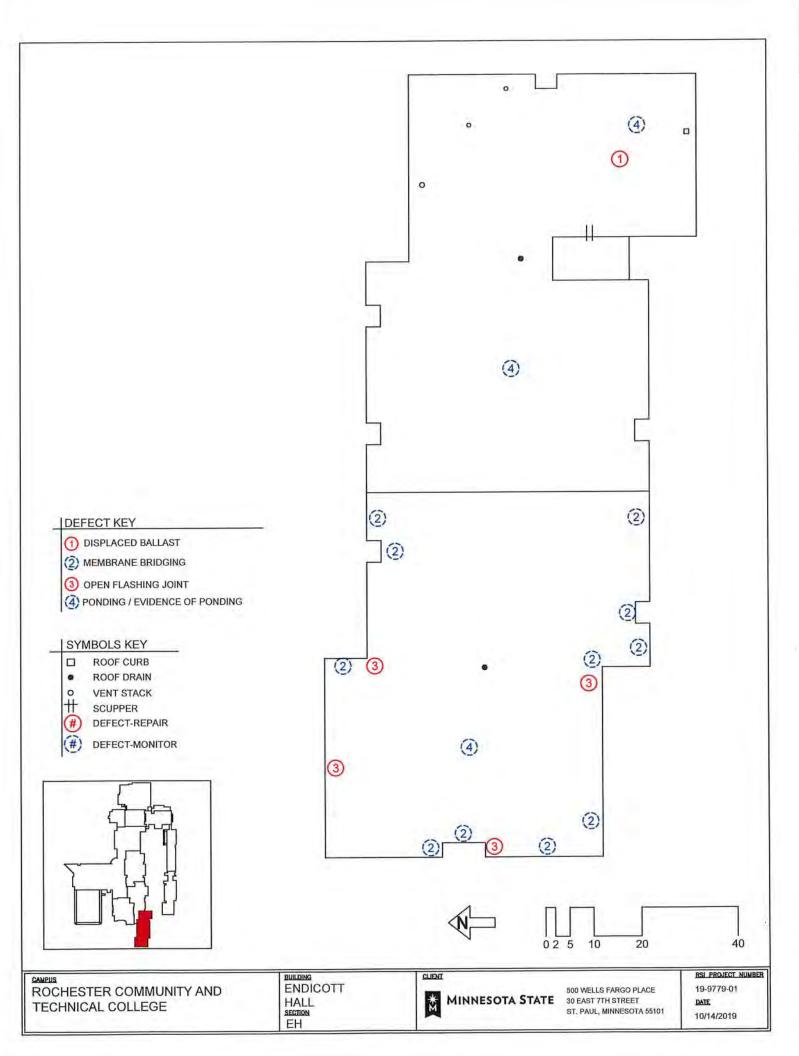

(#)

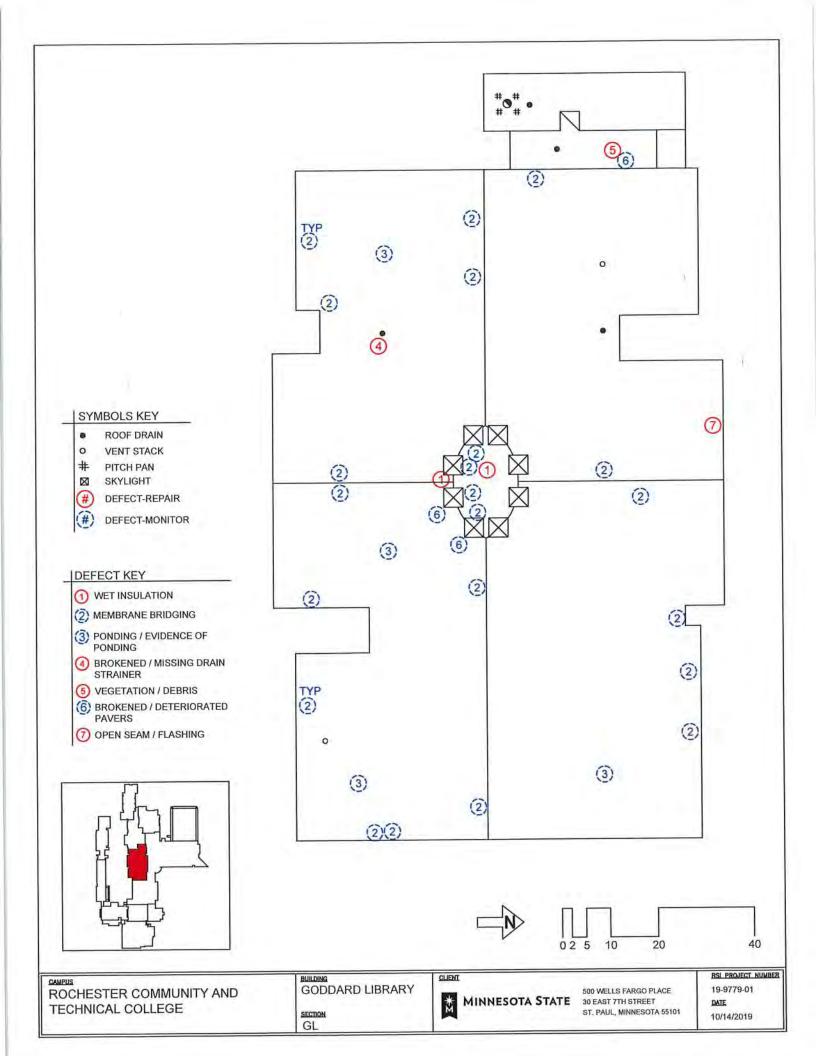
DEFECT-MONITOR

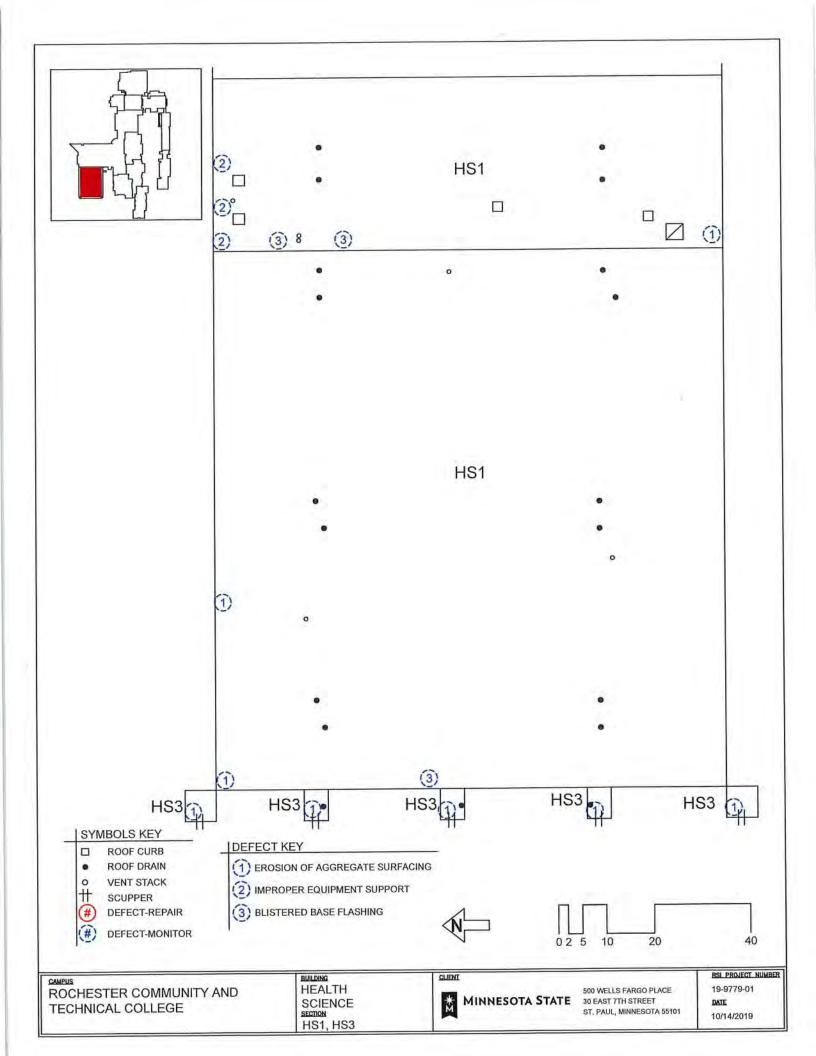
DEFECT KEY

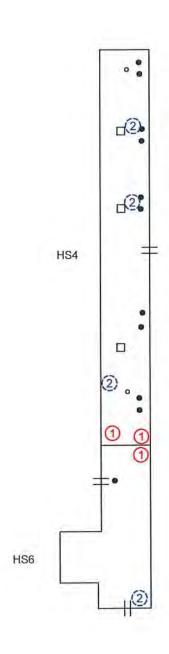
- (1) PONDING / EVIDENCE OF PONDING
- SUSPECTED WET INSULATION
- 3 VEGETATION / DEBRIS

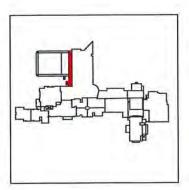

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING
COLLEGE
CENTER
SECTION
CC4


CLIENT


MINNESOTA STATE


500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101



☐ ROOF CURB

ROOF DRAIN
 VENT STACK
 SCUPPER

SKYLIGHT
 SKYLIGHT

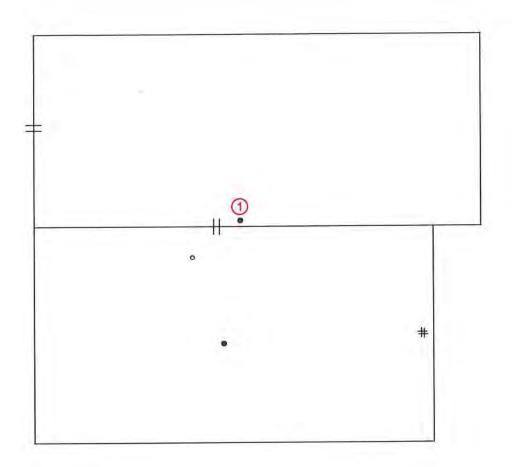
DEFECT-REPAIR

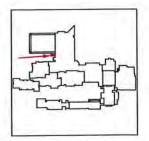
DEFECT-MONITOR

DEFECT KEY

1 MISSING / DETERIORATED SEALANT

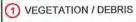
(2) EROSION OF AGGREGATE SURFACING

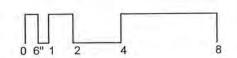

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING
HEALTH
SCIENCE
SECTION
HS4, HS6

MINNESOTA STATE

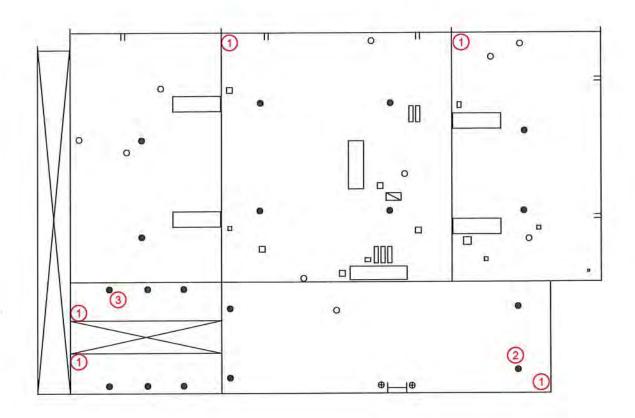
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST, PAUL, MINNESOTA 55101

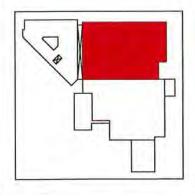



- ROOF DRAIN
- VENT STACK
- # SCUPPER
- # PITCH PAN
- + PITCH FAI
- # DEFECT-REPAIR

 # DEFECT-MONITOR

DEFECT KEY

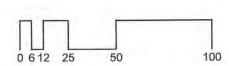

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING
HEALTH
SCIENCE
SECTION
HS5

CLIENT

MINNESOTA STATE
500 WELLS
30 EAST 71
ST. PAUL, 1

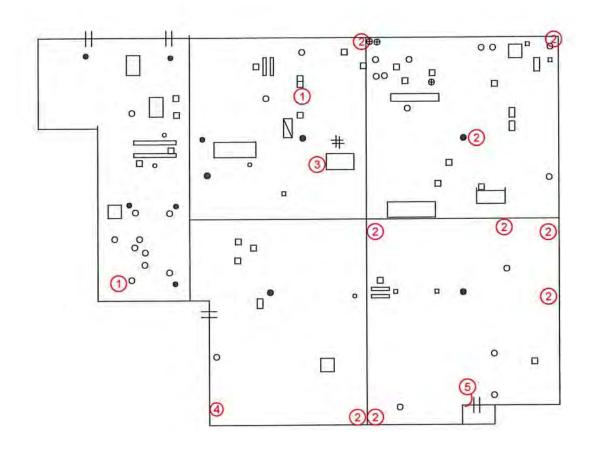
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

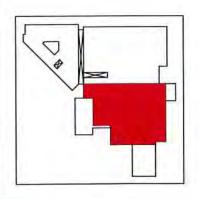


- **ROOF CURB**
- ROOF DRAIN
- VENT STACK
- SCUPPER
- SKYLIGHT
- Ø ROOF HATCH
- # PITCH PAN
- DEFECT-REPAIR
 - DEFECT-MONITOR

DEFECT KEY

- VEGETATION / DEBRIS
- ② EROSION OF AGGREGATE SURFACING
- 3 PLUGGED DRAIN STRAINER

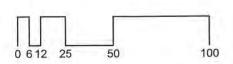



ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

HEINTZ CENTER MAIN BUILDING

MINNESOTA STATE

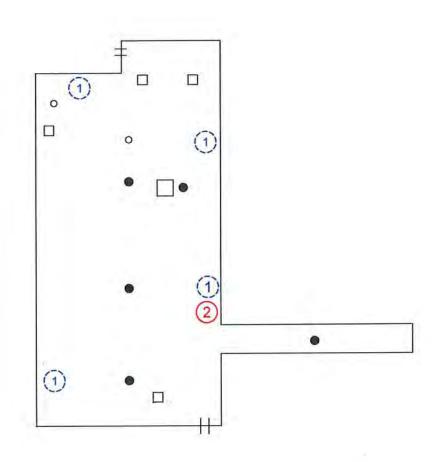
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

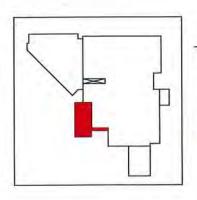


- ROOF CURB
- ROOF DRAIN
- VENT STACK
- SCUPPER
- PITCH PAN
- FLASHED PENETRATION
- ROOF HATCH
- DEFECT-REPAIR
- (#) **DEFECT-MONITOR**

DEFECT KEY

- 1 MISSING / DETERIORATED SEALANT
- ② VEGETATION / DEBRIS
- 3 IMPROPER EQUIPMENT SUPPORT
- EROSION OF AGGREGATE SURFACING
- (5) BLISTERED BASE FLASHING




ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

BUILDING HEINTZ CENTER PHASE 1 ADDITION HB₁

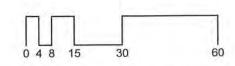
CLIENT

500 WELLS FARGO PLACE MINNESOTA STATE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

ROOF CURB

ROOF DRAIN

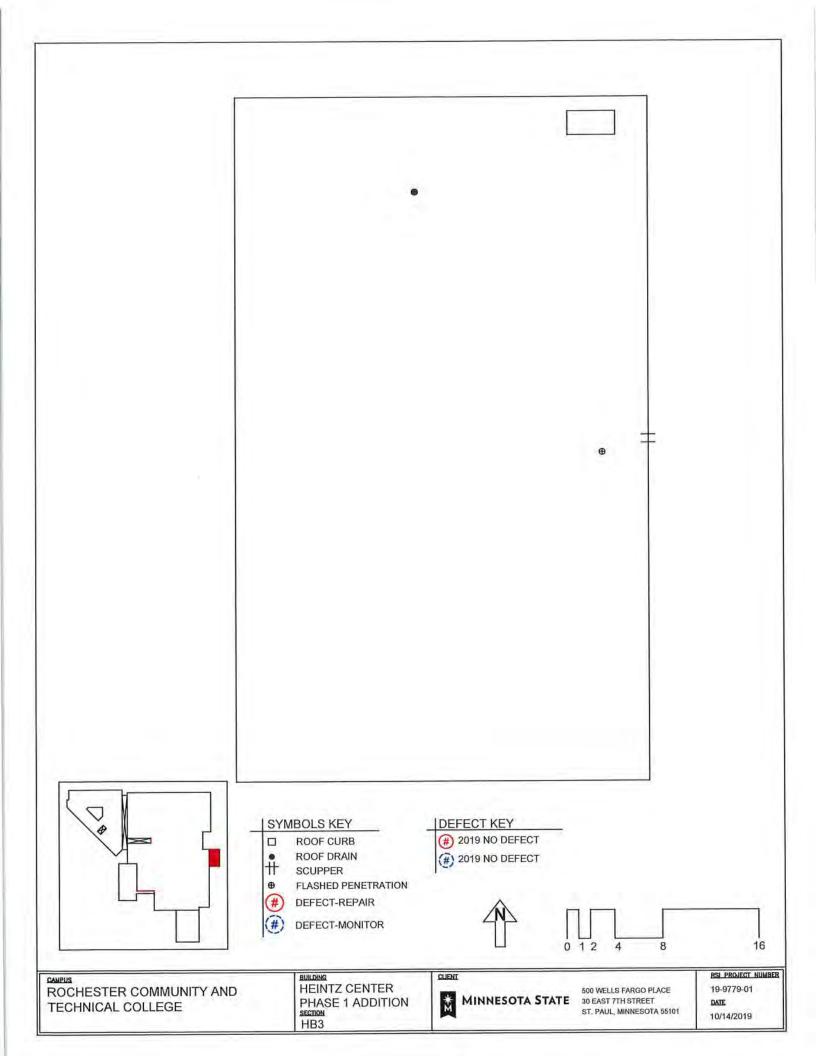
VENT STACK SCUPPER

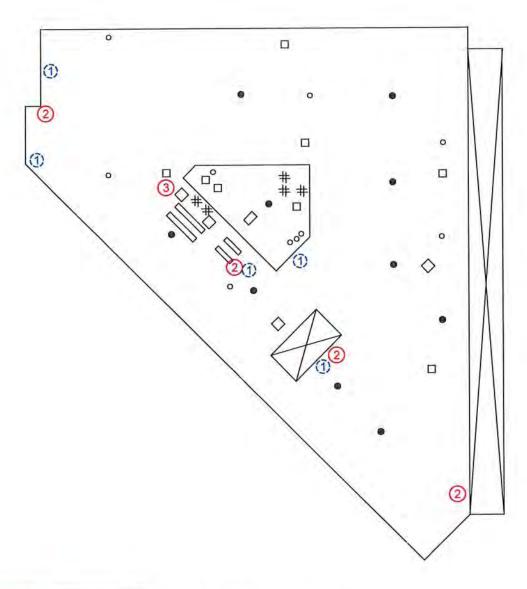

DEFECT-REPAIR DEFECT-MONITOR

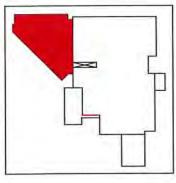
DEFECT KEY

1) MEMBRANE BRIDGING

2 OPEN SEAM FLASHING

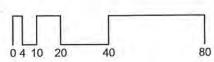

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING HEINTZ CENTER PHASE 1 ADDITION SECTION HB2



MINNESOTA STATE

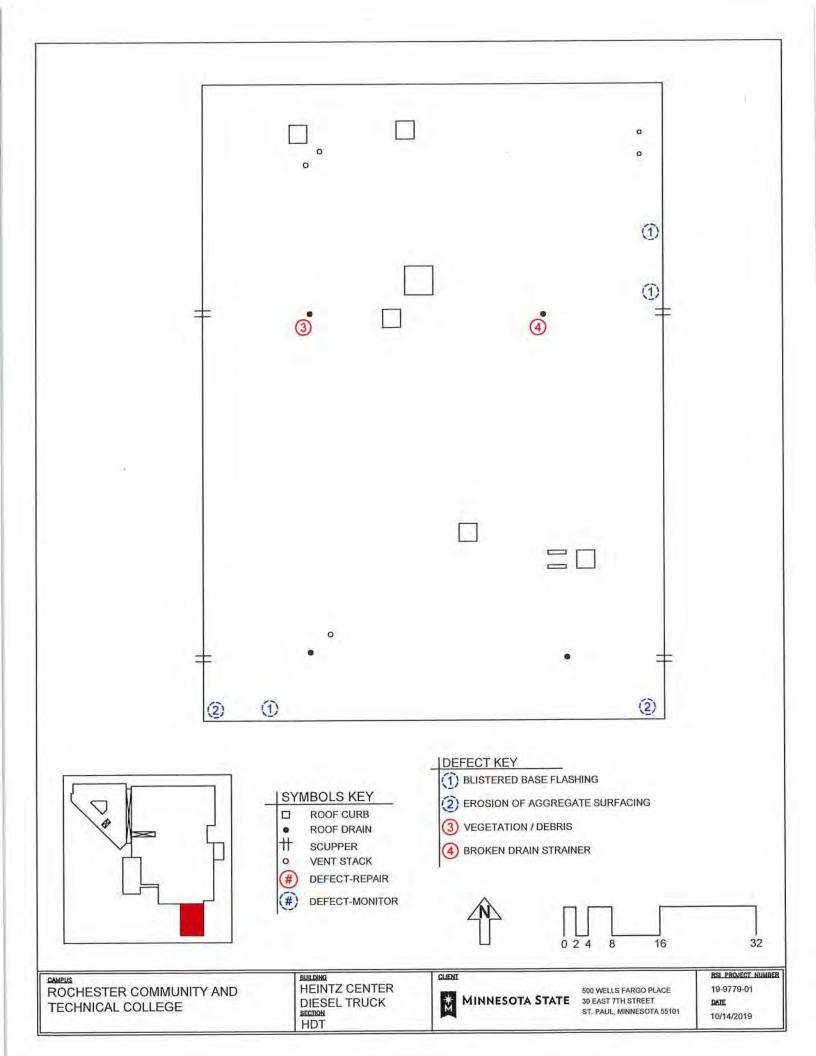
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

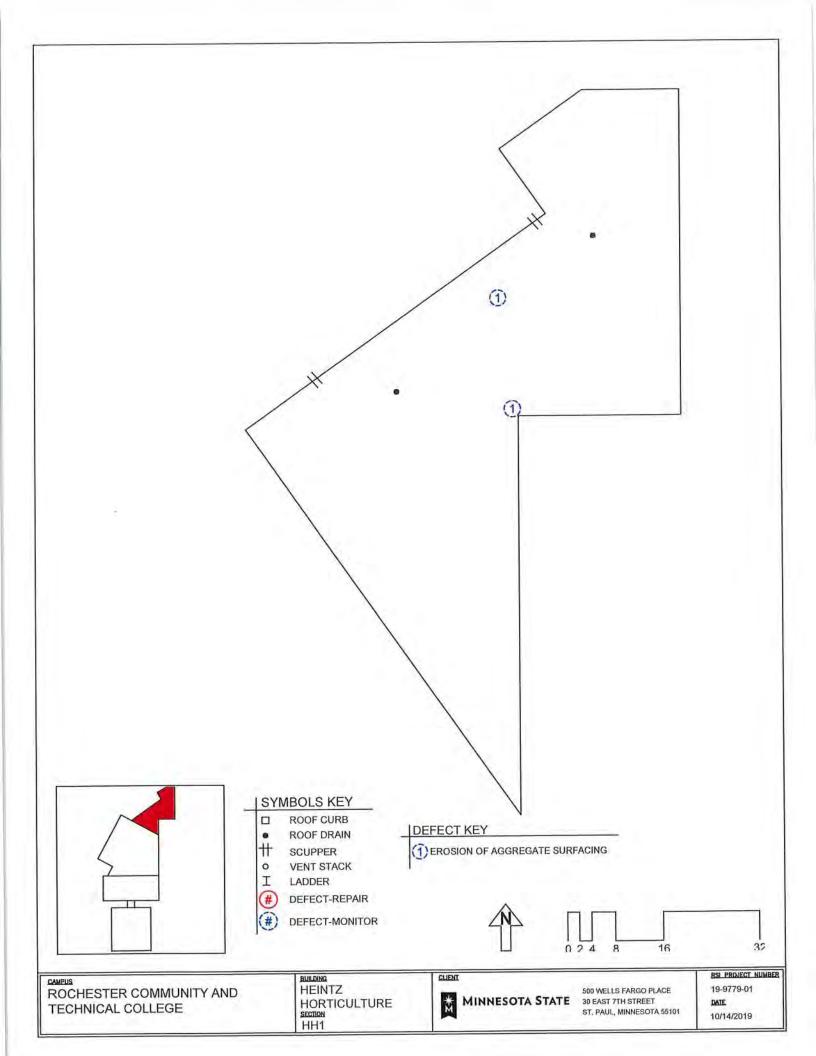


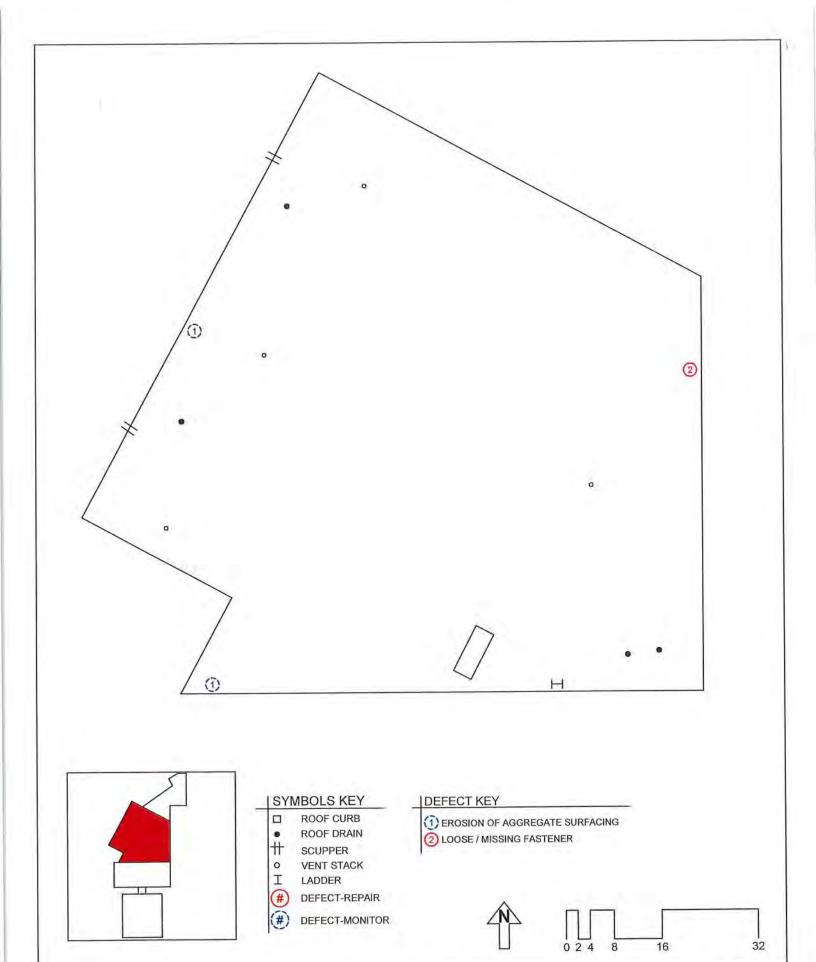
- **ROOF CURB**
- **ROOF DRAIN**
- 0 VENT STACK
- # PITCH PAN
- × H SKYLIGHT
- SCUPPER
- DEFECT-REPAIR

DEFECT KEY

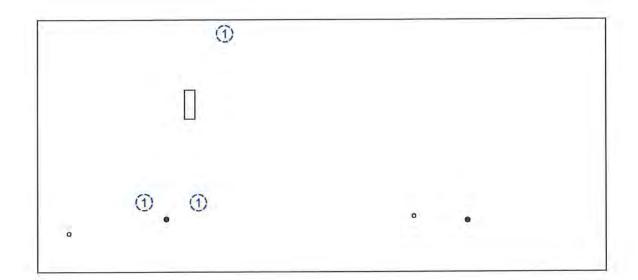
- (1) MEMBRANE BRIDGING
- OPEN SEAM / FLASHING
- 3 VEGETATION / DEBRIS

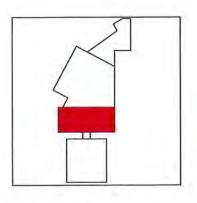

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


HEINTZ CENTER 76 ADDITION SECTION HC


DEFECT-MONITOR

500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 MINNESOTA STATE


ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING
HEINTZ
HORTICULTURE
SECTION
HH2

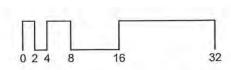
MINNESOTA STATE

500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

ROOF CURB

ROOF DRAIN

0 VENT STACK

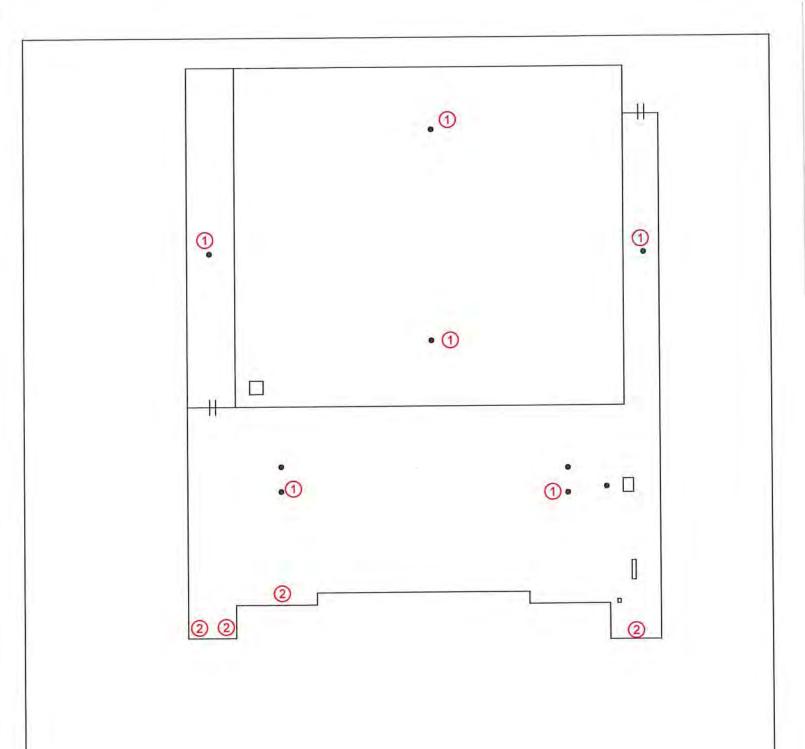

DEFECT-REPAIR

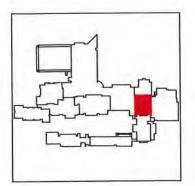
DEFECT-MONITOR

DEFECT KEY

(1) EROSION OF AGGREGATE SURFACING

CAMPUS ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING HEINTZ HORTICULTURE **НН3**

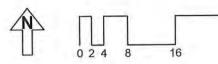

CLIENT

MINNESOTA STATE

500 WELLS FARGO PLACE 30 EAST 7TH STREET ST, PAUL, MINNESOTA 55101

RSI PROJECT NUMBER 19-9779-01

- ☐ ROOF CURB
 - ROOF DRAIN

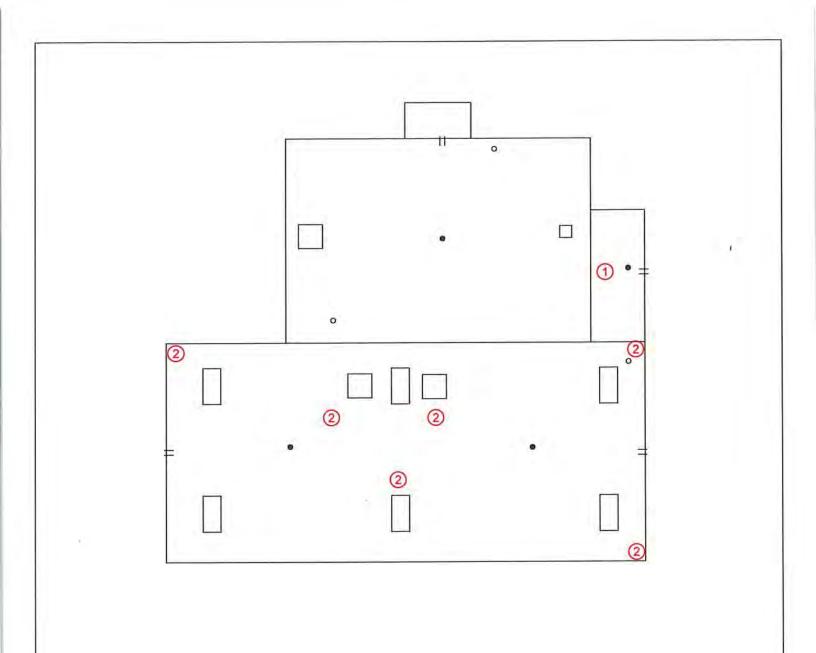

DEFECT-REPAIR

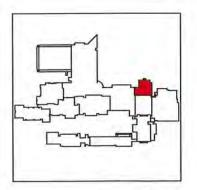
(#)

DEFECT-MONITOR

DEFECT KEY

- 1 EROSION OF AGGREGATE SURFACING
- 2 VEGETATION / DEBRIS

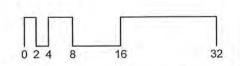

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING HILL THEATRE

SECTION HT1 CLIENT

MINNESOTA STATE

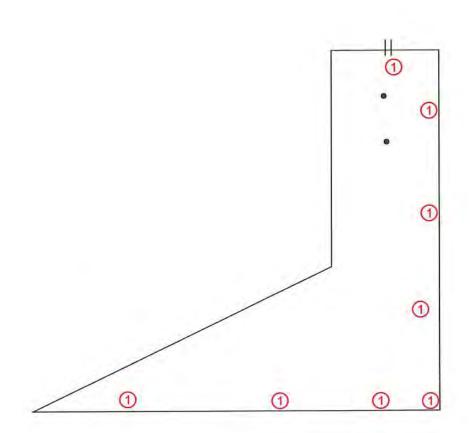
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

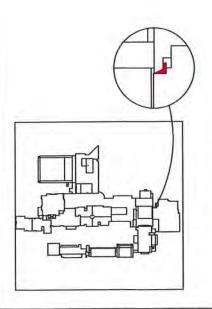


- ROOF CURB
- ROOF DRAIN
- # SCUPPER
- VENT STACK
- DEFECT-REPAIR
- **DEFECT-MONITOR**

DEFECT KEY

- 1 SUSPECTED WET INSULATION
- 2 EROSION OF AGGREGATE SURFACING

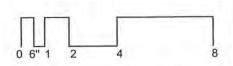

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING HILL THEATRE

SECTION HT2

MINNESOTA STATE

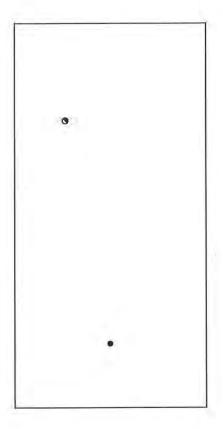
500 WELLS FARGO PLACE
30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 RSI PROJECT NUMBER 19-9779-01 DATE

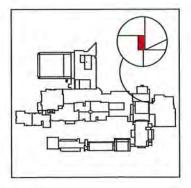


ROOF DRAIN SCUPPER

DEFECT-REPAIR DEFECT-MONITOR

1 VEGETATION / DEBRIS


ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BULDING HILL THEATRE

SECTION HT3 CLIENT

MINNESOTA STATE
500 WELLS FARGO PLACE
30 EAST 7TH STREET
ST. PAUL, MINNESOTA 55101

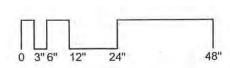
RSI PROJECT NUMBER 19-9779-01 DATE

- ROOF DRAIN
- HEAT STACK

DEFECT-REPAIR

DEFECT-MONITOR

DEFECT KEY

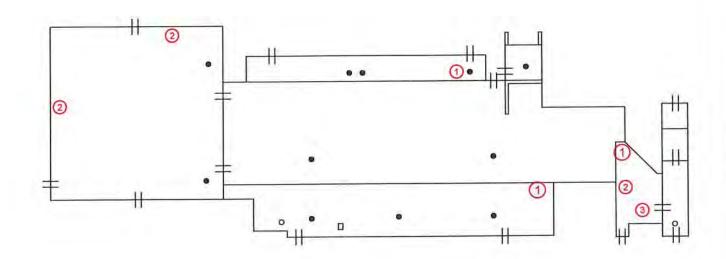


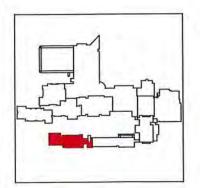
2019 NO DEFECT

(#) 2019 NO DEFECT

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

BUILDING HILL THEATRE

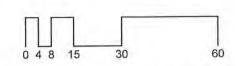

SECTION HT4



MINNESOTA STATE

500 WELLS FARGO PLACE
30 EAST 7TH STREET
ST. PAUL, MINNESOTA 55101

RSI PROJECT NUMBER 19-9779-01 DATE



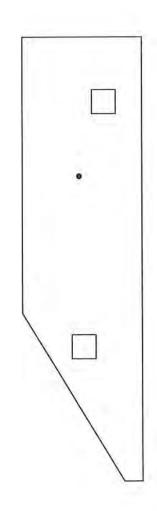
- ROOF CURB
- ROOF DRAIN
- VENT STACK
- # SCUPPER
- DEFECT-REPAIR

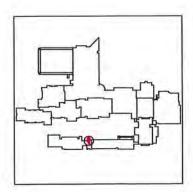
DEFECT KEY

- 1 VEGETATION / DEBRIS
- OPEN FLASHING JOINT
- 3 EROSION OF AGGREGATE SURFACING

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

MEMORIAL HALL SECTION


MH1

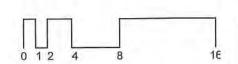

DEFECT-MONITOR

CLIENT

MINNESOTA STATE

500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

ROOF CURB

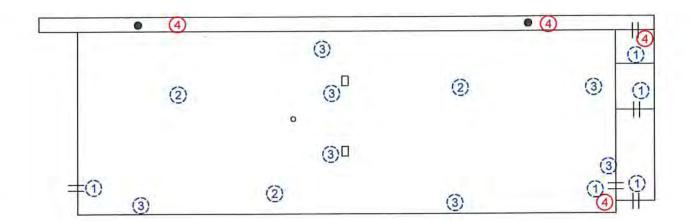

ROOF DRAIN

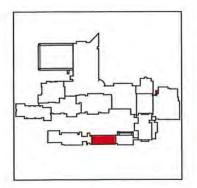
DEFECT-REPAIR DEFECT-MONITOR DEFECT KEY

2019 NO DEFECT

(#) 2019 NO DEFECT

CAMPUS ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

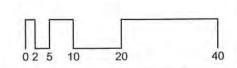

BUILDING MEMORIAL HALL SECTION MH2


CLIENT

MINNESOTA STATE

500 WELLS FARGO PLACE 30 EAST 7TH STREET. ST. PAUL, MINNESOTA 55101

RSI PROJECT NUMBER 19-9779-01 DATE

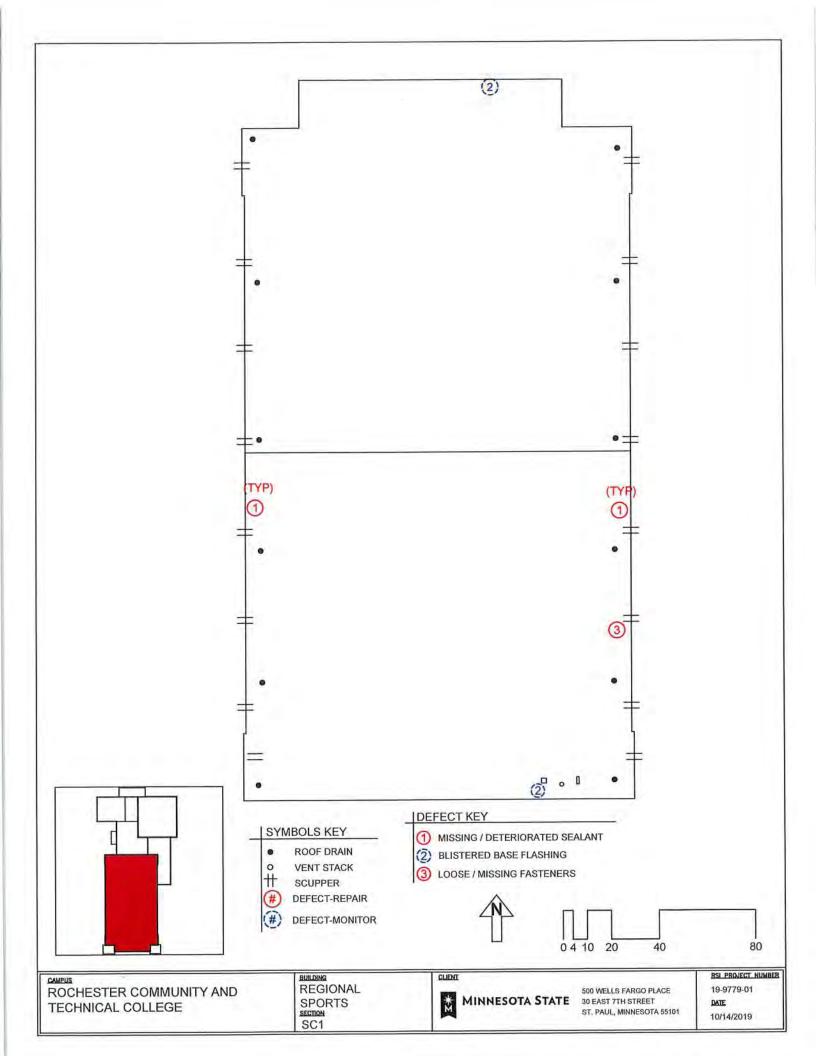


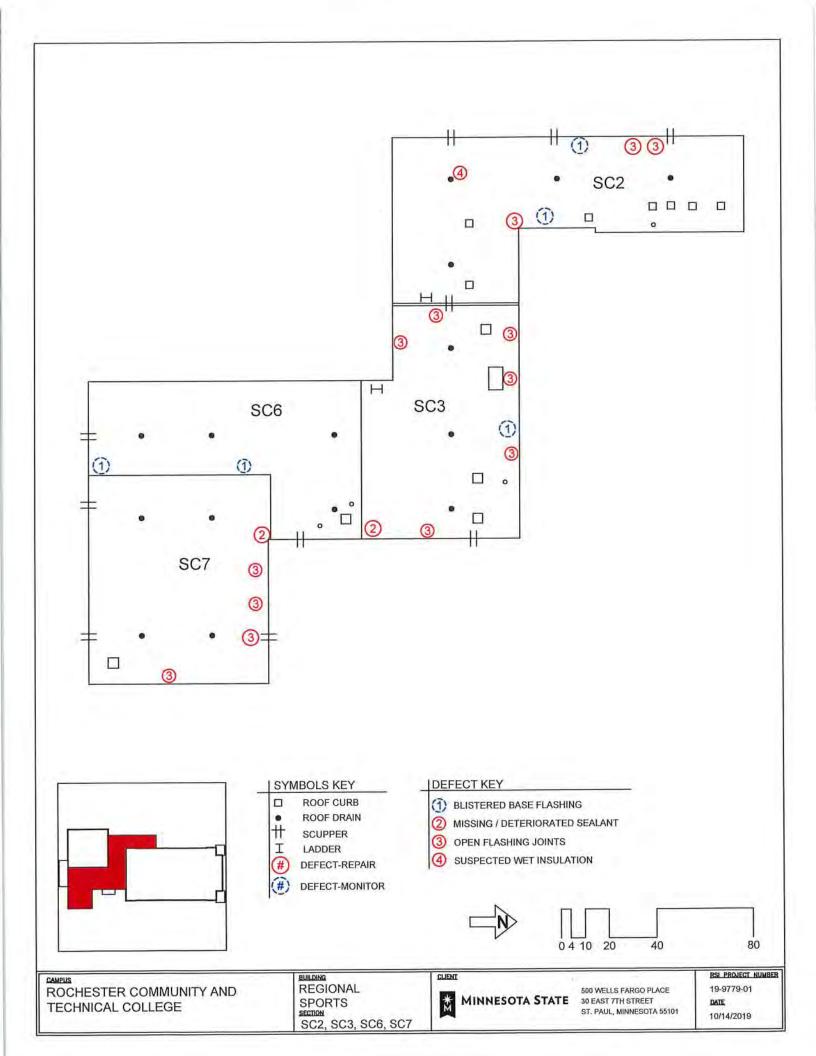
- **ROOF CURB**
- **ROOF DRAIN**
- 0 VENT STACK
- SKYLIGHT
- I LADDER
- # DEFECT-REPAIR
 - DEFECT-MONITOR

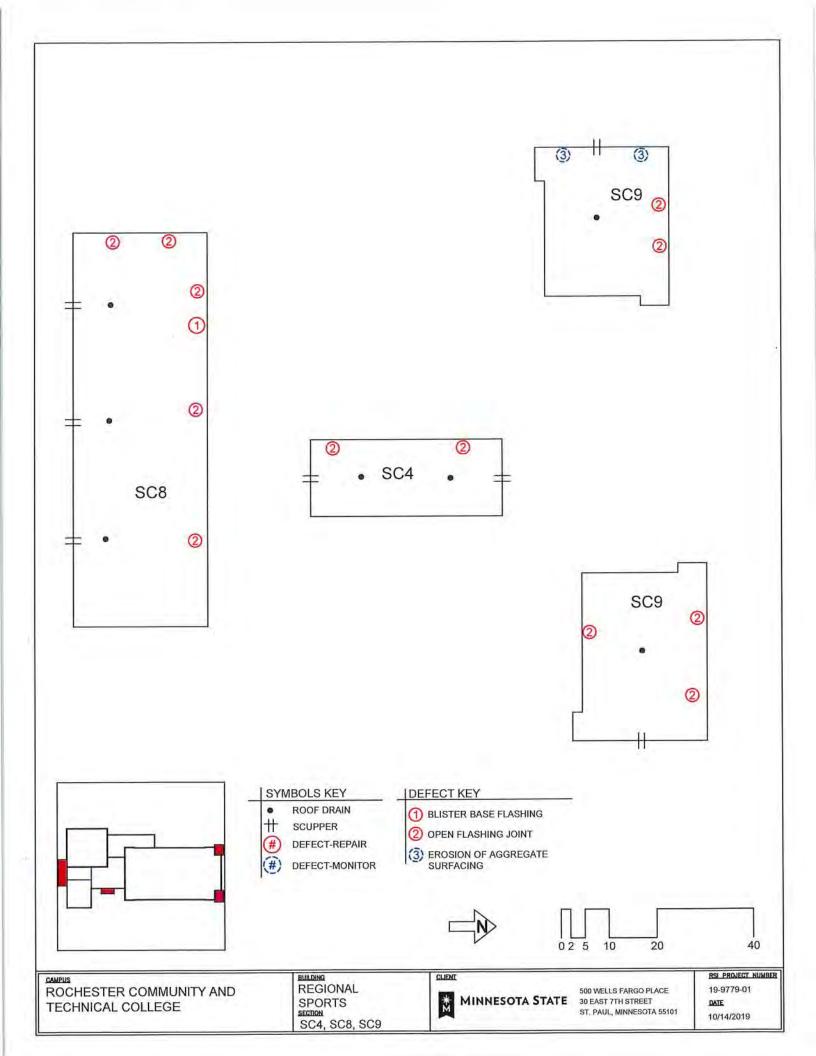
DEFECT KEY

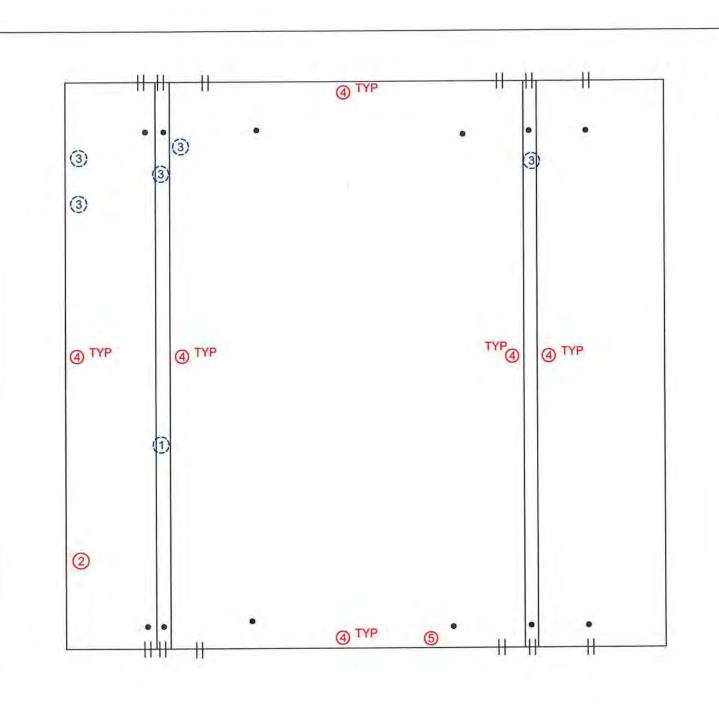
- (1) BROKEN / DETERIORATED PAVERS
- (2) PONDING / EVIDENCE OF PONDING
- (3) MEMBRANE BRIDGING
- VEGETATION / DEBRIS

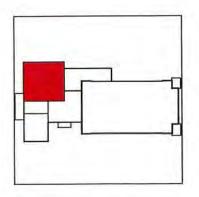
ROCHESTER COMMUNITY AND TECHNICAL COLLEGE


BUILDING PLAZA HALL

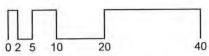

PH


CLIENT


MINNESOTA STATE


500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 RSI PROJECT NUMBER 19-9779-01

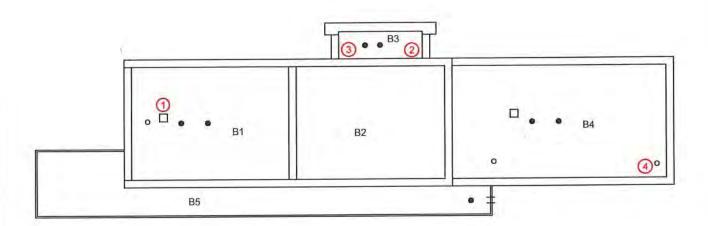
ROOF DRAIN SCUPPER


DEFECT-REPAIR

DEFECT-MONITOR

DEFECT KEY

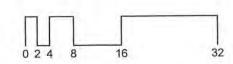
- (1) BLISTER BASE FLASHING
- 2 DISPLACED METAL FLASHING
- (3) EROSION OF AGGREGATE SURFACING
- OPEN FLASHING JOINT
- **(5)** LOOSE / MISSING FASTENER


ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

BUILDING REGIONAL SPORTS SECTION SC5

MINNESOTA STATE 30 EAST 7TH STREET

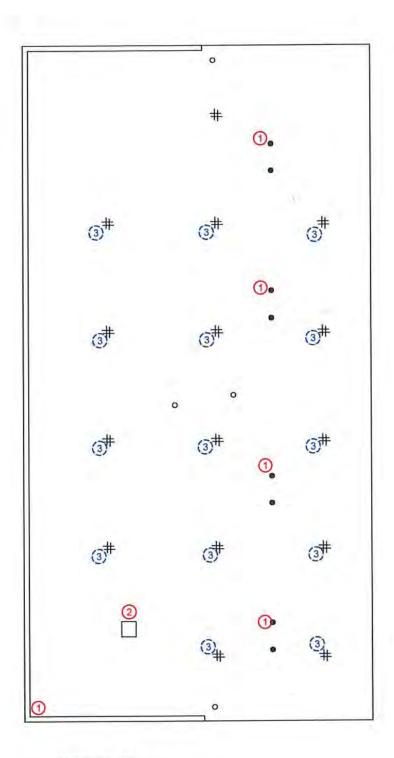
500 WELLS FARGO PLACE ST. PAUL, MINNESOTA 55101



- **ROOF CURB**
- **ROOF DRAIN**
- SCUPPER
- VENT STACK
- DEFECT-REPAIR
- DEFECT-MONITOR

DEFECT KEY

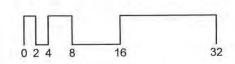
- MISSING COUNTERFLASHING
- 2 VEGETATION / DEBRIS
- MISSING / DETERIORATED SEALANT
- 4 MISSING DRAIN STRAINER



ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

REGIONAL SPORTS ENTRANCE BLDG B1-B5

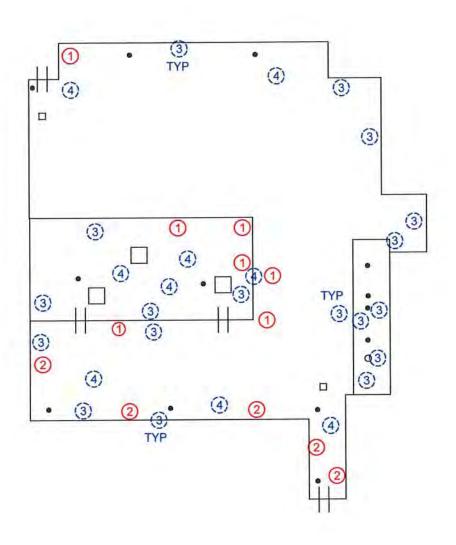
500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 MINNESOTA STATE

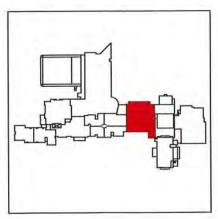


- ☐ ROOF CURB
- ROOF DRAIN
- # PITCH PAN
- THE PROPERTY OF THE
- VENT STACK
- # DEFECT-REPAIR
- #) DEFECT-MONITOR

DEFECT KEY

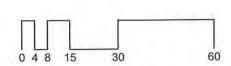
- 1 VEGETATION / DEBRIS
- MISSING COUNTERFLASHING
- (3) LOW FLASHING HEIGHT




ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

REGIONAL SPORTS
CONCESSION BLDG
SECTION
A1

MINNESOTA STATE
500 WELLS FARGO PLACE
30 EAST 7TH STREET
ST. PAUL, MINNESOTA 55101

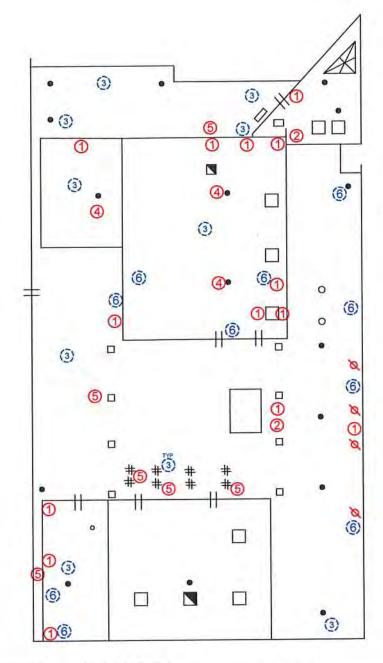

SYMBOLS KEY

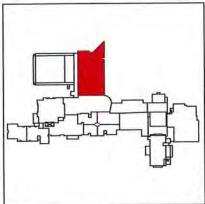
- **ROOF CURB**
- ROOF DRAIN
- VENT STACK
- SCUPPER
- # PITCH PAN
- CHIMNEY
- DEFECT-REPAIR
- DEFECT-MONITOR

DEFECT KEY

- 1 OPEN SEAM FLASHING
- ② VEGETATION / DEBRIS
- (3) MEMBRANE BRIDGING
- BROKEN / DETERIORATED PAVERS

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

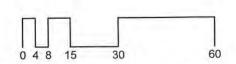

BUILDING STUDENT SERVICES SECTION SS



MINNESOTA STATE

500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101

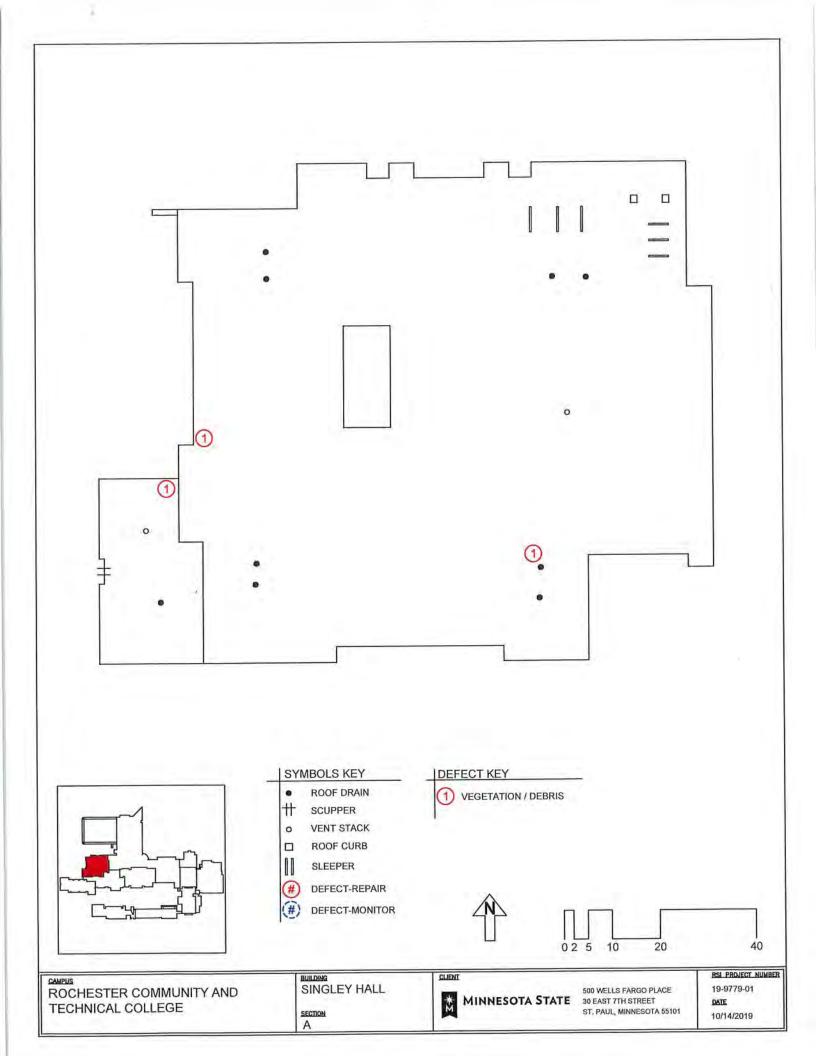
RSI PROJECT NUMBER 19-9779-01 DATE 10/14/2019

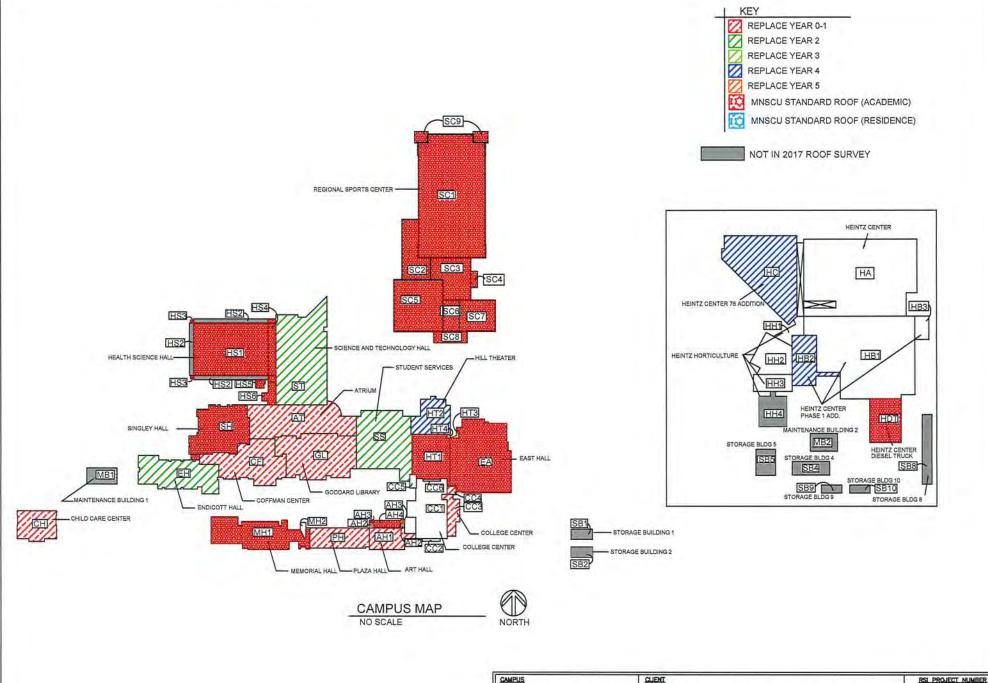

SYMBOLS KEY

- ROOF CURB
- ROOF DRAIN
- VENT STACK
- # SCUPPER
- # PITCH PAN
- CHIMNEY
- (# DEFECT-REPAIR
- (#) DEFECT-MONITOR LEAK LOCATION

DEFECT KEY

- 1 OPEN SEAM / FLASHING
- ② MISSING / DETERIORATED SEALANT
- (3) BROKEN / DETERIORATED PAVERS
- (4) BROKEN / MISSING DRAIN STRAINER
- O VEGETATION / DEBRIS
- (6) MEMBRANE BRIDGING




ROCHESTER COMMUNITY AND TECHNICAL COLLEGE

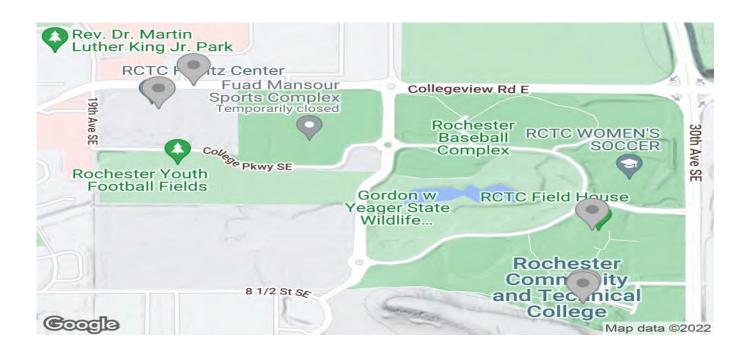
SCIENCE AND **TECHNOLOGY** ST

CLIENT

500 WELLS FARGO PLACE MINNESOTA STATE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 RSI PROJECT NUMBER 19-9779-01 DATE 10/14/2019

MINNESOTA STATE

ROCHESTER COMMUNITY AND


TECHNICAL COLLEGE

500 WELLS FARGO PLACE 30 EAST 7TH STREET ST. PAUL, MINNESOTA 55101 19-9779-01 DATE 10/14/2019

B3 BENCHMARKING

Report for

Rochester Community and Technical College

Contents

Rochester Community and Technical College	
Organization Properties	
Benchmark	5
Baseline	
ENERGY STAR® Scores	8
Total Energy Consumption & Cost	9
Career and Technical Education Center at Heintz (CTECH)	10
B3 Benchmark	10
B3 Peer Rating	11
ENERGY STAR	11
Baseline	12
Energy Usage by Meter Source Type	13
End Use Breakdown	13
Space Asset Areas	13
Water	13
Miscellaneous Properties	14
GROUNDS STORAGE GARAGE	15
B3 Benchmark	15
B3 Peer Rating	16
ENERGY STAR	16
Baseline	17
Energy Usage by Meter Source Type	18
End Use Breakdown	18
Space Asset Areas	18
Water	
Miscellaneous Properties	19
Health Sciences (SB 2030 Project)	
B3 Benchmark	20
B3 Peer Rating	21
ENERGY STAR	
Baseline	22
Energy Usage by Meter Source Type	23
End Use Breakdown	
Space Asset Areas	23
Water	23
Miscellaneous Properties	24
Heintz Center-Workforce Center Addition (SB 2030 Project)	25
B3 Benchmark	
B3 Peer Rating	26
ENERGY STAR	
Baseline	27

	Energy Usage by Meter Source Type	.28
	End Use Breakdown	.28
	Space Asset Areas	.28
	Water	.28
	Miscellaneous Properties	.29
RCTC	CHILD CARE CENTER	.30
	B3 Benchmark	.30
	B3 Peer Rating	.31
	ENERGY STAR	.31
	Baseline	.32
	Energy Usage by Meter Source Type	.33
	End Use Breakdown	
	Space Asset Areas	.33
	Water	.33
	Miscellaneous Properties	.34
RCTC	HEINTZ CENTER	.35
	B3 Benchmark	.35
	B3 Peer Rating	.36
	ENERGY STAR	.36
	Baseline	.37
	Energy Usage by Meter Source Type	.38
	End Use Breakdown	.38
	Space Asset Areas	.38
	Water	.38
	Miscellaneous Properties	.39
RCTC	MAIN CAMPUS	.40
	B3 Benchmark	.40
	B3 Peer Rating	.41
	ENERGY STAR	.41
	Baseline	.42
	Energy Usage by Meter Source Type	.43
	End Use Breakdown	.43
	Space Asset Areas	.43
	Water	.43
	Miscellaneous Properties	.44
ROCH	HESTER REGIONAL SPORTS CENTER	.45
	B3 Benchmark	.45
	B3 Peer Rating	.46
	ENERGY STAR	.46
	Baseline	.47
	Energy Usage by Meter Source Type	.48
	End Use Breakdown	.48
	Space Asset Areas	.48
	Water	.48

Miscellaneous Properties	49
ROCHESTER REGIONAL SPORTS STADIUM	50
B3 Benchmark	
B3 Peer Rating	
ENERGY STAR	
Baseline	
Energy Usage by Meter Source Type	
End Use Breakdown	
Space Asset Areas	53
Water	
Miscellaneous Properties	

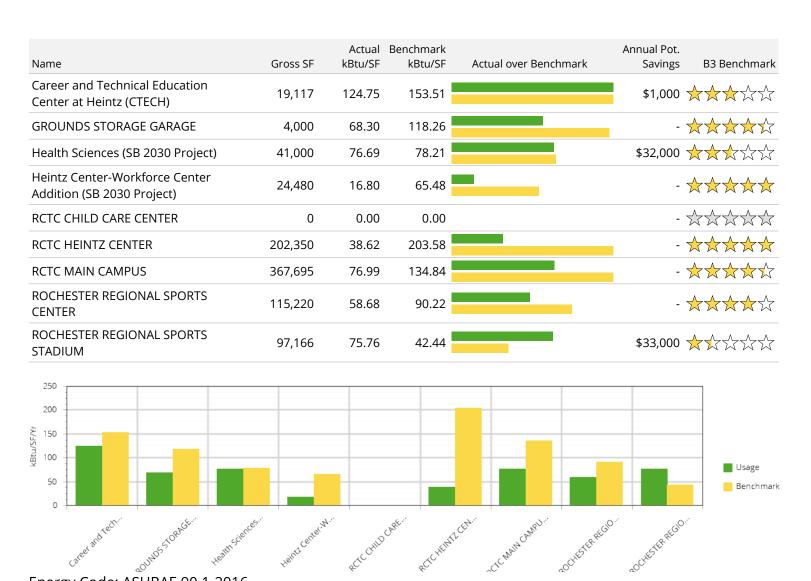
Rochester Community and Technical College

Organization Properties

Organization properties based on each site's most recent energy usage period.

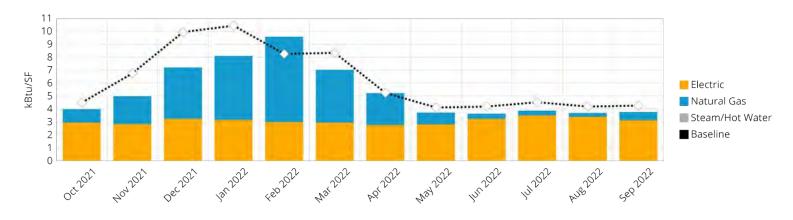
Gross Building SF	871,028 Gross Bldg SF
Occupants	400
Total Sites	8
Total Buildings	39
Total Meters	55
Annual CO2e	5,510.48 metric tons
Annual CO2e/SF	0.0063 metric tons/SF
Annual CO2e/Occupant	13.7762 metric tons/occupant
Annual CO2e Pounds	12,148,514 pounds
Annual CO2e/SF	13.95 pounds/SF
Annual CO2e/Occupant	30,371.28 pounds/occupant
Annual Cost	\$1,585,169
Annual Cost/SF	\$1.72/SF
Annual Cost/Occupant	\$3,743.55/occupant
kBtu	56,458,674 kBtu/year
kBtu/SF (aka EUI)	64.82 kBtu/sf/year

Organization properties based on period October 2021 to September 2022.


5,510 metric tons
12,148,514 pounds
\$1,497,422
\$1,497,422
56,458,674 kBtu/year
64.82 kBtu/sf/year

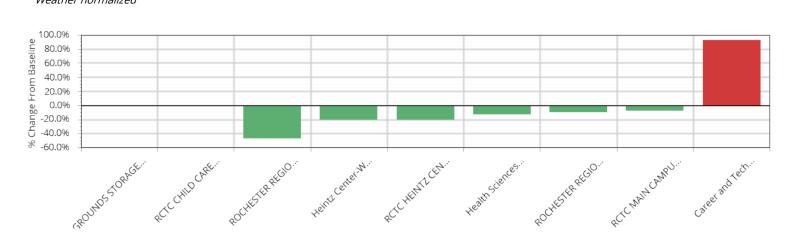
Benchmark

The current B3 Benchmark for this organization is 5 stars. Some of the buildings have a lower benchmark and some a higher. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report


provides additional information on those sites with the greatest savings potential and links to help realize the savings.

Energy Code: ASHRAE 90.1-2016

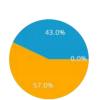
Baseline


Comparing each site's most recent 12-month period to the baseline period Jan 2017 - Dec 2017

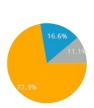
Name	Current (kBtu/SF)	Baseline (kBtu/SF)	Consumption % Change	Current CO2e (Metric Tons)	Baseline CO2e (Metric Tons)	CO2e % Change
GROUNDS STORAGE GARAGE	68.30	0.00	■ N/A	14.51	0.00	■ N/A
Career and Technical Education Center at Heintz (CTECH)	124.75	65.88	↑ +89.37%	160.75	109.63	↑ +46.62%
RCTC CHILD CARE CENTER	0.00	0.00	■ N/A	0.00	0.00	■ N/A
Heintz Center-Workforce Center Addition (SB 2030 Project)	16.80	20.88	▼ -19.51%	47.56	72.11	⊍ -34.04%
ROCHESTER REGIONAL SPORTS CENTER	58.68	62.97	U -6.81%	581.20	721.33	⊍ -19.43%
RCTC MAIN CAMPUS	76.99	83.06	⊍ -7.31%	3,003.16	4,279.68	☑ -29.83%
RCTC HEINTZ CENTER	38.62	47.98	⊍ -19.51%	903.67	1,370.01	▼ -34.04%
Health Sciences (SB 2030 Project)	76.69	85.61	U -10.42%	333.62	475.45	⊍ -29.83%
ROCHESTER REGIONAL SPORTS STADIUM	75.76	123.29	⊍ -38.55%	466.01	765.71	☑ -39.14%

Name	Current (kBtu/SF)*	Baseline (kBtu/SF)*	Consumption % Change*	Current CO2e (Metric Tons)*	Baseline CO2e (Metric Tons)*	CO2e % Change*
Career and Technical Education Center at Heintz (CTECH)	113.79	58.73	↑ +93.75%	149.62	102.38	↑ +46.14%
GROUNDS STORAGE GARAGE	58.48	0.00	■ N/A	12.43	0.00	↑ +999.99%
Health Sciences (SB 2030 Project)	74.13	85.22	⊍ -13.02%	324.86	475.69	⊍ -31.71%
Heintz Center-Workforce Center Addition (SB 2030 Project)	16.29	20.48	▼ -20.48%	46.89	71.59	⊍ -34.50%
RCTC CHILD CARE CENTER	0.00	0.00	■ N/A	0.00	0.00	■ 0.00%
RCTC HEINTZ CENTER	37.81	47.45	⊻ -20.31%	895.03	1,364.31	■ -34.40%
RCTC MAIN CAMPUS	75.47	82.47	⊍ -8.49%	2,973.51	4,267.81	▼ -30.33%
ROCHESTER REGIONAL SPORTS CENTER	55.41	61.86	⊍ -10.43%	557.06	711.89	⊍ -21.75%
ROCHESTER REGIONAL SPORTS STADIUM	65.02	124.33	⊍ -47.70%	404.25	771.60	⊍ -47.61%

^{*}Weather normalized



ENERGY STAR® Scores


Name	Building Type	ENERGY STAR Score
Career and Technical Education Center at Heintz (CTECH)	College Classroom	-
GROUNDS STORAGE GARAGE	Vehicle Storage Building	-
Health Sciences (SB 2030 Project)	College Classroom	-

Heintz Center-Workforce Center Addition (SI 2030 Project)	College Classroom	-
RCTC CHILD CARE CENTER	Decommissioned	-
RCTC HEINTZ CENTER	College Classroom	-
RCTC MAIN CAMPUS	College Laboratory	-
ROCHESTER REGIONAL SPORTS CENTER	Gymnasium	-
ROCHESTER REGIONAL SPORTS STADIUM	Sports Arena	-

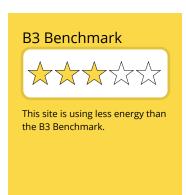
Total Energy Consumption & Cost

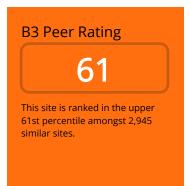
Total		56,458,674	64.82	5,510.48
Water				
Steam/Hot	6 MMBTu	6,269	0.01	0.42
🚺 Natural Gas	242,566 Therms	24,256,617	27.85	1,288.39
Electric	9,436,046 kWh	32,195,788	36.96	4,221.68
	Total Consumption	Total Consumption (kBtu)	kBtu/SF	CO2e Metric Tons

Total	\$1,497,422	\$1.72
Water	ψ10 <i>3</i> ,022	Ф 0.19
Steam/Hot	\$165,622	\$0.19
🕔 Natural Gas	\$248,666	\$0.29
Electric	\$1,083,133	\$1.24
	Total Ellergy Cost (\$)	⊅/ 3F

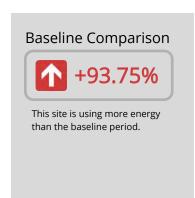
Rochester Community and Technical College

Career and Technical Education Center at Heintz (CTECH)


2130 College View Road E Rochester, MN 55904 Built 6/24/2016

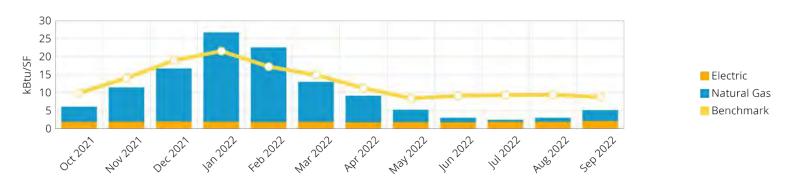

19,117 Gross Bldg SF


1 Electric Meter 1 Natural Gas Meter 1 Water - Indoor Only Meter 1 Water - Irrigation Only Meter



Site has proper information for energy analysis

B3 Benchmark


B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.

Actual:	124.75 kBtu/SF (October 2021 to September 2022)
Benchmark:	153.51 kBtu/SF (ASHRAE 90.1-2016)
Ratio:	0.81

This site is using less energy than the B3 Benchmark.

Actual Usage Compared to Benchmark By Month



B3 Peer Rating

61

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

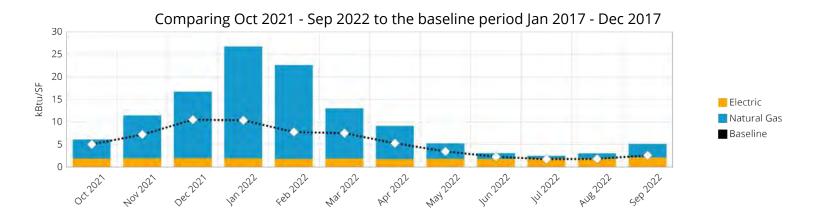
This site is ranked in the upper 61st percentile amongst 2,945 similar sites.

ENERGY STAR

ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.

B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)


Baseline

Baseline comparison is a comparison of a site to itself over time.

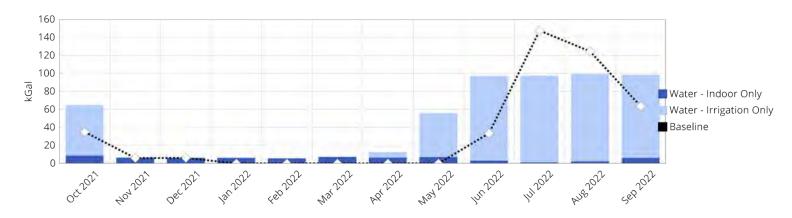
*Actual: 113.79 kBtu/SF (October 2021 to September 2022)
*Baseline: 58.73 kBtu/SF (January 2017 to December 2017)

^{*}Weather normalized

Energy Usage by Meter Source Type

Total	\$32,767	\$1.71	\$82.33	0.40
🕔 Natural Gas	\$16,629	\$0.87	\$41.78	0.26
Electric	\$16,138	\$0.84	\$40.55	0.14
	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
Total		2,384,852	124.75	5,992.09
🕔 Natural Gas	19,480 Therms	1,948,039	101.90	4,894.5
Electric	128,022 kWh	436,812	22.85	1,097.52
	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupan

End Use Breakdown



Space Asset Areas

Water

Current Water Consumption:	555.68 (kGal/year)
Baseline Water Consumption:	416 (kGal/year)
Percent Change:	+33.50%
Current Annual Water Dollars:	\$1,878
Baseline Annual Water Dollars:	\$802
Annual Water Usage Per Occupant:	1.3962
Annual Water Usage Per Square Foot:	0.0291

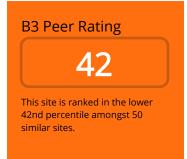
Miscellaneous Properties

T . 160	
Total Sites:	1
Total Buildings:	1
Total Meters:	4
Annual CO2e Metric Tons:	160.75 metric tons
Annual CO2e/SF:	0.0084 metric tons/SF
Annual CO2e/Occupant:	0.4039 metric tons/occupant
Annual CO2e Pounds:	354,386 pounds
Annual CO2e/SF:	18.54 pounds/SF
Annual CO2e/Occupant:	890.42 pounds/occupant
Annual Cost:	\$34,645
Annual Cost/SF:	\$1.81/SF
Annual Cost/Occupant:	\$87.05/occupant
kBtu:	2,384,852 kBtu/year
kBtu/SF (aka EUI):	124.75 kBtu/sf/year
Date Created:	3/27/2017
First Building Name:	CAREER AND TECHNICAL EDUCATION CENTER AT HEINTZ (CTECH)
Energy Usage Period:	October 2021 to September 2022
Water Usage Period:	October 2021 to September 2022
Total Usage Period:	October 2021 to September 2022
Baseline Period:	January 2017 to December 2017
	·

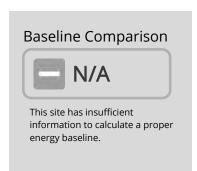
Rochester Community and Technical College

GROUNDS STORAGE GARAGE

2900 College Pl SE Rochester, MN 55904 **Built 2019**


4,000 Gross Bldg SF

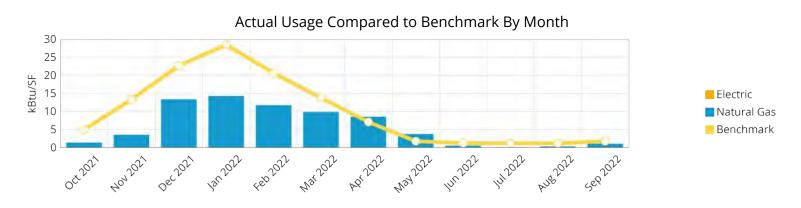
1 Natural Gas Meter 1 Water - Mixed Use Meter 1 Sanitary Sewer Meter



Warning. No electric meters defined.

B3 Benchmark

B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.



Actual: 68.30 kBtu/SF (October 2021 to September 2022)

Benchmark: 118.26 kBtu/SF (ASHRAE 90.1-2016)

Ratio: 0.58

This site is using significantly less energy than the B3 Benchmark.



B3 Peer Rating

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

This site is ranked in the lower 42nd percentile amongst 50 similar sites.

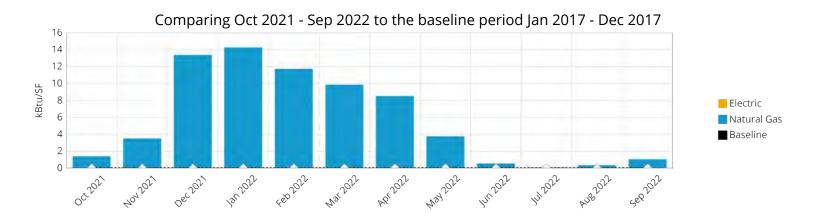
ENERGY STAR

ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.

B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

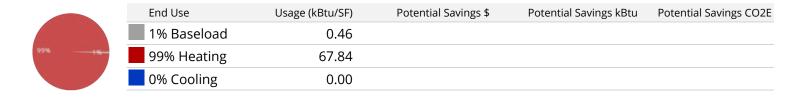
Problem: The time weighted value for Number of Workers on Main Shift in your Non-Refrigerated Warehouse is 0

Baseline


Baseline comparison is a comparison of a site to itself over time.

*Actual: 58.48 kBtu/SF (October 2021 to September 2022)

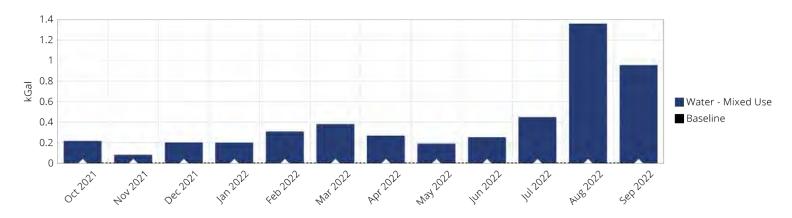
*Baseline: 0.00 kBtu/SF (January 2017 to December 2017)


^{*}Weather normalized

Energy Usage by Meter Source Type

	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant
Electric	0 kWh	0	0.00	0.00
🚺 Natural Gas	2,732 Therms	273,212	68.30	136,605.77
Total		273,212	68.30	136,605.77
	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
🤪 Electric	\$0	\$0.00	\$0.00	0.00
Natural Gas	\$3,334	\$0.83	\$1,667.08	7.26
			\$1,667.08	7.26

End Use Breakdown



Space Asset Areas

Water

Current Water Consumption:	4.88 (kGal/year)
Baseline Water Consumption:	(kGal/year)
Percent Change:	0.00%
Current Annual Water Dollars:	\$421
Baseline Annual Water Dollars:	
Annual Water Usage Per Occupant:	2.4391
Annual Water Usage Per Square Foot:	0.0012

Miscellaneous Properties

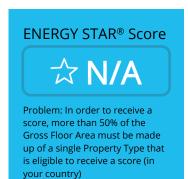
Total Sites:	1
Total Buildings:	1
Total Meters:	3
Annual CO2e Metric Tons:	14.51 metric tons
Annual CO2e/SF:	0.0036 metric tons/SF
Annual CO2e/Occupant:	7.2558 metric tons/occupant
Annual CO2e Pounds:	31,993 pounds
Annual CO2e/SF:	8.00 pounds/SF
Annual CO2e/Occupant:	15,996.26 pounds/occupant
Annual Cost:	\$3,756
Annual Cost/SF:	\$0.94/SF
Annual Cost/Occupant:	\$1,877.82/occupant
kBtu:	273,212 kBtu/year
kBtu/SF (aka EUI):	68.30 kBtu/sf/year
Date Created:	12/10/2019
First Building Name:	GROUNDS STORAGE GARAGE
Energy Usage Period:	October 2021 to September 2022
Water Usage Period:	October 2021 to September 2022
Total Usage Period:	October 2021 to September 2022
Baseline Period:	January 2017 to December 2017

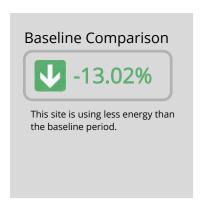
Rochester Community and Technical College

Health Sciences (SB 2030 Project)

851 30th Ave SE Rochester, MN 55904 Built 2007

41,000 Gross Bldg SF


2 Electric Meters 1 Natural Gas Meter 2 Water - Mixed Use Meters 4 Water - Irrigation Only Meters 1 Sanitary Sewer Meter



Site has proper information for energy analysis

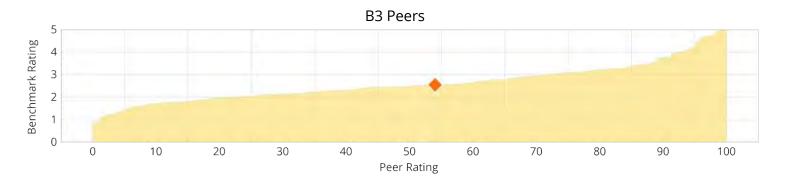
B3 Benchmark

B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.

Actual:	76.69 kBtu/SF (October 2021 to September 2022)
Benchmark:	78.21 kBtu/SF (ASHRAE 90.1-2016)
Ratio:	0.98

This site is using slightly less energy than the B3 Benchmark.

Actual Usage Compared to Benchmark By Month



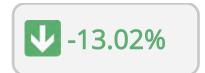
B3 Peer Rating

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

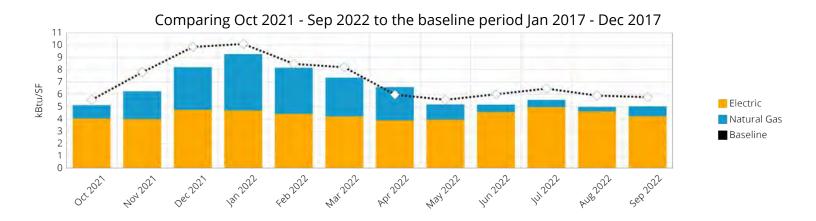
This site is ranked in the upper 54th percentile amongst 171 similar sites.

ENERGY STAR

ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.


B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)


Baseline

Baseline comparison is a comparison of a site to itself over time.

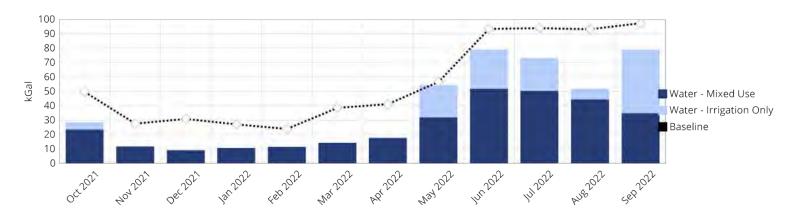
*Actual: 74.13 kBtu/SF (October 2021 to September 2022)
*Baseline: 85.22 kBtu/SF (January 2017 to December 2017)

^{*}Weather normalized

Energy Usage by Meter Source Type

		Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant
32.1%	🨝 Electric	625,977 kWh	2,135,833	52.09	0.00
	🕔 Natural Gas	10,084 Therms	1,008,401	24.60	0.00
67.9%	Total		3,144,233	76.69	0.00
		Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
12.5	😜 Electric	\$71,863	\$1.75	\$0.00	0.00
7.5%	Natural Gas	\$10,239	\$0.25	\$0.00	0.00
	Total	\$82,103	\$2.00	\$0.00	0.00

End Use Breakdown



Space Asset Areas

Water

Current Water Consumption:	440.90 (kGal/year)
Baseline Water Consumption:	673 (kGal/year)
Percent Change:	-34.51%
Current Annual Water Dollars:	\$2,702
Baseline Annual Water Dollars:	\$2,742
Annual Water Usage Per Occupant:	
Annual Water Usage Per Square Foot:	0.0108

Miscellaneous Properties

Total Sites:	1
Total Buildings:	1
Total Meters:	10
Annual CO2e Metric Tons:	333.62 metric tons
Annual CO2e/SF:	0.0081 metric tons/SF
Annual CO2e/Occupant:	0.0000 metric tons/occupant
Annual CO2e Pounds:	735,511 pounds
Annual CO2e/SF:	17.94 pounds/SF
Annual CO2e/Occupant:	0.00 pounds/occupant
Annual Cost:	\$84,805
Annual Cost/SF:	\$2.07/SF
Annual Cost/Occupant:	\$0.00/occupant
kBtu:	3,144,233 kBtu/year
kBtu/SF (aka EUI):	76.69 kBtu/sf/year
Date Created:	4/1/2015
First Building Name:	Health Sciences (SB 2030 Project)
Energy Usage Period:	October 2021 to September 2022
Water Usage Period:	October 2021 to September 2022
Total Usage Period:	October 2021 to September 2022
Baseline Period:	January 2017 to December 2017

Rochester Community and Technical College

Heintz Center-Workforce Center Addition (SB 2030 Project)

851 30th Ave SE Rochester, MN 55904 Built 8/1/2014

24,480 Gross Bldg SF

1 Electric Meter 1 Natural Gas Meter 1 Steam/Hot Water Meter


Site has proper information for energy analysis

your country)

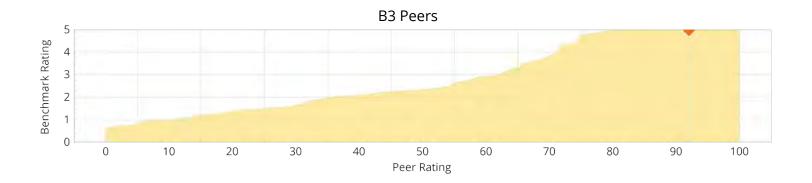
B3 Benchmark

B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.

Actual:	16.80 kBtu/SF (October 2021 to September 2022)
Benchmark:	65.48 kBtu/SF (ASHRAE 90.1-2016)
Ratio:	0.26

This site is using significantly less energy than the B3 Benchmark.

Actual Usage Compared to Benchmark By Month



B3 Peer Rating

93

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

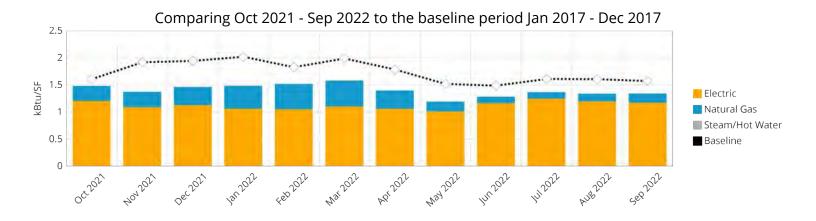
This site is ranked in the upper 92nd percentile amongst 80 similar sites.

ENERGY STAR

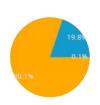
ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.

B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

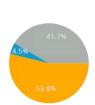
Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)


Baseline

Baseline comparison is a comparison of a site to itself over time.



*Actual: 16.29 kBtu/SF (October 2021 to September 2022)
*Baseline: 20.48 kBtu/SF (January 2017 to December 2017)


^{*}Weather normalized

Energy Usage by Meter Source Type

Total		411,297	16.80	0.00
Steam/Hot Water	0 MMBTu	313	0.01	0.00
🕔 Natural Gas	814 Therms	81,391	3.32	0.00
Electric	96,598 kWh	329,593	13.46	0.00
	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant

	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
Electric	\$10,701	\$0.44	\$0.00	0.00
Natural Gas	\$900	\$0.04	\$0.00	0.00
Steam/Hot Water	\$8,281	\$0.34	\$0.00	0.00
Total	\$19,882	\$0.81	\$0.00	0.00

End Use Breakdown

End Use	Usage (kBtu/SF)	Potential Savings \$	Potential Savings kBtu	Potential Savings CO2E
83% Baseload	14.02			
17% Heating	2.78			
0% Cooling	0.00			

Space Asset Areas

SpaceUsage	Hours/Day	Days/Wk	Months/Yr	Conditioning
Classrooms	8 hrs/day	5 days/wk	12 months/yr	Heated And Cooled

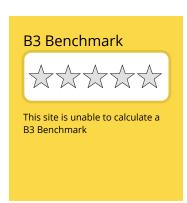
Water

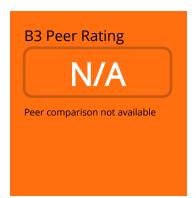
(kGal/year)
(kGal/year)

Miscellaneous Properties

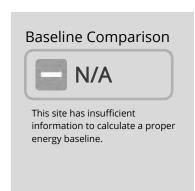
Total Citor	1
Total Sites:	1
Total Buildings:]
Total Meters:	3
Annual CO2e Metric Tons:	47.56 metric tons
Annual CO2e/SF:	0.0019 metric tons/SF
Annual CO2e/Occupant:	0.0000 metric tons/occupant
Annual CO2e Pounds:	104,856 pounds
Annual CO2e/SF:	4.28 pounds/SF
Annual CO2e/Occupant:	0.00 pounds/occupant
Annual Cost:	\$19,882
Annual Cost/SF:	\$0.81/SF
Annual Cost/Occupant:	\$0.00/occupant
kBtu:	411,297 kBtu/year
kBtu/SF (aka EUI):	16.80 kBtu/sf/year
Date Created:	5/11/2015
First Building Name:	Heintz Center-Workforce Center Addition (SB 2030 Project)
Energy Usage Period:	October 2021 to September 2022
Water Usage Period:	
Total Usage Period:	October 2021 to September 2022
Baseline Period:	January 2017 to December 2017

Rochester Community and Technical College


Built 1989


RCTC CHILD CARE CENTER

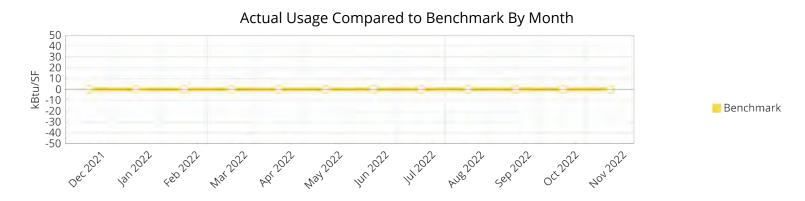
851 30th Ave SE Rochester, MN 55904 1 Electric Meter 1 Water - Mixed Use Meter 1 Sanitary Sewer Meter



Site is decommissioned/demolished

B3 Benchmark

B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.



Actual: 0.00 kBtu/SF (December 2021 to November 2022)

Benchmark: 0.00 kBtu/SF (ASHRAE 90.1-2016)

Ratio: -

This site is unable to calculate a B3 Benchmark

B3 Peer Rating

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

Peer comparison not available

B3 Peers

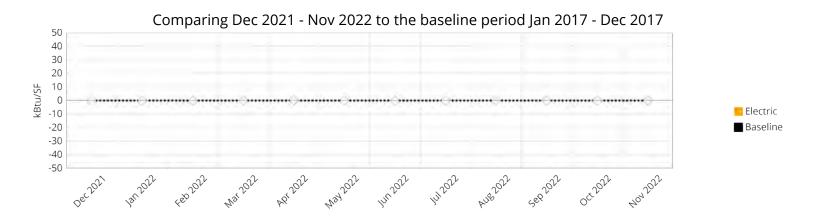
There is no or empty series

ENERGY STAR

ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.

B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)


Baseline

Baseline comparison is a comparison of a site to itself over time.

*Actual: 0.00 kBtu/SF (December 2021 to November 2022)
*Baseline: 0.00 kBtu/SF (January 2017 to December 2017)

^{*}Weather normalized

Energy Usage by Meter Source Type

No data available

	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant
🤪 Electric	0 kWh	0	0.00	0.00
Total		0	0.00	0.00

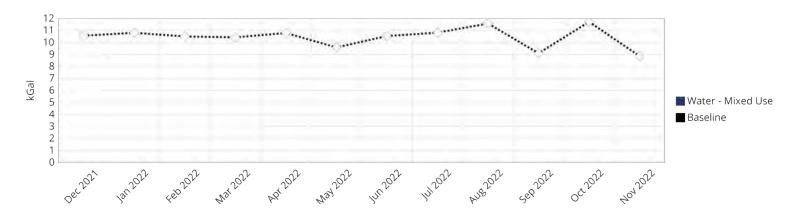
No data available

	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
Electric	\$0	\$0.00	\$0.00	0.00
Total	\$0	\$0.00	\$0.00	0.00

End Use Breakdown

No data available

End Use	Usage (kBtu/SF)	Potential Savings \$	Potential Savings kBtu	Potential Savings CO2E
0% Baseload	0.00			
0% Heating	0.00			
0% Cooling	0.00			


Space Asset Areas

SpaceUsage	Hours/Day	Days/Wk	Months/Yr	Conditioning
Classrooms	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled

Water

Current Water Consumption:	(kGal/year)
Baseline Water Consumption:	125 (kGal/year)
Percent Change:	0.00%
Current Annual Water Dollars:	\$0
Baseline Annual Water Dollars:	\$761
Annual Water Usage Per Occupant:	
Annual Water Usage Per Square Foot:	

Miscellaneous Properties

2022
2022
2022
7
2

RCTC HEINTZ CENTER

2070 College View Road E Rochester, MN 55904 **Built 1969**

202,350 Gross Bldg SF

3 Electric Meters 1 Natural Gas Meter 1 Steam/Hot Water Meter 2 Water - Mixed Use Meters 1 Water - Irrigation Only Meter 2 Sanitary Sewer Meters

Site has proper information for energy analysis

B3 Benchmark

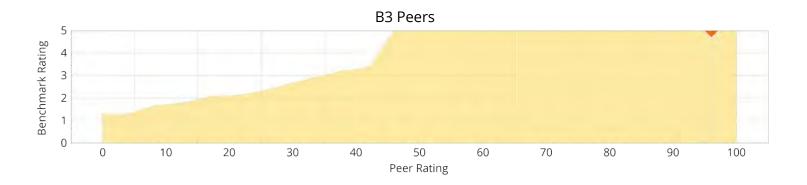
B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.

Actual: 38.62 kBtu/SF (October 2021 to September 2022) Benchmark: 203.58 kBtu/SF (ASHRAE 90.1-2016)

Ratio: 0.19

This site is using significantly less energy than the B3 Benchmark.

Actual Usage Compared to Benchmark By Month



B3 Peer Rating

96

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

This site is ranked in the upper 96th percentile amongst 24 similar sites.

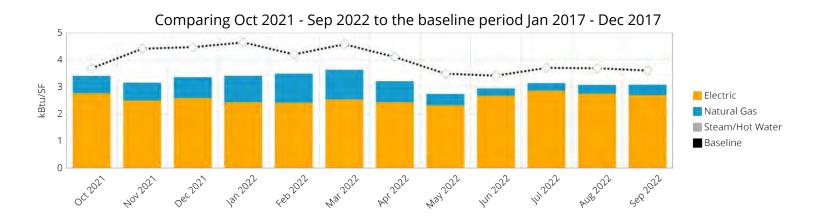
ENERGY STAR

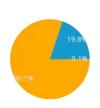
ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.

B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

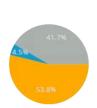
Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)

Baseline


Baseline comparison is a comparison of a site to itself over time.


*Actual: 37.81 kBtu/SF (October 2021 to September 2022)

*Baseline: 47.45 kBtu/SF (January 2017 to December 2017)


*Weather normalized

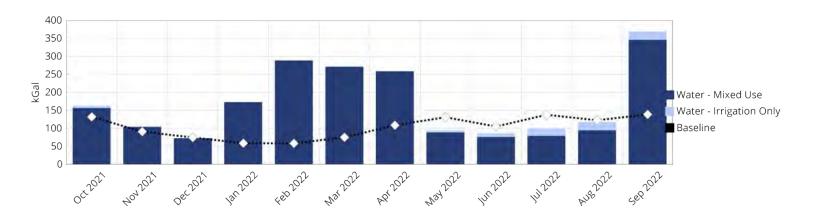
Energy Usage by Meter Source Type

		· · ·		
Total		7,814,641	38.62	0.00
Steam/Hot Water	6 MMBTu	5,956	0.03	0.00
🕔 Natural Gas	15,464 Therms	1,546,426	7.64	0.00
Electric	1,835,363 kWh	6,262,259	30.95	0.00
	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant

	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
Electric	\$203,319	\$1.00	\$0.00	0.00
Natural Gas	\$17,095	\$0.08	\$0.00	0.00
Steam/Hot Water	\$157,341	\$0.78	\$0.00	0.00
Total	\$377,754	\$1.87	\$0.00	0.00

End Use Breakdown

End Use	Usage (kBtu/SF)	Potential Savings \$	Potential Savings kBtu	Potential Savings CO2E
84% Baseload	32.44			
16% Heating	6.18			
0% Cooling	0.00			


Space Asset Areas

SpaceUsage	Hours/Day	Days/Wk	Months/Yr	Conditioning
Office	9 hrs/day	5 days/wk	12 months/yr	Heated And Cooled

Water

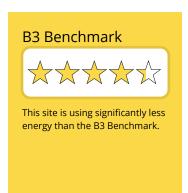
Current Water Consumption:	2,094.73 (kGal/year)
Baseline Water Consumption:	1,236 (kGal/year)
Percent Change:	+69.53%
Current Annual Water Dollars:	\$16,530
Baseline Annual Water Dollars:	\$6,512
Annual Water Usage Per Occupant:	
Annual Water Usage Per Square Foot:	0.0104

Miscellaneous Properties

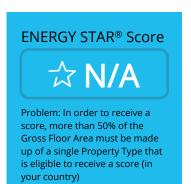
Total Sites:	1
Total Buildings:	14
Total Meters:	10
Annual CO2e Metric Tons:	903.67 metric tons
Annual CO2e/SF:	0.0045 metric tons/SF
Annual CO2e/Occupant:	0.0000 metric tons/occupant
Annual CO2e Pounds:	1,992,256 pounds
Annual CO2e/SF:	9.85 pounds/SF
Annual CO2e/Occupant:	0.00 pounds/occupant
Annual Cost:	\$394,285
Annual Cost/SF:	\$1.95/SF
Annual Cost/Occupant:	\$0.00/occupant
kBtu:	7,814,641 kBtu/year
kBtu/SF (aka EUI):	38.62 kBtu/sf/year
Date Created:	
First Building Name:	*HEINTZ CENTER: WORKFORCE CENTER ADDITION
Energy Usage Period:	October 2021 to September 2022
Water Usage Period:	October 2021 to September 2022
Total Usage Period:	October 2021 to September 2022
Baseline Period:	January 2017 to December 2017

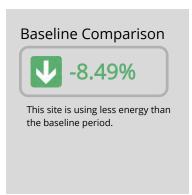
Rochester Community and Technical College

RCTC MAIN CAMPUS


851 30th Ave SE Rochester, MN 55904 **Built 1968**

367,695 Gross Bldg SF


4 Electric Meters 3 Natural Gas Meters 2 Steam/Hot Water Meters 3 Water - Mixed Use Meters 7 Water - Irrigation Only Meters 2 Sanitary Sewer Meters 1 Stormwater Fee Meter



Site has proper information for energy analysis

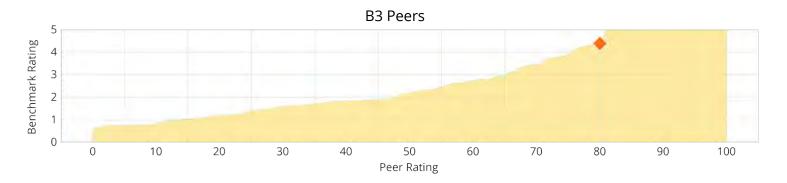
B3 Benchmark

B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.

Actual:	76.99 kBtu/SF (October 2021 to September 2022)
Benchmark:	134.84 kBtu/SF (ASHRAE 90.1-2016)
Ratio:	0.57

This site is using significantly less energy than the B3 Benchmark.

Actual Usage Compared to Benchmark By Month



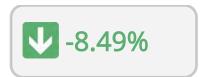
B3 Peer Rating

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

This site is ranked in the upper 80th percentile amongst 147 similar sites.

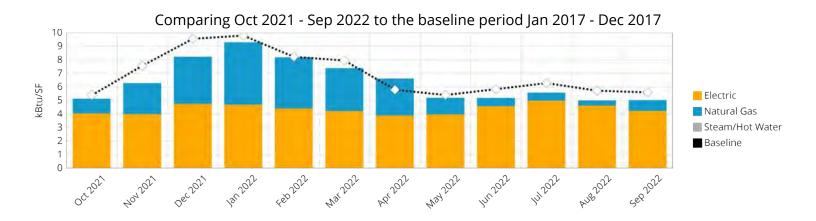
ENERGY STAR

ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.


B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

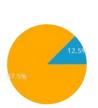
Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)

Baseline


Baseline comparison is a comparison of a site to itself over time.

*Actual: 75.47 kBtu/SF (October 2021 to September 2022)

*Baseline: 82.47 kBtu/SF (January 2017 to December 2017)


*Weather normalized

Energy Usage by Meter Source Type

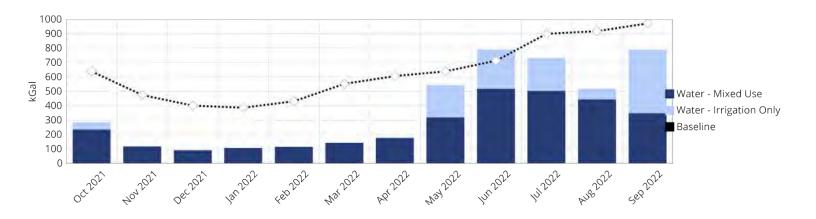
	32.1%	
67.9%		

Total		28,308,583	76.99	0.00
Steam/Hot Water	0 MMBTu	0	0.00	0.00
🚺 Natural Gas	90,861 Therms	9,086,090	24.71	0.00
Electric	5,633,790 kWh	19,222,493	52.28	0.00
	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant

Total	\$739,263	\$2.01	\$0.00	0.00
Steam/Hot Water	\$0	\$0.00	\$0.00	0.00
🚺 Natural Gas	\$92,492	\$0.25	\$0.00	0.00
Electric	\$646,771	\$1.76	\$0.00	0.00
	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant

End Use Breakdown

End Use	Usage (kBtu/SF)	Potential Savings \$	Potential Savings kBtu	Potential Savings CO2E
57% Baseload	43.74			
34% Heating	26.53			
9% Cooling	6.72			


Space Asset Areas

SpaceUsage	Hours/Day	Days/Wk	Months/Yr	Conditioning
Classrooms	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled
Office	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled
Dining	12 hrs/day	7 days/wk	12 months/yr	Heated And Cooled

Water

Current Water Consumption:	4,409.02 (kGal/year)
Baseline Water Consumption:	7,634 (kGal/year)
Percent Change:	-42.25%
Current Annual Water Dollars:	\$57,820
Baseline Annual Water Dollars:	\$47,113
Annual Water Usage Per Occupant:	
Annual Water Usage Per Square Foot:	0.0120

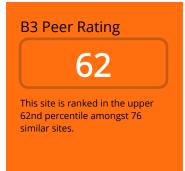
Miscellaneous Properties

Total Sites: 1	
Total Sites.	
Total Buildings: 16	
Total Meters: 12	
Annual CO2e Metric Tons: 3,003.16 metric tons	
Annual CO2e/SF: 0.0082 metric tons/SF	
Annual CO2e/Occupant: 0.0000 metric tons/occupant	
Annual CO2e Pounds: 6,620,823 pounds	
Annual CO2e/SF: 18.01 pounds/SF	
Annual CO2e/Occupant: 0.00 pounds/occupant	
Annual Cost: \$797,082	
Annual Cost/SF: \$2.17/SF	
Annual Cost/Occupant: \$0.00/occupant	
kBtu: 28,308,583 kBtu/year	
kBtu/SF (aka EUI): 76.99 kBtu/sf/year	
Date Created:	
First Building Name: *RCTC HEALTH SCIENCE HALL	
Energy Usage Period: October 2021 to September 2022	
Water Usage Period: October 2021 to September 2022	
Total Usage Period: October 2021 to September 2022	
Baseline Period: January 2017 to December 2017	

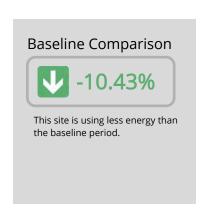
Rochester Community and Technical College

ROCHESTER REGIONAL SPORTS CENTER

2900 College PI SE Rochester, MN 55904 Built 8/1/2002


115,220 Gross Bldg SF

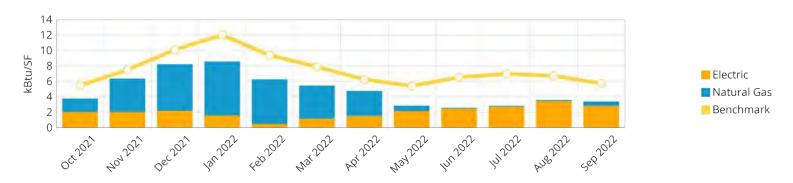
1 Electric Meter 1 Natural Gas Meter 1 Steam/Hot Water Meter 1 Water - Mixed Use Meter 1 Water - Irrigation Only Meter 1 Sanitary Sewer Meter



Site has proper information for energy analysis

B3 Benchmark

B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.

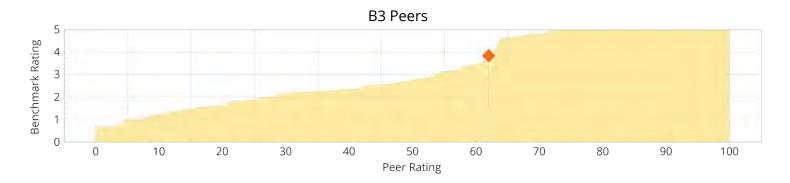

Actual: 58.68 kBtu/SF (October 2021 to September 2022)

Benchmark: 90.22 kBtu/SF (ASHRAE 90.1-2016)

Ratio: 0.65

This site is using significantly less energy than the B3 Benchmark.

Actual Usage Compared to Benchmark By Month



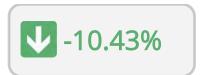
B3 Peer Rating

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

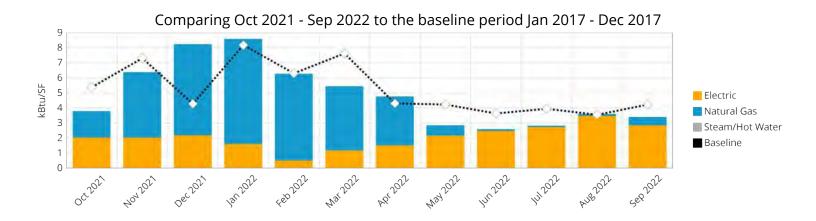
This site is ranked in the upper 62nd percentile amongst 76 similar sites.

ENERGY STAR

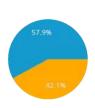
ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.


B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

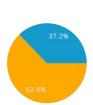
Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)


Baseline

Baseline comparison is a comparison of a site to itself over time.



*Actual:	55.41 kBtu/SF (October 2021 to September 2022)
*Baseline:	61.86 kBtu/SF (January 2017 to December 2017)


^{*}Weather normalized

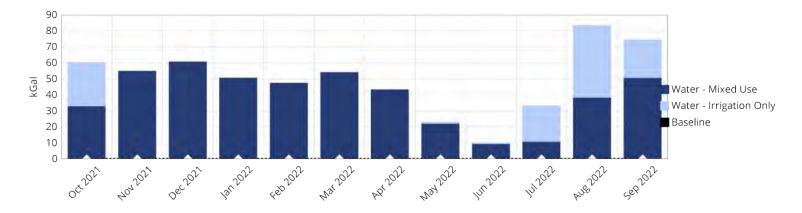
Energy Usage by Meter Source Type

Total		6,760,675	58.68	0.00
Steam/Hot Water	0 MMBTu	0	0.00	0.00
🕔 Natural Gas	39,136 Therms	3,913,559	33.97	0.00
Electric	834,442 kWh	2,847,116	24.71	0.00
	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant

	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
Electric	\$69,024	\$0.60	\$0.00	0.00
🕔 Natural Gas	\$40,865	\$0.35	\$0.00	0.00
Steam/Hot Water	\$0	\$0.00	\$0.00	0.00
Total	\$109,889	\$0.95	\$0.00	0.00

End Use Breakdown

End Use	Usage (kBtu/SF)	Potential Savings \$	Potential Savings kBtu	Potential Savings CO2E
28% Baseload	16.34			
56% Heating	32.84			
16% Cooling	9.49			


Space Asset Areas

SpaceUsage	Hours/Day	Days/Wk	Months/Yr	Conditioning
Gymnasium	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled
Fitness	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled
Locker Rooms	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled
Office	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled
Classrooms	14 hrs/day	6 days/wk	12 months/yr	Heated And Cooled
Dining	12 hrs/day	7 days/wk	12 months/yr	Heated And Cooled

Water

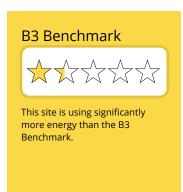
Current Water Consumption:	596.29 (kGal/year)
Baseline Water Consumption:	(kGal/year)
Percent Change:	0.00%
Current Annual Water Dollars:	\$6,102
Baseline Annual Water Dollars:	
Annual Water Usage Per Occupant:	
Annual Water Usage Per Square Foot:	0.0052

Miscellaneous Properties

Total Sites:	1
Total Buildings:	
Total Meters:	5
Annual CO2e Metric Tons:	581.20 metric tons
Annual CO2e/SF:	0.0050 metric tons/SF
Annual CO2e/Occupant:	0.0000 metric tons/occupant
Annual CO2e Pounds:	1,281,317 pounds
Annual CO2e/SF:	11.12 pounds/SF
Annual CO2e/Occupant:	0.00 pounds/occupant
Annual Cost:	\$115,991
Annual Cost/SF:	\$1.01/SF
Annual Cost/Occupant:	\$0.00/occupant
kBtu:	6,760,675 kBtu/year
kBtu/SF (aka EUI):	58.68 kBtu/sf/year
Date Created:	3/26/2015
First Building Name:	ROCHESTER REGIONAL SPORTS CENTER
Energy Usage Period:	October 2021 to September 2022
Water Usage Period:	October 2021 to September 2022
Total Usage Period:	October 2021 to September 2022
Baseline Period:	January 2017 to December 2017

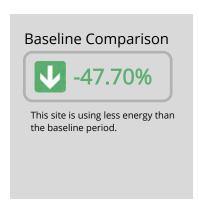
Rochester Community and Technical College

ROCHESTER REGIONAL SPORTS STADIUM


2900 College PI SE Rochester, MN 55904 Built 12/31/2005

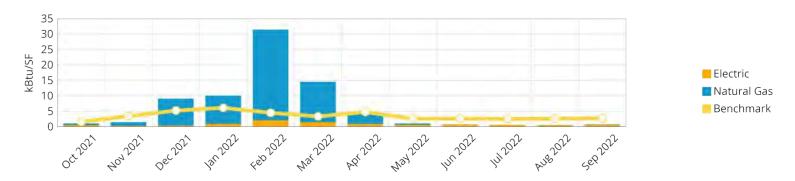
97,166 Gross Bldg SF

2 Electric Meters 3 Natural Gas Meters 1 Water - Mixed Use Meter 1 Water - Irrigation Only Meter 1 Sanitary Sewer Meter



Site has proper information for energy analysis

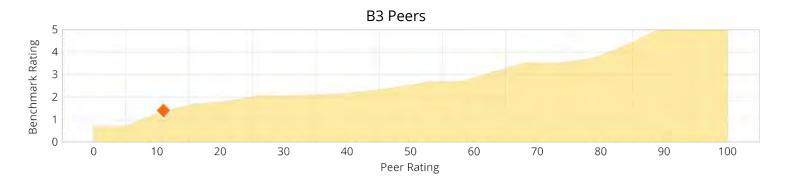
B3 Benchmark


B3 Benchmark usage predictions are generated by an engineering model of a site based on entered building data. The engineering model predicts the usage of a site as if it were built to the program's chosen energy code using typical weather conditions. The more accurate the building data is, the more accurate the model will be.

Actual:	75.76 kBtu/SF (October 2021 to September 2022)
Benchmark:	42.44 kBtu/SF (ASHRAE 90.1-2016)
Ratio:	1.79

This site is using significantly more energy than the B3 Benchmark.

Actual Usage Compared to Benchmark By Month



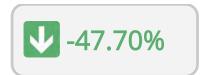
B3 Peer Rating

The B3 Peer Rating is a comparison of how a site is doing compared to similar building types based on the actual to benchmark ratio.

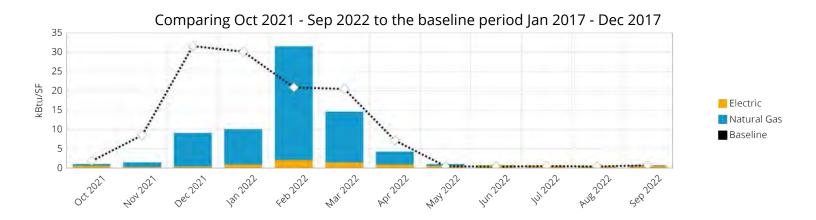
This site is ranked in the lower 11th percentile amongst 19 similar sites.

ENERGY STAR

ENERGY STAR Portfolio Manager is an online tool funded by the Department of Energy that allows users to measure and track energy and water consumption, as well as GHG emissions. If eligible, properties entered into ENERGY STAR can receive a 1-100 score, based on statistical data from CBECS.


B3 integrates with ENERGY STAR Portfolio Manager to gather scores automatically.

Problem: In order to receive a score, more than 50% of the Gross Floor Area must be made up of a single Property Type that is eligible to receive a score (in your country)


Baseline

Baseline comparison is a comparison of a site to itself over time.

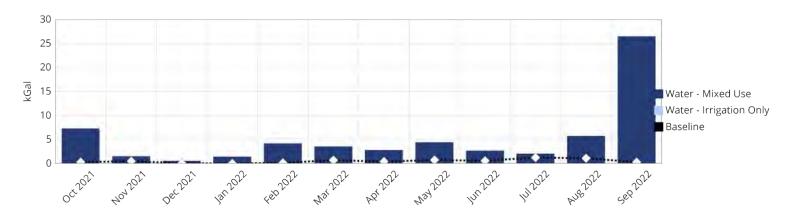
*Actual:	65.02 kBtu/SF (October 2021 to September 2022)
*Baseline:	124.33 kBtu/SF (January 2017 to December 2017)
	to the state of th

*Weather normalized

Energy Usage by Meter Source Type

	Total Usage	Total Usage (kBtu)	kBtu/SF	kBtu/Occupant
Electric	281,853 kWh	961,683	9.90	0.00
🚺 Natural Gas	63,995 Therms	6,399,499	65.86	0.00
Total		7,361,181	75.76	0.00
	Total Energy Cost (\$)	\$/SF	\$/Occupant	CO2E/Occupant
Electric	\$65,318	\$0.67	\$0.00	0.00
🚺 Natural Gas	\$67,113	\$0.69	\$0.00	0.00
Total	\$132,431	\$1.36	\$0.00	0.00

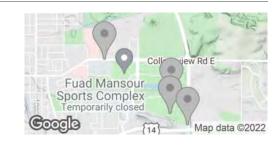
End Use Breakdown



Space Asset Areas

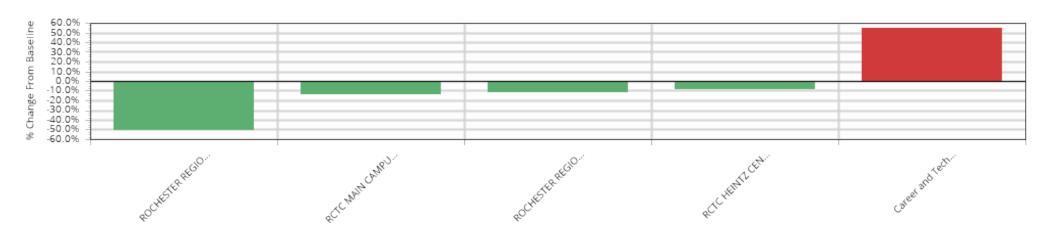
Water

Current Water Consumption:	62.32 (kGal/year)
Baseline Water Consumption:	6 (kGal/year)
Percent Change:	+941.44%
Current Annual Water Dollars:	\$2,293
Baseline Annual Water Dollars:	\$233
Annual Water Usage Per Occupant:	
Annual Water Usage Per Square Foot:	0.0006


Miscellaneous Properties

Total Sites:	1
Total Buildings:	4
Total Meters:	8
Annual CO2e Metric Tons:	466.01 metric tons
Annual CO2e/SF:	0.0048 metric tons/SF
Annual CO2e/Occupant:	0.0000 metric tons/occupant
Annual CO2e Pounds:	1,027,372 pounds
Annual CO2e/SF:	10.57 pounds/SF
Annual CO2e/Occupant:	0.00 pounds/occupant
Annual Cost:	\$134,724
Annual Cost/SF:	\$1.39/SF
Annual Cost/Occupant:	\$0.00/occupant
kBtu:	7,361,181 kBtu/year
kBtu/SF (aka EUI):	75.76 kBtu/sf/year
Date Created:	
First Building Name:	ROCHESTER REGIONAL SPORTS STADIUM AIR-LOCK GARAGE
Energy Usage Period:	October 2021 to September 2022
Water Usage Period:	October 2021 to September 2022
Total Usage Period:	October 2021 to September 2022
Baseline Period:	January 2017 to December 2017

The current B3 Benchmark for this organization is 5 stars. Some of the buildings have a lower benchmark and some a higher. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on those sites with the greatest savings potential and links to help realize the savings.

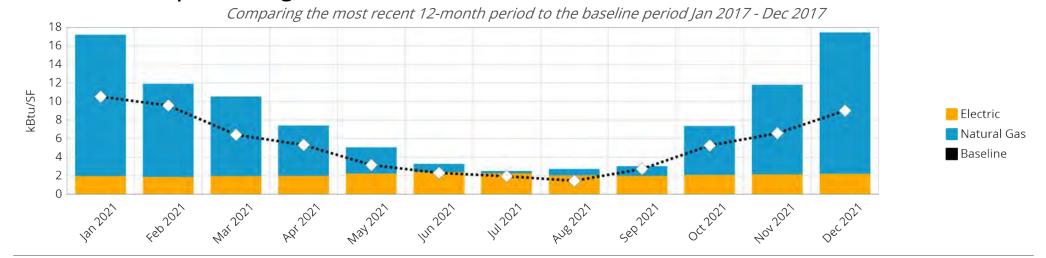

Energy Savings Opportunities

No potential savings calculated

Energy Savings Opportunities

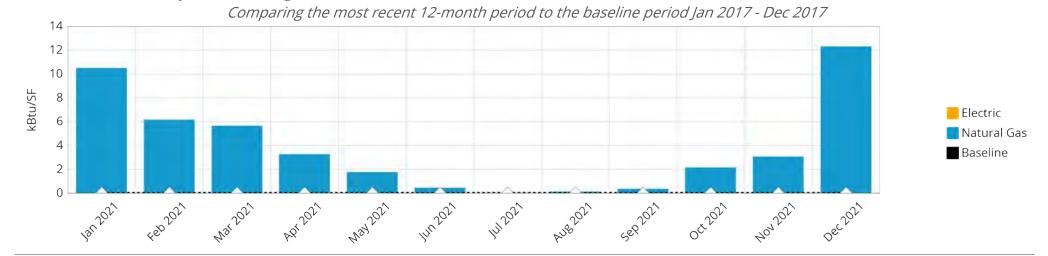
Improvement Potential by Fuel Source

How are your sites performing over time?



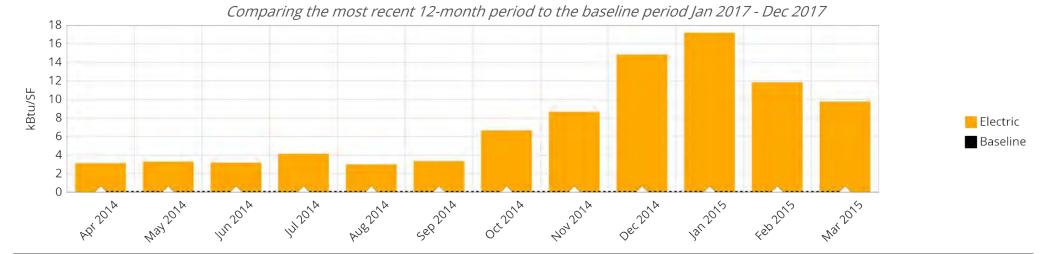
Career and Technical Education Center at Heintz (CTECH)

The current B3 Benchmark for this 17,466 sf College Classroom is 3.7 stars. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on this site performance, savings potential and links to help realize the savings.



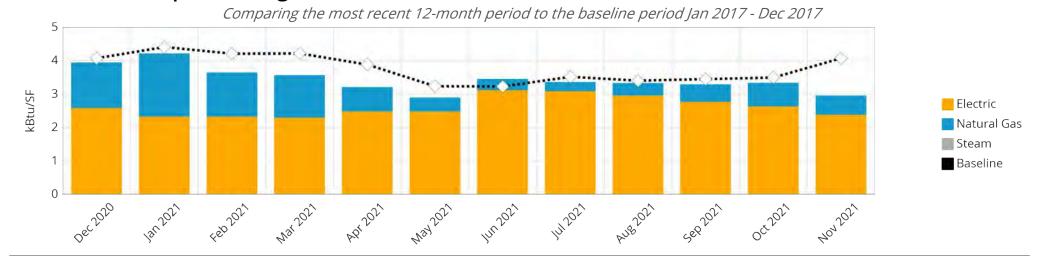
GROUNDS STORAGE GARAGE

The current B3 Benchmark for this 4,000 sf Vehicle Storage Building is 5 stars. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on this site performance, savings potential and links to help realize the savings.



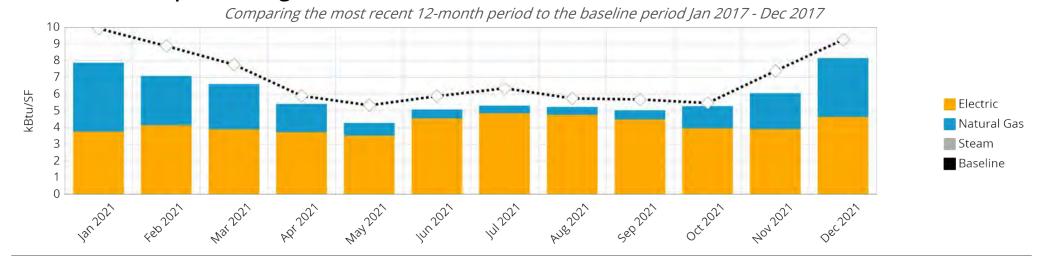
RCTC CHILD CARE CENTER

The current B3 Benchmark for this 0 sf Decommissioned is 1.8 stars. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on this site performance, savings potential and links to help realize the savings.



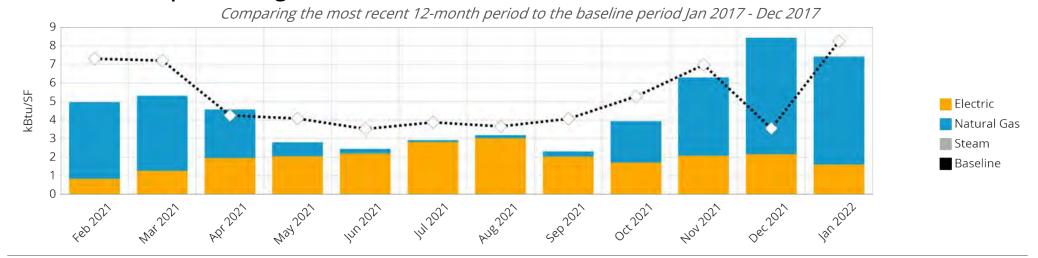
RCTC HEINTZ CENTER

The current B3 Benchmark for this 224,360 sf College Classroom is 5 stars. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on this site performance, savings potential and links to help realize the savings.



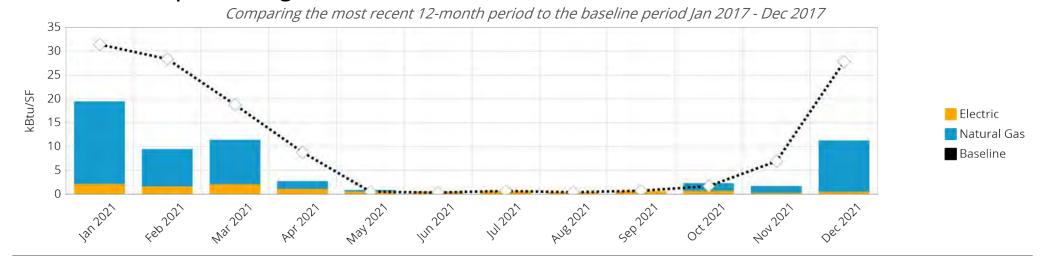
RCTC MAIN CAMPUS

The current B3 Benchmark for this 418,457 sf College Laboratory is 4.5 stars. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on this site performance, savings potential and links to help realize the savings.



ROCHESTER REGIONAL SPORTS CENTER

The current B3 Benchmark for this 115,220 sf Gymnasium is 3.9 stars. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on this site performance, savings potential and links to help realize the savings.



ROCHESTER REGIONAL SPORTS STADIUM

The current B3 Benchmark for this 97,166 sf Sports Arena is 1.8 stars. The B3 Benchmark shows potential savings relative to the current energy code, with 2.5 stars equivalent to code performance. This report provides additional information on this site performance, savings potential and links to help realize the savings.

2021 - 2025

Table of Contents

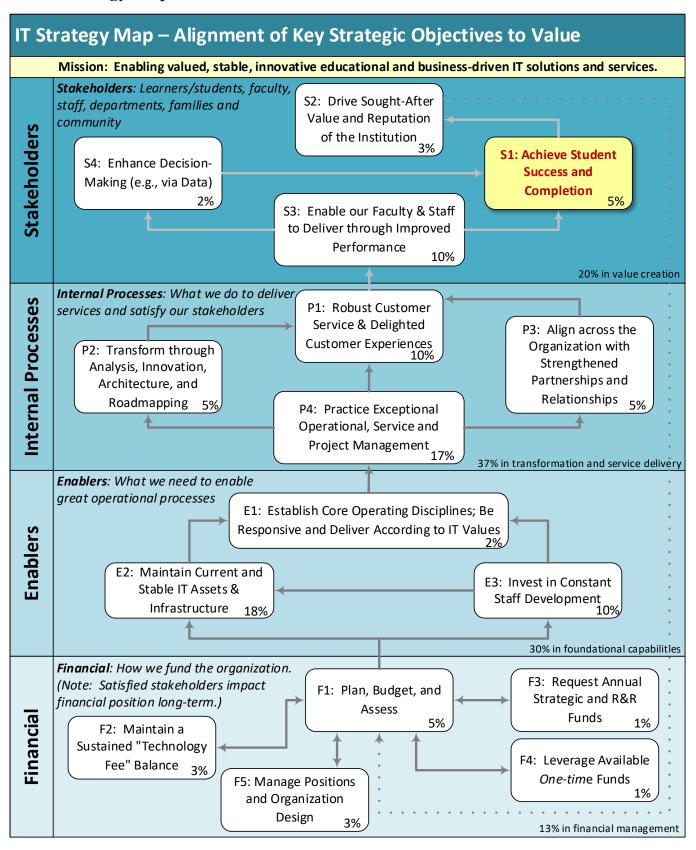
ACKNO	WLEDGEMENT	4
EXECUT	IVE SUMMARY	5
7 Cor	E INFORMATION TECHNOLOGY (IT) STRATEGIES	5
1.	Increase Organizational Alignment	
2.	Improve Customer Service	5
3.	Evolve to Service Management	5
4.	Transform IT	5
5.	Manage Architecture and Assets	5
6.	Roadmap the Future	5
<i>7</i> .	Enhance Organization Decision-Making	5
IT STR	ATEGY MAP	6
IT Init	FIATIVES ALIGNED TO IT SERVICE PORTFOLIOS	7
IT STRA	TEGIC PLANNING	8
IT Arc	CHITECTURES	8
ENVIRO	NMENTAL SCAN	9
KEY S	OURCES OF INFORMATION FOR THIS PLAN	9
RCTC	BROAD STATEMENTS OF NEED FOR TECHNOLOGY	9
Pre	esident's Office:	9
Ac	ademic Affairs:	9
Sti	udent Affairs:	10
	ıman Resources:	
RCTC	COMMUNITY THEMES OF NEEDS FOR TECHNOLOGY	11
GAPS	IN TECHNOLOGY IMPLEMENTATION FULLY ALIGNED TO FUNCTIONAL NEEDS	13
IT AS AN	N ENABLING SERVICE	15
IT Visi	ION	15
IT MIS	SSION	15
IT VAL	LUES	15
IT	Values Statement	15
ARCHI	TECTURAL PRINCIPLES	15
IT Inv	ESTMENT AND GOVERNANCE	16
IT SER	VICES STRUCTURE AND FLOW	17
IT SER	VICE EXPECTATIONS	18
	DMER EXPERIENCE (CX) = CUSTOMER SERVICE	
Cu.	stomer Service Engagement Model	19
Oper/	ATIONAL PRINCIPLES AND METRICS OF SUCCESS	20
Fundi	ING OF IT	21
ORGANI	IZATION DESIGN	23

Organization Structure	_
'RIGHT SIZE' ≡ WHAT IS SUSTAINABLE?	23
STAFFING AND SKILLS ENHANCEMENT TACTICS	26
IT INDUSTRY INSIGHTS	29
KEY INITIATIVES' FEASIBILITY ANALYSIS MATRIX	32
NextGen – Statement on Project and Resource Needs	36
APPENDICES	37
Appendix A – IT Division Values	37
APPENDIX B – IT MATURITY LEVELS FOR INCREASED OPERATIONAL EXCELLENCE	38
APPENDIX C – ENTERPRISE ARCHITECTURAL PRINCIPLES	39
APPENDIX D ¹ – OPERATIONAL SUPPORT MODEL/FRAMEWORK AND TRIAGING	42
Appendix D ² – Service Management – Service Target Expectations Reference	43
Appendix E ¹ – IT Service Portfolios	44
Appendix E ² – IT Service Catalog	45
Appendix F – RCTC Strategic Plan	47
APPENDIX G – RCTC MASTER ACADEMIC PLAN STRATEGIC PRIORITIES (2020)	48
APPENDIX H – MINNESOTA STATE INFORMATION TECHNOLOGY (IT) STRATEGIC PLAN	
APPENDIX I – EDUCAUSE – TOP IT ISSUES 2021 (TRANSITIONING DURING COVID)	
APPENDIX J – GARTNER – TOP TECHNOLOGY TRENDS 2021 AND 2022	
APPENDIX K ¹ – IT Investment Process	52
Appendix K ² – IT Investment Principles	53
Principle 1: Information is a Strategic Asset, Owned by the Enterprise	53
Principle 2: IT Investments will be based on the needs of the Enterprise	53
Principle 3: IT Services are Coordinated through a Central Organization	54
Principle 4: IT Management Shall Foster Innovation through a Disciplined and Agile Process	54
APPENDIX K ³ – RUN-GROW-TRANSFORM MAPPING TO 4 IT PORTFOLIOS MANAGEMENT	55
1. Infrastructure/Compliance/Mandates	55
2. Operations	
3. Service Differentiation	
4. Innovation/R&D	55
Appendix K ⁴ – Technical Debt	56
APPENDIX L – RCTC REFRESH PERIOD STANDARDS BASED ON POLICY #5.13.1	57
Appendix M ¹ – IT Governance Structure & Responsibilities (External Facing)	59
Structure:	59
Responsibilities:	59
APPENDIX M ² – IT GOVERNANCE STRUCTURE & RESPONSIBILITIES (INTERNAL FACING)	61
Appendix N – Standard Resource Allocation Model	62
APPENDIX O – HUMAN-FACTOR CHANGE MANAGEMENT USING ADKAR MODEL	63
APPENDIX P — SAMPLE LISTS OF TECHNOLOGIES PER COLLEGE DOMAINS	64
Appendix Q — Healthcare "First Responder" Analogy — Need for <i>Emergency</i> Services	65
APPENDIX R – IT PRIMER GUIDELINES FOR RCTC STAFF TO USE IT	66

Acknowledgement

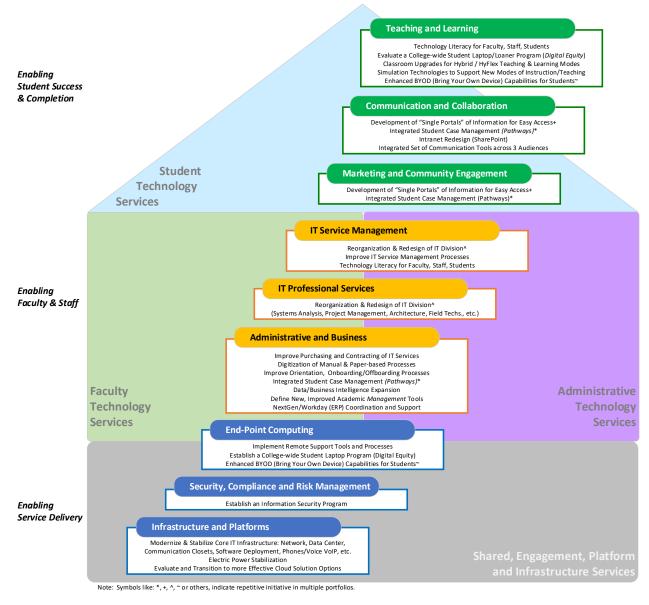
This plan could not be developed without the input and support of various groups and individuals at Rochester Community and Technical College (RCTC). Input was provided by students, faculty and staff, the Cabinet members, the IT Division staff, and through research of various external sources. A special thanks goes to the College IT Advisory Council (CITAC), who spent all of 2021 calendar year helping to fine tune this plan through input and reviews, as one of three core goals for the Council; the members involved in the planning process include:

- Aaron Shannon
- Ajay Mehra
- Alicia Zeone
- Anthony Rostvold
- Brenda Frame
- Brian Steele
- Jim Ma
- Kelly Pyfferoen
- Matt Bissonette
- Melanie Callister
- Mirwais (Mir) Qader
- Shelly Danielson


Executive Summary

The Rochester Community and Technical College (RCTC) Technology Master Plan articulates a common vision for technology and provides a framework for future investments (in people, process, and technology), that are aligned with institutional goals, and that complies with Minnesota State Colleges and Universities policies and direction. To start, a summary of the key strategies that are representative of various issues and needs in this plan are defined.

7 Core Information Technology (IT) Strategies

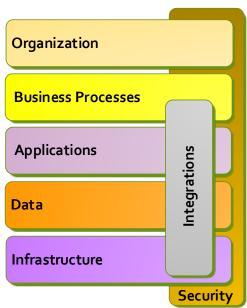

- 1. *Increase Organizational Alignment*: Expand integrative technology governance, collaboration, buy-in across all areas of the College, from requesters to managers and the Cabinet to ensure that what is being asked for is planned, resourced, funded, and aligned to College goals, and is not reactive or a distraction for both the staff and the institution.
- 2. *Improve Customer Service*: Improve customer service through increased agility/ speed and responsiveness to priorities. Also, promote an environment of increased self-service capabilities for staff. Establish key customer service principles and live by them.
- 3. **Evolve to Service Management**: Clearly define IT service offerings aligned to institution customers' demanded needs (through a Service Catalog) and IT resources capacity. Make service management process consistent, complete, and transparent.
- 4. **Transform IT**: Shift, as much as possible, IT services and staff from operations and commodity-type activities (basic, interchangeable goods) towards higher valued capabilities, projects, and management of platforms (e.g., Cloud, Office365, SharePoint, etc.). Develop increased utilization of Student Workers to cover "Level 1" support needs (see Appendix D¹ for more information on the IT Operational Support Model).
- 5. **Manage Architecture and Assets**: Identify, understand, document, and manage IT architecture and \$6.5 million+ current assets across the institution to ensure sustainability (funded) and responsiveness (to uses/users). Improve efficiencies through elimination of manual and outdated services, removal of duplications, simplification and reengineering, automation, delegation or outsourcing to third parties. Manage true costs of services and maintain a modernized infrastructure.
- 6. **Roadmap the Future**: Define the key IT Roadmaps for the core College functions (Academic, Student, Administrative) and key IT Infrastructure that defines current capabilities against 1, 3, and 5-year timetables, to constantly innovate and modernize the technology environments in support of the College's mission.
- 7. **Enhance Organization Decision-Making**: Increase effective, simple means to use data and business intelligence capabilities to support organization-wide modeling, forecasting and decision-making.

IT Strategy Map

IT Initiatives Aligned to IT Service Portfolios

The below structure summarizes all the IT initiatives that were identified and synthesized during this plan's data gathering process. The initiatives are mapped to the Service Portfolios (see Appendix E^l for more details on the IT Service Portfolios) that IT currently supports. Also, for more understanding about dependencies, the initiatives are mapped into a structure that depicts a 'house' – foundational elements that allows for everything else to be built upon and which holds all other services together; main internal uses elements by key institution stakeholders; leading up to the end service goals of delivering on our Mission and meeting student needs and outcomes. Since this plan represents a long-term horizon (i.e., multiple years), priorities and resources for the initiatives listed will have to be defined annually. An initial priority list is provided in the section titled, "Key Initiatives' Feasibility Analysis Matrix"; however, these priorities will likely change with shifts in the operating climate of the College, budget availability and the internal maturity of the institution itself.

IT Strategic Planning


By its definition, actions that are of a *strategic* nature are dramatic events that require significant change in thinking and process; require investment of capital, time, and human resources; demand extended commitment from the organization; and determine the character of an organization, providing value across all core activities. Things that can be quickly conceived of and executed are *tactical* actions. The goal of strategic planning is to provide direction, concentration of effort, constancy of purpose, long-term maturity, and flexibility, as an organization continually strives to improve its position in all strategic areas.

The highest valued IT asset to an organization is Data ("Data is king!"), and more importantly, data that is transformed into useful information for decision-making purposes. Processes change, software comes and goes, and hardware is becoming a commodity, but Data is constant over time as it relates to an organization's core activities.

IT Architectures

An architecture is a framework to help us manage and apply Information Technology. The IT Architecture is made up of seven (7) elements: Organization, Business Processes, Applications, Data, Infrastructure (or Technology), Integrations and Security.

- 1. The **Organization Architecture** is concerned with how we govern and how staff resources are allocated to support and use IT efficiently and effectively.
- 2. The **Business Process Architecture** is comprised of activities that support the running of the organization's mission-critical services the work that we do.
- 3. The **Applications Architecture** is the translation of key operational functions and activities/processes into *automated* processes to meet our goals in an efficient, reliable, and consistent manner.
- 4. The **Data (or Information) Architecture** describes the data needed, used, and created to support the business processes of the organization. It provides a clear definition of how data is structured, collected, shared, maintained, and stored from both the IT and functional perspectives.
- 5. The **Infrastructure** (or **Technology**) **Architecture** encompasses our overall computing and communications environments. It includes all the computers and related devices, such as, communications equipment, networks and software, operating systems, printers, etc.
- 6. The **Integrations Architecture** defines how various technologies *together* can solve complex problems where independent technologies on their own could not do so.
- 7. The **Security Architecture** overarches across the entire IT environment to ensure all transactions, especially our data, is securely received, used, and transmitted.

Environmental Scan

Strategic Plans are developed from a wide array of information that is collected, assessed, and synthesized into general statements of direction and strategy. This is the 'Environmental Scan' that was conducted to create this plan. Since information creation and flow is never ending and changes constantly, key sources of information have been included that impacts the RCTC; however, the list can never be exhaustive.

Key Sources of Information for this Plan

- IT Division SWOT (Strengths, Weaknesses, Opportunities, Threats) Assessment.
- IT Division Risk Analysis.
- IT Assets Inventory Assessments.
- IT Capabilities Model Assessment.
- IT Service Portfolios and Service Catalog (see Appendices E^1 and E^2 respectively).
- IT goals and direction from the Minnesota State System Office (see Appendix H).
- Vision Statements from the College's senior leaders, namely, the Cabinet members.
- Student Senate input.
- Student surveys.
- Industry trends as defined by Educause, Gartner Inc. and other key IT thought leaders.
- Survey of all Staff and Faculty across the College.
- The College Information Technology Advisory Council (CITAC).
- General, day-to-day, end-user and customer feedback, especially via interactions and support activities handled through the Technology Service Center (TSC).

RCTC Broad Statements of Need for Technology

President's Office:

- Establish capabilities for finance and budget to **link funding to strategic plans**.
- Rearchitect and enhance our **Intranet (SharePoint)** so that all employees have easy, timely and accurate access to information whenever they need it. [Repeated]

Academic Affairs:

- Our focus on 'education' should highlight delivery to anyone, anywhere, anytime, within our College's Mission responsibilities.
- Paradigm shift towards increased **online expansion**.
 - Formal Organization Change Management (OCM) strategies to increase faculty engagement, awareness and promote and transition to the new paradigm/culture of the future.

- **Digital equity** ensure each student has the tools they need both in school and at home, to participate in their education fully. [Repeated]
- **Academic management tools** workflow tools for curriculum and course management, scheduling, assessment, syllabi development and program review.
- **Simulation technologies** to facilitate both in-person and immersive online learning.
- Enhanced **data and business intelligence/analytics** capabilities to support data-based decision-making. [Repeated]
- **Staffing and skills** needed for sustainability of critical technology services we require to further our work. (*See Enterprise Architecture in Appendix C Sustainable Support "Rule of 2"*.)

Student Affairs:

- Put students first, adapt to them, **shift the culture** to achieve this.
- **Digital equity** ensure each student has the tools they need both in school and at home, to participate in their education fully. [Repeated]
- Communication is key well-defined portfolio of means and tools to
 communicate with 100% of students, in a timely manner, to ensure that action
 is taken to address needs and issues.
- Extensive/integrated student **Case Management** (contact, notes, documents, etc.), from interest/prospect students to separation (i.e., graduation) and alumni services.
- Enhanced data and business intelligence/analytics capabilities to support databased decision-making. [Repeated]
- **Training and skills development** in the tools we already have, to improve efficiency and effectiveness. [Repeated]

Human Resources:

- Rearchitect and enhance our **Intranet (SharePoint)** so that all employees have easy, timely and accurate access to information whenever they need it. [Repeat]
- Migrate existing paper-based approaches towards utilization of **more digital** approaches.
- Enhance **employee orientation**, **onboarding and offboarding** through automation.
- Knowledge management and sharing through **training and skills development** in the tools we already have, to improve efficiency and effectiveness. [Repeated]

RCTC Community Themes of Needs for Technology

While continuing to support the College's on-going operational needs, these additional considerations are also desired by the broader college community.

- TRANSPARENCY: Make IT service expectations and outcomes clear and consistent, and IT support processes more transparent so we know what's going on. E.g., "Status of my ticket/project", "Completion of tickets", etc.
- OPERATIONAL EXCELLENCE: Make the internal operations of IT more efficient and effective to better meet the demands and future needs of all stakeholders. These activities include, but are not limited to: (a) Demand/Request Management, (b) Service Management, (c) Project Management, (d) Governance, (e) Technical Architecture, (e) Asset and Contracts Management, (f) Security Management, (g) Service Continuity Management, (h) Change Management, (i) Knowledge Management and Staff Development, etc.
- ACCESS: Improve Faculty/Staff and Student <u>onboarding</u> and <u>offboarding</u> processes make them more efficient and complete e.g., getting access to all required accounts; removal of all access when people leave, etc. (Note: this must be coordinated with Human Resource processes and Student Services for Student orientation.)
- <u>ACCESS</u>: Efficient remote support capabilities for administrative permissions to systems and Student access to shared (e.g., lab) devices.
- <u>ACCESS</u>: Improve simplified and relevant access to resources and communication effectiveness through the establishment of "Single Portals" for tools and training information for both Faculty/Staff and Students.
- <u>LITERACY:</u> Technology literacy for Faculty and Students.
- TRAINING: Provide training/help develop skills in the tools we have, including 'Enterprise' software e.g., ISRS/NextGen, D2L, classroom technologies, etc.
- **ARCHITECTURE/TRAINING:** Specifically: design, re-architect and train college community in the effective use of the **Office365 tools**:
 - o MS SharePoint redesign it!
 - o MS Teams how should we effectively use it?


- Content Management which tools and repositories should we use to store various kinds of data and information for different purposes?
- **ARCHITECTURE:** Make collaboration technologies **consistent** in each classroom and meeting spaces.
- <u>EQUITY:</u> Develop "Digital Equity" solutions, such as, a laptop program for Students, a Student loaner program, etc. [Some considerations: pivot from traditional lab devices towards increased loaner devices and financial aid/fee payment options to cover costs.]
- **REFRESH:** Keep software and technology **up to date**, current (and affordable).
- <u>DIGITIZATION</u>: Establish more means to **digitize** work that we do, for instance, fillable forms, workflow automation, eSignatures, PDF editors, etc.
- **SUPPORT:** Establish capabilities to provide **specialty labs support**, for instance, to CAD labs, to Music labs, etc.
- **CONTRACTING:** Make the process for **purchasing and contracting** for technology services within the college, with Procurement and the System Office, more efficient.
- **SECURITY:** Establish a **security program** to continuously keep faculty, staff, and students aware of security issues and prevent cyber-attacks through **proactive** steps to monitor and mitigate risks.

Gaps in Technology Implementation Fully Aligned to Functional Needs

Technology implementation at RCTC has been going on as long as it has been viable. The success of implementing solutions to effectively address functional needs, at times, has not been well aligned. Throughout the College's history, there have been many examples of implementing crude or incomplete solutions. Partly this is because: (a) the paradigm to implement technology effectively is not clearly understood, and (b) given the College's size and budget, the College is not positioned well to be able to commit the level of resources necessary to support a complete implementation for a complex endeavor.

In fact, the most viable **scope** and **type of projects** for the College to pursue are ones that are **three** (3) to five (5) months in duration, performed by a maximum of **two** (2) to three (3) technical staff. The College has a maximum threshold of 'failure' of around \$1 million, which will strain the College substantially; therefore, smaller, and <u>incremental</u> developments should be pursued versus large, all-at-once implementations. **Planned risk-taking** of research, development and innovative solutions should not be budgeted beyond \$50,000 and a decision should be made within a year (ideally a semester) to continue or forego the investment.

The **People, Process, Technology Framework** provides a good understanding on why the gap in alignment mentioned above exists and a method to address it.

Many IT initiatives focus on the *technology* that is needed to solve the problem at hand or to take advantage of an opportunity. However, by focusing on technology, we start from the <u>end</u> rather than from the beginning. Over time, the effectiveness of any technology solution is determined by how people use it, as they work through processes. Therefore, to make an impact within the institution:

1. First, we must address **PEOPLE** issues – who are they, do they understand the vision, are they bought in, what are their job roles, are they organized appropriately, what is needed for effective collaboration, etc.

- 2. Second, we must establish well-defined **PROCESSES** that create consistent, efficient, and effective activities to support the service delivery models of programs and the College.
 - a. One key sub-deficiency in this area is that the College has no explicitly defined roles for 'Business Analysts¹'. Moreover, the competency of 'Process Management²' is not common within the institution. With these kinds of deficits, it is very difficult to effectively plan, reengineer, continuously improve, or utilize automation in a timely and cost-effective manner, which leads to waste, costs and distraction/opportunity loss.
- 3. Last comes **TECHNOLOGY**, where we determine what efficiencies can be gained through the deployment of automation across effectively established processes, used by capable and motivated people.

The <u>sequence</u> of this framework is important to achieving success. If this framework is not used in the proper order/sequence, then there will always be issues with technology not meeting expectations (or meeting it in a minimal form) and people will be frustrated with their inability to perform their work as they would like.

¹ A **Business Analyst (BA)** is a person who has effective facilitation skills and is able to analyze and document (using both narratives and visual models) the market environment, processes, or systems of an organizational entity.

² **Business Process Management (BPM)** is a disciplined approach to: (a) designing (process architecture), (b) analyzing and modeling (for understanding and communication), (c) data governance (data stewardship designation), (d) process ownership designation, (e) roles & responsibilities definitions, (f) policies, procedures (including business rules) and standards definitions, (g) execution – piloting, prototyping, testing and validation, (h) performance definitions (Key Performance Indicators [KPIs]) and monitoring, (i) optimization – continuous monitoring and improvement.

IT as an Enabling Service

Nowadays, Information Technology (IT) is a critical part of the operating environment of RCTC and any organization. IT is an <u>enabling service</u> to further the mission and purpose of RCTC, in providing its primary product – teaching and learning.

IT Vision

To be recognized by our customers (the College and our Students) as a trusted, best value, strategic partner in delivery of Information Technology (IT) solutions, enabling their work and learning.

IT Mission

Enabling valued, stable, innovative educational and business-driven IT solutions and services.

IT Values

Integrity Teamwork Problem-Solving Service Excellence

(for a detailed description of these values, please see Appendix A.)

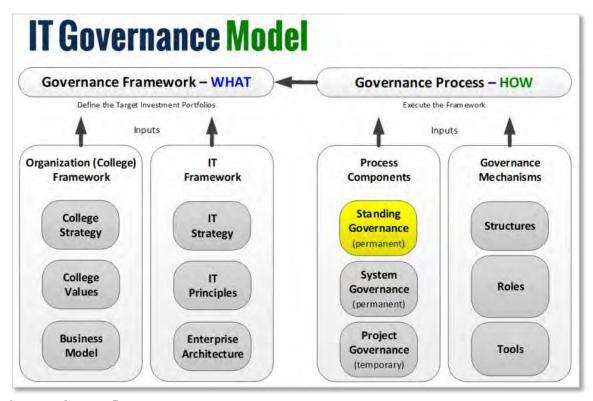
IT Values Statement

"We strive to...with integrity, working as a team, solve problems through the delivery of excellent service."

Architectural Principles

Architectural Principles are the defining statements of <u>design</u> that instills consistency, reliability, and sustainability in our services. RCTC has defined the following summary principles to identify and implement solutions in support of its IT Mission. [A full list of Enterprise Architecture Principles is provided in the Appendix C.]

- I. All solutions should take a 'Universal Design' perspective, whenever possible.
- II. Affordable 'Cloud 1st' options should be considered before hosting solutions locally.
- III. All solutions should take a 'Mobile 1st' perspective whenever possible.
- IV. 'Data, Analytics and Business Intelligence' capabilities should be utilized to the fullest to support decision-making.
- V. Solutions should be designed for as much 'Self-Service' as possible, to increase and distribute knowledge more widely, to reduce the dependence and need for resources for various 'hand-holding' service options and to reduce overall costs.
- VI. 'Speed, Agility and Rapid Turnaround' are key to staying current with the market, meeting needs in a timely manner, and avoiding obsolescence.

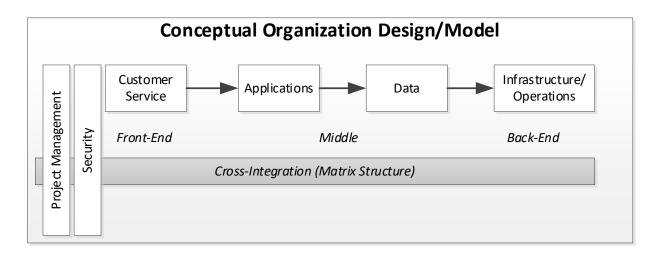

IT Investment and Governance

Governing investments in technology is a necessary enterprise-wide function for both creating new value and minimizing risk, through defining priorities, ensuring alignment to College goals and strategies, and allocating the right resources to accomplish goals and objectives. IT investments are dynamic and constantly changing, but it is safe to say that RCTC has an annual investment of about \$6.5 million+ in current usable IT equipment and services. (For more detailed information on IT Investment Process, please see Appendices K^1 , K^2 , K^3 and K^4)

Governance ≡ Maximizing the value of our <u>portfolio</u> of investments while managing/minimizing <u>risk</u>.

Governance is about making better, well-informed, and collaborative decisions i.e., increasing the <u>quality</u> of our decisions.

A typical IT governance model, as depicted in the image below, has several components. It **links/aligns** the organization's strategy, values and business model to IT strategies and architectural principles. Accomplishment of this alignment occurs through several operating processes, through advisory and steering committees for both permanent services and one-time projects, and through the definition of structures, roles, and tools to manage, assess and prioritize initiatives and projects.

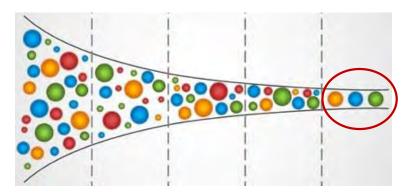

Source: Gartner Inc.

For RCTC, the IT Governance model consists of:

- 1. The IT Division (ITD) is responsible for defining the IT Governance model.
- 2. The **external-facing** (i.e., facing outward from the IT Division) IT Governance structure and responsibilities consists of the following (for details please see Appendix M^{I}):
 - a. The Cabinet serves as the IT Investment Council (ITIC).
 - b. The Chief Information Officer (CIO) is responsible for setting up and administering the IT Steering Committee or College IT Advisory Committee (CITAC) of various college stakeholders and representatives.
 - c. Several operational structures will be used to manage architecture, project management, funding, and risk management.
- 3. In addition to the external-facing or institution governance structures noted above, IT has several **internal-facing**, operational management governance structures to assist the Division in managing its day-to-day work activities (*for details please see Appendix M* 2).

IT Services Structure and Flow

The overall IT services flow can be summed up as depicted in the image below. **Customer service** drives the need for **applications and solutions** that both consume and generate **data**, all inter-operating on a robust and reliable **infrastructure**. Supporting these key domains are disciplines of **project management** (execution) and **security** administration (risk management).



Details of services being provisioned by the IT Division, either partially or wholly, are defined in Appendices E^1 and E^2 , in the Service Portfolio and Service Catalog (respectively).

IT Service Expectations

IT service expectations can be summed up using four broad themes:

- 1. Everything that is done in IT MUST BE **sustainable**. Funding needs to be adequate, and **costs** need to be contained.
- 2. The delivery of solutions must be done **quickly and timely** to reap full benefits and avoid obsolescence.
- 3. There is an ongoing, never-ending increase in **demand** for more services, hence, prioritization, at the organization level is key. The 'funnel' of ideas and expectations coming in needs to be managed to the select few that truly adds value to the institution.

4. Regardless of what services and how they are provided, the **quality** of services must be stable, reliable, consistent – always!

³ Note: "Velocity" has two elements, speed AND direction.

Customer Experience (CX) = Customer Service

The core of what we do as an IT organization (and institution) is to meet the needs of those that depend on us for services.

Customer Experience (CX) \equiv Delivering <u>value</u> to the end service recipient as they would expect it. [Our end-customer is the Student; however, there are intermediary customers, such as, parents, faculty, staff, the next person/group in a process, etc.]

To best meet and align to the expectations for Customer Service, IT has developed the following Engagement Model:

Customer Service Engagement Model

- Understand that all transactions are about "Relationships".
- Position ourselves as a "Trusted Advisor/Broker".
- Shift from being a "Builder" to an "Enabler", a "Possibility or Solutions" agent, an "Integrator", through partnerships.
- Communicate often and become everyone's "Best Friend".
- Develop internal management/solution consultancy competency.
- Move from a perceived "No" organization to "Know" ask "What is possible?".
- Present "Options and Alternatives" vs. manage to standards.
- Sell ideas while empowering people.
- Facilitate decision-making, not make the decision for them.
- Focus more on the "Future State" / "To-Be" don't get too bogged down in the "As-Is", which may be ineffective already.
- Bring in the "Integrated, Birds-Eye View" of the organizations vs. silo-thinking.
- Use "Roadmaps" to tie together ideas, projects and reduce fragmentation.
- Figure out their strategy and validate it.
- Use design thinking controlled, fast failure celebrate learnings from failings.
- Learn to focus on "Minimum Viable Product (MVP)" = must haves, not all possible options = nice to haves!

Operational Principles and Metrics of Success

The key operational principles that guide day-to-day activities of IT are summarized as:

- **I.** Customer satisfaction should be 90% or greater.
- **II.** Productivity improvements for staff and faculty at RCTC should be 5% or better annually.

III. Operations:

- Number of "Priority 14" incidents per month should be one (1) or less.
- Mission-critical⁵ system uptime should be 99.5% (\sim 4 σ ; "2 nines") or better.
- Mission-critical systems should be supportable by at least 2 staff members.
- Projects should be completed within 10% of timeline & budgets.
- Projects should target completion within 3 to 5 months maximum duration.
- Hardware/Software purchases should be processed within 5 business days.
- Entire IT work backlog should be achievable within 6 months timeframe.
- 100% of data should be backed up to within 3 business days of a failure event.
- 100% of mission-critical systems should have disaster recovery plans that are updated and tested.
- Zero (0) security infiltrations should occur into mission-critical systems and datasets.
- Maintain less than 5% permanent staff vacancy rate (*current level is* \sim 23%).
- Target at least two (2) weeks (80 hours) of development/training per staff member, per year.

⁴ Priority 1 is an industry term referring to "mission-critical" systems and services being down/not functioning.

⁵ Mission-critical are key organization systems that run the key functions and operations of the institution, such as, the network, D2L, ISRS, etc. where the organization cannot tolerate the loss of these services for even one day.

Funding of IT

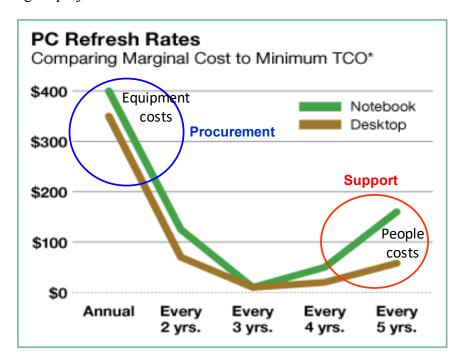
Technology investments (funding) in Higher Education is in the range of 3.5% up to 11%, out of Total Revenue, with an overall average of about 5%, depending on the institution type and how management sets their priorities. (Source: Gartner Inc.) Technical colleges tend to spend more on IT than, for example, liberal arts institutions.

All technology has a lifetime, some, such as laptops, have a life of between 3 and 5 years, while others, such as, a data center's HVAC systems, might last 15 to 20 years. (See Appendix L for RCTC's standards for various refresh time periods, based on the RCTC Technology Assets Refresh Policy #5.13.1.) The first year of any technology's implementation includes, (a) the acquisition cost, and (b) the implementation and roll-out costs. After year one, continued licensing, maintenance, upkeep, and support are the primary costs. RCTC currently has an investment of about \$6.5 million+ in total technology assets and services that need to be constantly supported and maintained for the duration of their lifetime.

RCTC-IT has the following funding model:

A. Sources of Revenue

- a. Operating funds
- b. Student Technology Fee
- c. Sometimes, one-time project or grant funds.

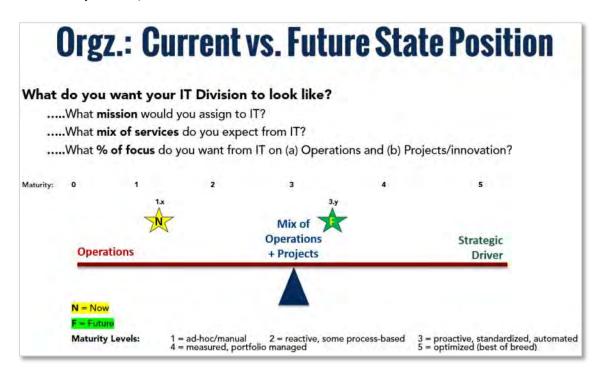

B. Key Costs

- a. Personnel expenses
- b. Equipment expenses
- c. On-going licensing expenses
- d. Miscellaneous: supplies, training, travel, etc.

The **Student Technology Fee** (**TechFee**) has been \$10 per credit for the past 13 years (since 2009). This fee should have been raised by now and must be raised soon to cover the <u>expanded footprint of technology</u> that is in the College. However, even with a maximum increase (to \$12 per credit), the level of revenue generated is not sufficient to meet current and future demands. Over the past several years, the TechFee has been declining in available dollars because of the drop in enrollments; however, our investment in technology has been increasing.

FY23 Budget Scenarios					
FY23 Enrollment Scenarios					enarios
Year:	FY2021	FY2022	3,000 Enroll	2,900 Enroll	2,500 Enroll
TechFee	\$1,000,593	\$995,000	\$891,000	\$861,300	\$742,500

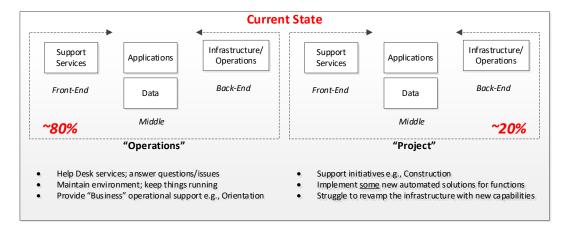
We have postponed and drawn-out certain technology updates, beyond their End of Life (EOL) or End of Support (EOS) or been more selective in what we invest so that the available funds could meet priority obligations. This type of strategy has other ramifications, for instance, it requires **more support personnel to handle constant break-fix issues** and impacts overall service performance and efficiencies, not to mention being more likely to be vulnerable to security concerns. For instance, in the below 'bathtub model', we can see that there are two times when IT costs are high: (1) when we first acquire the technology and invest in implementing it, then (2) when the technology ages, where we transfer costs into human/personnel costs more, to support, maintain the technology and keep it running. The latter costs start to take away available resources from working on projects and innovation needs.


Note: Recent Federal COVID funds have helped to address some of the updates we have not been able to make over the years; however, we have also added about \$2 million of *new* technology in our environment that will require decisions on whether to continue them or not, in four-to-five-year time period, because updating all of them will not be affordable for the College long-term.

About 11 IT positions are being funded either fully or partially by the TechFee. It would be ideal (a best practice) to keep personnel costs associated with the TechFee to about 1/3 or less of the total funds so that technology updates, new acquisitions and other needs could be effectively met. Also, using the TechFee to offset institution budget challenges will set the College in a precarious situation for addressing technology and automation obligations that the institution should meet.

Organization Design

Organization Structure


The past RCTC IT organization structures have primarily focused on **operational support**. The following image shows what the College's Cabinet expects IT to aspire to and mature to over time, specifically, to move from a larger **operations** focus to a **project-centric** focus of implementing new and innovative solutions to help support constant organization transformation (*see Appendix B for a more granular description of the Maturity Levels*).

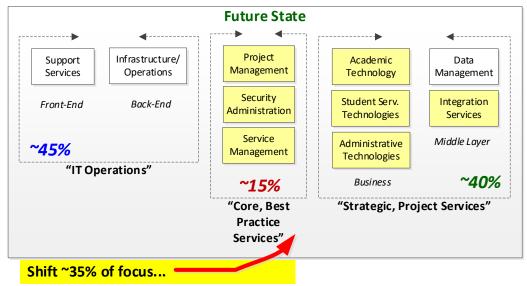
'Right Size' ≡ What is Sustainable?

RCTC considers IT services from two perspectives: (1) from the perspective of what people need to support existing or future services and capabilities (including teaching and learning), and (2) from the perspective of what is sustainable and affordable to the institution. These two perspectives are not the same and clash at times, but the sustainability perspective tends to drive decisions and at times wins over, thereby impacting what can be effectively implemented; in other words, costs/budget tend to drive the type, degree, completeness, and quality of solutions we pursue. However, this is not always the right decision to make, for instance, the Nursing program in the College is more costly than most other programs (due to infrastructure and facilities needs), but it is also an important program that we need to have. The importance of the need arches over the costs.

This issue is primarily the reason that IT services at the college are **focused more on support** (support is 'demanded' more and is less costly) and **there is less focus on business value creation**, and why there are **gaps** in providing certain kinds of higher-level services to the key functional areas of the College (Student Services, Academic, Administrative), beyond day-to-day support needs, as depicted in the current state structure in the image below.


Secondly, a larger operational focus makes sense if the College operates with a mindset of 'Immediate Gratification' or 'Emergency' service needs, such as depicted in these statements or thoughts:

- "Can I get this by end of day?"
- "What happens if I need something in a rush/emergency?"
- "Can you fix this for me now?"
- "My classes have started; I need some things setup!"
- "We have a new request and must start on it soon, (overriding planned work)."
- Etc.


A good analogy of this type of service expectation, is the **first-responder model in healthcare**, **i.e.**, **"911" services**, as depicted in Appendix Q. "911" services is a **reaction-based service**, **requiring immediate response**, but to a very acute set of needs/circumstances, with limited capabilities to solve *all* healthcare related problems. Escalation of needs must occur to emergency rooms (ERs) and/or hospitalization, for long-term problems/issues. Some services can never be solved through a "911" call, for instance, a transplant; these must be **proactively planned** and handled by more mature hospital processes and technical expertise. Also, **prevention is key**! It is more important to avoid calling "911" by being proactive and planful – getting routine checkups, being educated on dos and don'ts, exercising, having good nutritional habits, etc.

As the following African proverb mentions, if we want to achieve outcomes of a substantial nature, we must go forward together, in a planful, systematic manner and not

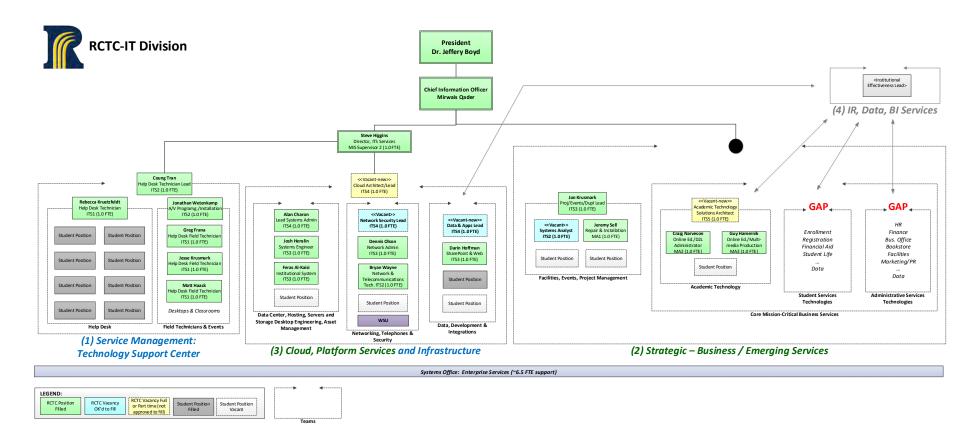
be purely focused on 'speed', which can lead to limited understanding and missed considerations in our decisions.

Therefore, value creation, innovation and business transformation require planning and a focus on addressing broader and integrated technology strategy and solution development. Consequently, to achieve this shift, IT is intent on reducing/eliminating operational needs, as much as possible, so that <u>capacity</u> can be created to address broader strategic needs. Since growth through new allocation of resources/positions is almost impossible in the current budget/operational environment, part of our strategy must be to use **more student workers** to address basic operational needs, to the extent possible.

This will take time and will require...

- Leveraging more student workers
- Shifting staff over
- Shifting appropriate vacant positions over (as retirements occur)
- Re-skilling staff (if feasible)
- Looking at 3rd party services to offload commodity operations
- Governing through better priorities alignment with expectations

Staffing and Skills Enhancement Tactics

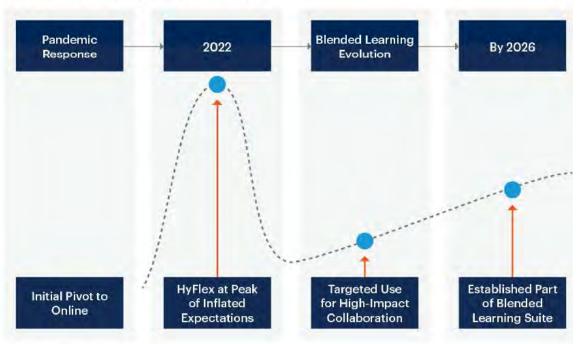

The tactics defined below are intended: (a) to reduce IT from being consumed with excessive commodity, operational support, or busy work; (b) to increase value-added services to key College functions, and (c) to ensure that our core IT infrastructure is understood, reliable/stable, and cost-effective. These tactics will shift our focus and create <u>capacity</u> to contribute to our intended outcome of creating value that supports the teaching and learning needs of our customers/our students.

- RCTC-IT intends to **shift as much of the front-line IT support staff** out of Help Desk functions **to the next "Tier" i.e., "Field Technician"** roles, to provide higherend services to the College than performing basic, foundational support services.
- IT intends to **fill first-level support with Student Workers**, as much as possible and feasible. [See Appendix D¹ and D² for more details on the Operational Support Model and Service Management.]
- IT intends to establish a **core infrastructure service** area that ensures that all backend services are **stable**, **reliable**, **and consistent**. Without a stable infrastructure, most other work cannot be easily accomplished.
- IT intends to build up **capabilities around project management** to allow it to deliver solutions more effectively and efficiently costs, schedule, quality, maintainability, and sustainability.
- Making these changes will **free up some capacity** to allow for shifting of resources and buildup of services in the Academic, Student Services and Administrative areas, the core business service areas of the College.
- In the past, the **Education Technology** (EdTech) group was a larger team (between 3.0 5.0 FTEs), but it was reduced in size through attrition and due to funding issues. This area needs to be reconstituted, as much as possible, with permanent staffing to support an effective **Academic, Teaching and Learning environment**.
 - Note: In the campus survey conducted to gather input for this plan,
 "Technology Literacy/Training" came up as a major need by the community learning how to use the tools we have. EdTech would be instrumental to achieving this outcome, especially for Faculty.
 - A more functional EdTech organization, that will better meet the desired expectations of the institution includes:

	Leadership	C
	LMS/D2L Site Administrator	Governance:
Ctoffing.	Technical Trainer (all tools, beyond LMS)	Online Teaching and
Staffing:	LMS/D2L Trainer	_
	Instructional Designer	Learning Committee
	Faculty Peer Mentors (temporary assignments)	Committee

- "Service and Operational Excellence", performing effective and efficient day-to-day and routine services, is a **critical success factor** to allowing for transformation to occur and for allowing focus to be more on strategic issues and needs.
- New roles/positions within IT need to be created over time to drive the desired changes and to implement the technologies of the future, these include: (a) a Cloud Architect role, (b) a Security Officer, (c) an Academic Technology Solutions Architect role, (d) a strong Project Management advocacy role (from current or future staff), (e) a strong Applications Development/Integration and Data/Analytics role, and (e) Systems Analysts to effectively work with customers and translate their needs into technical solutions.
- Staff skills will need to be constantly developed in current and emerging skills, both soft and technical skills. IT intends to set aside at least 2 weeks (80 hours) of training and development per person, per year (through online eLearning, mentoring, shadowing, conferences, formal classes, memberships to resource providers, etc.), to allow for continued growth and to meet the College's needs. Types of skills include:
 - Systems Analysis
 - o Service Management
 - o Project Management
 - o Change Management
 - o Technical skills in:
 - Cloud,
 - Networking,
 - Office 365 Platform,
 - Classroom Technologies,
 - Applications Development (Programming),
 - Data and Business Intelligence, and
 - Security.

Note: most of the above points are reflected in the organization design depicted in the image below.

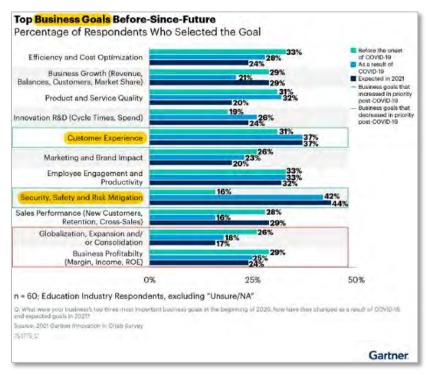


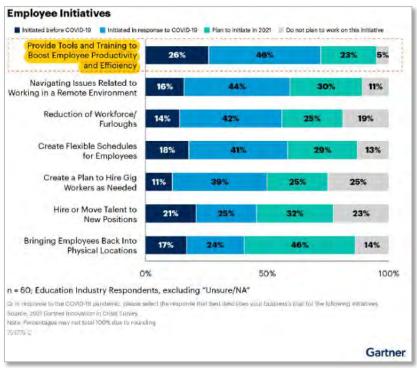
Note: This organization structure reflects an increase in student workers and a reduction in FTEs from the last Master Technology Plan developed (2017-2020), which had 27.7 FTEs, compared to 23.0 total positions now (including 5 current vacancies).

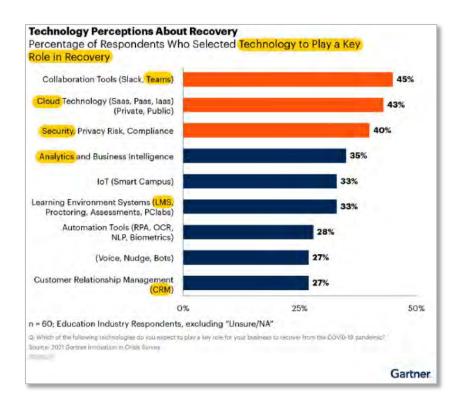
IT Industry Insights

Industry insights, data, and trends suggest that there are several key areas in which organizations are investing their time and resources. The COVID-19 pandemic played a major role in accelerating and forcing transformation and change. However, the level and degree of changes impacted by COVID will not stay as 'normal' over time because some changes improved and worked well, while others did not. For instance, collaboration is much more effective in-person than online; nevertheless, online provides a lot of conveniences and reduced costs.

The Evolution of HyFlex Classrooms




Source: Gartner


As seen in the survey results below from Gartner, and from Educause and Gartner top trends information in Appendices I and J (respectively), improving the **Customer Experience** (for Student, Faculty, Staff) is a key area of focus for most Higher Education institutions. In our case, this means how can we simplify, standardize, and make more reliable our services to our students, faculty, and staff so that they get the most value out of their **relationship** with us and amongst each other (i.e., **collaboration**), using all our services.

Since online teaching and learning is now mainstream and a lot of new technologies were deployed/used during the COVID pandemic time period, another major theme is how can we train and develop people to get the most out of the technologies they use, to improve productivity.

As we move towards more online services, many organizations are having to invest in **Security**, **Safety and Risk Mitigation**. We need to determine means to better manage and build a more effective security environment through preventative (including end user education and awareness), monitoring, and control tools and solutions.

Key Initiatives' Feasibility Analysis Matrix

Note: Projects to be pursued will be dependent on the specific needs and currency of technology at that time, etc.

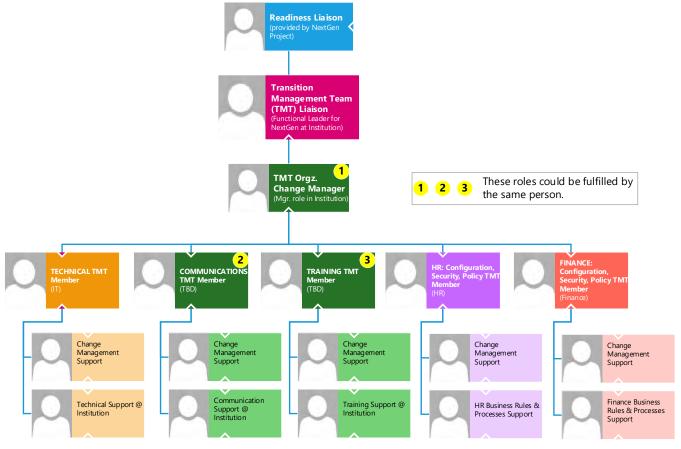
Pr ⁶ .	Initiative (Projects to be defined and prioritized based on these)	RCTC Strategic Plan Alignment (see Appendix F)	Degree of Value ⁷ (H/M/L)	Degree of Difficulty ⁸ (H/M/L)	Within Existing Staffing Levels	Within Existing Budget Levels	Organizational Design & Capabilities
1	NextGen/Workday (ERP) Coordination and Support (mandated effort)	Goals 1, 2 All Strategies	High (major parts of all of the College's business and operations work)	High (project) Moderate (post-production)	No – during project timeframe Likely – post- project timeframe	Somewhat (Would have to reallocate funds; hence, change priorities.)	Need to re-skill staff (functional and IT) to work with new ERP system
2a	Classroom Upgrades to Allow for Hybrid / HyFlex Teaching Modes (active effort into FY23 due to COVID)	Goal 1, Strategies 2, 3 Goal 2, Strategies 1, 4 Goal 3, Strategies 2, 3 Goal 4, Strategies 2, 4	Moderate	Moderate	No (Using COVID funds to support one-time efforts)	Somewhat (Using COVID funds to support one-time efforts. Note: future upgrades WILL require budget/affordability assessment)	No
2b	Improve Purchasing and Contracting of IT Services (coordination w/ RCTC procurement and OGC)	Goal 1, Strategies 2, 3 Goal 2, Strategies 1, 4 Goal 4, Strategies 2, 4	High	High (Lately, due to Office of General Council (OGC) review, this process is slow and cumbersome)	Somewhat (Can't control OGC resources, these are tight)	Yes	System Office (SO) – we are not in control of them Procurement – need to think about alternative approaches
3	Improve Orientation, Onboarding/Offboarding Processes (Faculty & Staff, & Students) (Note: this initiative could benefit from other initiatives being completed, such as, "Single Portals of Information")	Goal 2, Strategy 2 Goal 3, Strategy 3	High (Universal Design plays a role, ties into retention)	Moderate (requires coordination across College)	Yes (all internal resources)	Yes	No
4	Technology Literacy for Faculty, Staff, Students	Goal 1, Strategy 3 Goal 2, Strategies 1, 4 Goal 3, Strategies 2, 3 Goal 4, Strategies 2, 4	High	Moderate (may have to require it)	No (Involves IT, EdTech, CTL, Faculty Online Learning, etc. but requires more integrated services across the entire college.)	No (Will need to add resources for training, reallocate resources or increase staffing levels)	Yes Requires investment in expansion of <i>EdTech</i> service group.

⁶ **Pr**. = Priority (sequence). Considerations: mandate & compliance; low-hanging fruit requiring limited to no additional resources; *feasible* strategic breakthroughs for institution. Priorities that are related, that feed off or impact one another, or could happen in parallel are noted as #a, #b, #c, etc.

⁷ Value = greatest impact on students and our institution's ability to deliver the service intended (e.g., teaching, support, etc.).

⁸ **Difficulty** = how complex is the implementation and our ability to sustain it post-implementation.

D 6	T •,• ,•	DOTO CA	D -6	D -C	XX7*/1.*	W'.1 . E	
Pr ⁶ .	Initiative (Projects to be defined and prioritized based on these)	RCTC Strategic Plan Alignment (see Appendix F)	Degree of Value ⁷ (H/M/L)	Degree of Difficulty ⁸ (H/M/L)	Within Existing Staffing Levels	Within Existing Budget Levels	Organizational Design & Capabilities
5a	Reorganization & Redesign of IT Division (Service Management, creation of "Field Techs", increased staffing support in Academics & Student Services; Systems Analysis, Project Management, Architecture skills)	Goal 2, All Strategies Goal 4, Strategy 2, 4	High	Moderate	Somewhat (most yes, growth areas depend on attrition and reallocation of positions or new positions)	Somewhat (budget must keep pace with market and portfolio of current assets invested)	Yes Need to shift from operations to more value-added services.
5b	IT Service Management (Service Portfolio/Catalog, Customer Service, Request Intake, Request Status, Assets Management, Self-Service, Documentation, etc.)	Goal 2, All Strategies Goal 4, Strategies 2, 4	High	Moderate	Yes	Yes	Yes Need to mature existing processes and acquire some key tools to improve communication and transparency.
5c	Remote Support Tools and Processes (including Administrative Account Management)	Goal 1, Strategy 3 Goal 2, Strategies 1, 4 Goal 4, Strategies 2, 4	High	Moderate	Yes	Yes	Yes Need to be able to accommodate Administrative Rights and Routine updates to systems.
6a	Modernize & Stabilize Core IT Infrastructure (Network, Data Center, Communication Closets, Software/Package Deployment, Phones move to VoIP9, Windows 11, etc.)	Goals 1, 2, All Strategies Goal 4, Strategies 2, 4	Very High (If core is not working, everything else is impacted)	Moderate	Yes	Somewhat (requires on-going investment through Strategic, R&R or TechFee funds)	Yes Need to modify existing staff PDs and realign to new Org. Design; also augment with additional skills.
6b	Electrical Power Stabilization to Prevent Equipment Damage or Malfunction (Due to lightning, surges from RPU, various line conditioning issues, etc.)	Goals 1, 2, All Strategies Goal 4, Strategies 2, 4	Moderate (major distraction for IT; causing functional impact & costs)	Moderate	No (will require partnership with Facilities and external vendor contractors)	Somewhat (will need to shift internal budgets to cover costs)	No
6c	Evaluate and Transition to more effective Cloud Solution options (Hosting/data/application services in the cloud e.g., databases, website, etc.)	Goals 1, 2, All Strategies Goal 4, Strategies 2, 4	Moderate (major distraction for IT; causing functional impact & costs)	Moderate	No (will require external vendor contractors)	Somewhat (will need to shift internal budgets to cover costs)	No
7a	Integrated Set of Communication Tools	All Goals All Strategies	High	Moderate (O365 in place, many others too)	Yes	Yes (if focus is on strategy and use of existing tools)	No


⁹ VoIP = Voice over Internet Protocol i.e., telephones through an online/internet connection versus a land line.

Pr ⁶ .	Initiative (Projects to be defined and prioritized based on these)	RCTC Strategic Plan Alignment (see Appendix F)	Degree of Value ⁷ (H/M/L)	Degree of Difficulty ⁸ (H/M/L)	Within Existing Staffing Levels	Within Existing Budget Levels	Organizational Design & Capabilities
	Across 3 Key Audiences (Students, Faculty, Staff)						
7b	Intranet Redesign (SharePoint)	Goal 4, Strategies 2, 4	High	High	No	No	Yes Need to establish an ongoing governance process.
7c	Development of "Single Portals" of Information for Easy Access	Goals 1, 2, 4, Various Strategies	High	Moderate	No	No	Yes Need to establish an ongoing governance process
8	Data/Business Intelligence Expansion	All Goals All Strategies	High	Moderate (leverage Precision Campus)	Somewhat (IR + IT)	Somewhat	No (for short-term)
9a	Integrated Student Case Management (including supporting tools – CRM, Mobile Apps, Workflow Automation, Forms Mgt. Solutions, "AdvisorVue" as an interim solution, etc.)	Goal 1 All Strategies	Very High	High	No	No (requires multi-year investments)	Need to expand capacity in Student Technology Service analysis, design, implementation.
9b	Digitization of Manual & Paper-based Processes (including fillable forms, workflow automation, eSignatures, PDF editors)	Goal 1, Strategy 2 Goal 2, Strategy 1, 2 Goal 3, Strategy 2, 3 Goal 4, Strategy 1, 2,	Moderate	Moderate	Yes (depends on if using simple approach e.g., PDF, or a DocuSign type services implementation – much more expansive)	Yes (depends on if using simple approach e.g., PDF or a DocuSign type service implementation – much more expansive)	No
10	Establish an Information Security Program (a matter of risk management)	Goal 2, Strategies 1, 4	Moderate	Moderate	Somewhat	Somewhat (would have to make reassignments within existing staffs' position descriptions)	Yes Need a functioning or partial Chief Information Security Officer (CISO) role.
11	Simulation Technologies to Support New Modes of Instruction/Teaching	Goal 1, Strategies 2, 3, 4 Goal 2, Strategies 1, 4	Moderate	Low (technically, assumed to be covered by vendor)	No	Yes	May have to consider different staffing mix to both run simulation and provide instruction to students
12	Define New, Improved Academic Management Tools (e.g., assessment, curriculum development, etc.) [see Appendix P for a sample list of tools]	Goals 1, 2 All Strategies	High	High	No	No	Need to expand capacity in Academic Technology Service analysis, design, implementation.

Pr ⁶ .	Initiative (Projects to be defined and prioritized based on these)	RCTC Strategic Plan Alignment (see Appendix F)	Degree of Value ⁷ (H/M/L)	Degree of Difficulty ⁸ (H/M/L)	Within Existing Staffing Levels	Budget Levels	Organizational Design & Capabilities
13a	Evaluate a College-wide Student Laptop/Loaner Program (Digital Equity) (research options effort)	Goal 1, Strategy 2, 3 Goal 3, Strategy 1, 2, 3	Moderate	Moderate	No Additional staff would have to be funded thru program	No Needs to be self- funding through a fee or other source (like Financial Aid)	Yes Need to expand existing capabilities + outsourced value- add services
13b	Enhanced BYOD (Bring Your Own Device) Capabilities for Students (including supporting components, such as, charging stations)	Goal 1, Strategy 2, 3 Goal 3, Strategy 1, 2, 3	Moderate	Moderate	Yes	Yes	No

NextGen – Statement on Project and Resource Needs

NextGen is a major, system-wide initiative to implement a new, modern Enterprise Resource Planning (ERP) system that replaces Minnesota State's, in-house and aging ISRS system. This project involves replacement of the Finance system, Human Resources system and ultimately, the Student system, as well as many other dependent components. As part of this initiative, across all 37 colleges and universities in Minnesota State, over a seven (7) year period (concluding in 2027¹⁰), at a cost of more than \$150 million+, each institution will also need to plan for its own transition to the system(s). Larger institutions will have an easier time meeting this expectation than smaller ones due to available funding and staffing levels. Regardless, each institution will need to plan for, out of its own resources, the following key roles/functions:

After the Finance and HR implementations are complete, the Student system will require a similar allocation of resources across IT, Student Services and Academic areas.

Given the magnitude of staffing support needs for the NextGen project, which has not been set aside/designated solely to the project, **the institution will likely feel some levels of resource shortages on** *other* **initiatives and projects**, from ALL areas of the College, over the course of this project's timeframe. In addition or alternatively, the College may incur augmented staffing costs of about \$150,000 to \$300,000 annually to support key work assignments for this project.

¹⁰ NextGen *planning* efforts started in 2015; the project is expected to conclude in 2027.

Appendices

Appendix A – IT Division Values

IT DIVISION VALUES

VALUES STATEMENT

"With integrity, working as a team, we solve problems through excellent service."

INTEGRITY

- Be transparent, honest, fair, respectful, and inclusive in all interactions
- Fully own our responsibilities
- Honor the commitments we make / follow-through to completion / follow-up
- Always do what is right, even if it is not popular
- Be open to people's interests and different perspectives
- Communicate expectations; hold each other accountable for stated expectations
- · Be reliable and dependable
- Partner and build relationships
- Be a trusted broker for the College
- Inspire independence and self-management
- Encourage open discussion and debate
- Treat others as they want to be treated
- Accept and give constructive feedback
- Listen to understand; suspend judgment; ask questions to learn

TEAMWORK

- We, the College, are one ("1") team
- Aspire to become a "High Performing Team"
- Work unified towards a common goal / a path forward
- Contribute talents equally
- Professionally communicate with each other
- · Trust team members
- Hold self and teammates accountable to reasonable expectations
- Foster inclusivity
- Have each other's back and advocate for one another
- · Once decisions are made, communicate with one voice
- Encourage crucial conversations open discussion and debate of thoughts, ideas in a positive atmosphere to identify the best possible options and outcomes
- Communicate concerns in a timely manner; don't hold back issues
- Build and enhance relationships based on the essential dignity of each individual
- Respect work-life balance
- Treat people as valuable assets; make time for professional growth and development

- Create a work environment that is fun, enjoyable, and fulfilling
- Celebrate successes
- Be flexible and adaptable
- Be present and engaged

PROBLEM-SOLVING

- Use critical thinking and take a comprehensive, integrated (360° degree) view of issues
- Approach problems and decisions methodically and involve relevant stakeholders
- Solve for the long-term, focus on the future state, and forecast
- Communicate with customers to understand the situation
- Create a problem definition that is driven by customer expectations
- Design for the user's experience
- Facilitate the discussion to solve issues at the root level
- Provide customers and partners options and alternatives to problems
- Involve stakeholders in decisions
- Embrace creativity, strategic/forward-thinking, change management and promote learning and risk-taking
- Fail fast/learn fast, leverage continuous process improvement and iterative design

SERVICE EXCELLENCE

- Listen to customers they are always right about the problem!
- Be open, friendly, and approachable
- Aim for a delighted customer who values returning to us again and again
- Understand the customer's needs; strive to exceed expectations
- · Remedy issues quickly, effectively but don't sacrifice quality
- Provide accurate solutions and advice
- Define service management from request to long-term sustainability
- Hold ourselves accountable for customer expectations through Service Level Agreements (SLAs)
- Earn the customer's trust by being there for them and doing a good job
- Move from "No" to "Know"; ask "Is it possible?"
- Remember that all transactions are about relationships
- Lead by example, maintain a positive tone, assume positive intent
- Be clear, concise, and timely
- · Aim for first time resolution; find and fix root causes
- Provide support and assistance outside normal business hours

Appendix B – IT Maturity Levels for Increased Operational Excellence

	Level 1-2	Level 2-3+	Level 3-5
	Operations Focus	Mix of Operations + Projects	Business Leadership & Strategic Driver
Focus	"Keep the Lights On"	Enhance operations and perform key projects	Drive the strategy of the organization through technology
Role of IT	Behind the scenes	Collaboration with functions as drivers	Proactive driver of change in use of IT
Activity Types	- Manage operations & support- Maintain the core of IT (for reliability & sustainability)	Build the core of business processes (align automation to business requirements)	Build the core of the business (lead business innovation and enduser experience and usability enhancements)
Business Conversation	Focus on IT performance, such as availability and quality of service	Solicit input and apply technology to transform business processes and activities	Business partner, use IT to create competitive differentiation and meet strategic goals
Technology	Stabilize the technical infrastructure	Build/integrate the application platform	Build/integrate technology for competitive advantage & business growth
Processes	Establish repeatable processes in IT; minimize risks	Establish effective IT governance and a Project Management Office (PMO); monitor risks	Evolve governance and the PMO towards strategic investments
People	Build and source required technical skills	Build business acumen and analytical skills (problem-solving)	Build business relationship, trusted broker and change management skills
Skills	Technical	Mix of Technical + Business Analysis and Project Management	IT Consultants, Strategy, Architecture, Solution Development
Organization	Support Services - Help Desk, Infrastructure, etc. Mostly in-sourced.	Minimal PMO, Development & Integration Teams, etc. Mix of In/Out- Source.	Comprehensive PMO, Architecture, Change, etc. Service-designed orgz. focused on value attainment

${\bf Appendix} \ {\bf C-Enterprise} \ {\bf Architectural} \ {\bf Principles}$

BUSINESS ARCHITECTURE PERSPECTIVE

PRINCIPLE DETAIL

Primacy of principles	These principles of Enterprise Architecture <u>apply to all</u> departments within the enterprise/College.
Enterprise Architecture scope	Enterprise Architecture is intended to <u>present options and alternative</u> to problems and opportunities, to facilitate quality decision-making, while taking into consideration various constraints. EA is not about just managing to standards.
Enterprise Architecture is everyone's responsibility	<u>Business requirements will drive</u> the use of technology. Also, business units will participate in the information management decisions needed to accomplish business objectives.
Project Initiation	Successful project initiation resulting in quality <u>outcomes requires (1) inclusivity and involvement upfront (2) prioritization by the highest level of governance</u> , without it, the level of commitment and the desired results will always be in flux and questionable.
Enterprise value/view focus	Enterprise Architecture decisions are made for maximum benefit to the broader enterprise, as a whole, while minimizing total cost of ownership and risks.
Complete solutions available on "Day 1"	Solutions deployed across the College should be <u>available on the 1st day</u> they are needed e.g., academic/curriculum software on 1 st day of class.
People, process knowledge, and skills are a vital asset	People, their process knowledge, and their skills are a vital asset and will be developed and managed accordingly.
Enabling business transformation	Flexibility will be incorporated into the Enterprise Architecture framework, so that it supports changing business needs, and enables transformation.
Business continuity	Business functions and technology <u>operations are maintained</u> despite process or system <u>interruptions</u> .
Process alignment to technology	To allow for flexibility and control costs, the organization will <u>align processes to the technology</u> needed, rather than match the technology to <u>custom</u> processes.
Compliance to laws and regulations	We will maintain and operate our environment <u>in compliance</u> to all applicable laws and regulations.
Simplicity (also refer to "Universal Design" below)	Choose the <u>simplest solutions and aim for reduced operational complexity</u> for the enterprise/College. Simple, effective solutions that are configurable and meet functional needs are recommended over highly complex and customized solutions.

INFORMATION ARCHITECTURE PERSPECTIVE

PRINCIPLE DETAIL

Information is a corporate asset	Information will be managed as a corporate asset. It is vital to all aspects of the enterprise and for decision-making.
There is only one primary source of data	There will be one authoritative Master definition of data. Data will be <u>captured once</u> and <u>shared</u> as a copy across dependent systems and applications. This master data, a.k.a. source system, will be referred to as the "system of record". Necessary, permanent modifications will only be made to the source/master data, not the copies.
Managed data	<u>Data will be classified</u> and managed, enabling the efficient administration and search of critical business information to support effective decision-making.

TECHNOLOGY ARCHITECTURE PERSPECTIVE

PRINCIPLE DETAIL

Reuse before Buy before Build	When new technology is required we should <u>leverage existing investments</u> prior to venturing to seek new ones. Next, investigation and evaluation of vendor products will be done before building it ourselves. Customization of purchased technology will be avoided when possible.
Invest in stable platforms	When purchasing technology, it is preferred that it be implemented after a point in its life cycle where it has become stable (in other words, we want to be "early followers" and avoid being at the "bleeding edge" of technology products, standards, and resulting implementations that have not been vetted effectively in the market).
Out of the box preference	Technology implementation will <u>focus on "out of the box" implementation</u> while meeting the core (e.g., 80%) of our needs; configuration is the next level of complexity we will consider; then, minimal, necessary customization, that create value and can be supported, will be considered versus major customizations, which should be avoided.
Obsolescence will be avoided	<u>Technology will be replaced</u> well before the time that it is no longer supported by the vendor, assuming proper notice is given. We want to avoid last minute migrations or operating under high degree of risk where we cannot recover from a failure.
Guided by total business impact	Total business impact (time, money, staff, skills, sustainability, etc.) and value, not just total cost of ownership, will be used in making technology decisions.
Controlled technical diversity	Control the variety of technology platforms to use, in the form of standards. Focus on 1 to 2 rather than a basket of options. Multi-tool solutions are okay when part of a well thought-out and integrated strategy that is designed to fill necessary gaps, with supported resources.
Sustainable support	"Rule of 2" – any mission-critical activity, both within the functional area and within IT needs to have at least two (2) people with the knowledge to ensure continued/ sustainable support in case of staff being on leave or attrition.

SECURITY ARCHITECTURE PERSPECTIVE

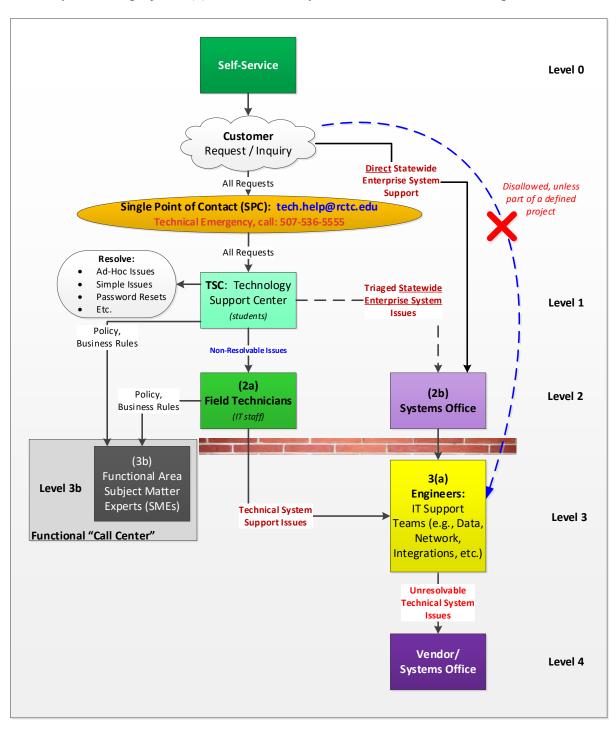
PRINCIPLE DETAIL

Security Ownership	Security is "everyone's responsibility" since it can occur at any part of the organization.
Managed security	Manage security enterprise-wide in <u>compliance to current best security practices</u> and security governance policies.
Provide adequate information security	Adequate security will be provided to protect our business information from inappropriate access or disruption, while assuring regulatory compliance and managing risk. Goal: zero (0) breaches in mission-critical systems & data.

SOLUTION/APPLICATION ARCHITECTURE PERSPECTIVE

PRINCIPLE DETAIL

Solutions are corporate assets	Applications and infrastructure will be managed as corporate assets throughout their lifecycle including selection, acquisition, operation and retirement.				
Universal Design	Whenever feasible and not cost prohibitive, all soludesign principles: 1. Equitable Use (for diverse users) 2. Flexibility in Use (preferences & abilities) 3. Simple and Intuitive Use (understanding & skills) 4. Perceptible Information (independent of senses)	5. Tolerance for Error (prevention) 6. Low Physical Effort (no fatigue) 7. Size and Space for Approach and Use (independent of physical form)			


SOLUTION/APPLICATION ARCHITECTURE PERSPECTIVE

PRINCIPLE DETAIL

	Rapid Turnaround/Speed.
environment	Mobile 1 st . Cloud 1 st . Data and Analytics Capable. Self-Service Oriented.
Current to existing	Solutions should be current to the existing times and environment in which we operate, which is defined as:
Adhere to industry standards	Industry standards will be leveraged for solution development, to minimize technical diversity and complexity, improve interoperability and reduce the long-term total cost of ownership.
Fit for purpose	Maintain capability levels and create solutions that are <u>fit for purpose without over-engineering them</u> . Design solutions towards "Minimum Viable Product" (MVP), not maximum future potential, which may not be utilized due to the rapid change in IT.
Self-service	Solutions should be designed and implemented for <u>increased ability by end-users to fully support themselves.</u>
Integrated use preference	Solutions should be designed with an <u>integrated, collective view of functional/business</u> policies and processes (not silos). We should strive to <u>eliminate redundancy.</u>
(Build for change (than to last))	volatile services and code.
Design for scalability, change and reuse	Always architect, design, and implement solutions for the long-term, to change and reuse at the broadest level possible. Employ separation of concerns (SoC) design principles to separate code/modules/services into distinct sections and also separate stable from

Appendix D1 – Operational Support Model/Framework and Triaging

A standardized process to managing support must be used to ensure consistent, effective, and efficient service delivery, to ensure issues are solved at the lowest cost possible, to ensure that work priorities are maintained and there is no 'favoritism' in handling issues, etc. ITs defined approach to addressing support issues involves: (0) allow end-users to solve their own problems, (1) contact the Technology Support Center/IT Help Desk to get assistance [intake of requests], (2 & 3) IT coordinate with either System Office or higher-level technical staff, who normally work on projects, (4) IT work directly with vendors to resolve complex issues.

Appendix D² – Service Management – Service Target Expectations Reference

SERVICE MANAGEMENT - Service Target Expectations Reference

IT has established the following expectations regarding how we calculate prioritization of breadent) issues, as well as the time allowed for response and resolution of these issues.

	Priority Calculation Matrix				
	IMPACT				
>		High(1)	Med(2)	Low(3)	
E	High(1)	1*	2	3	
URGENCY	Medium(2)	2	3	4	
_ ^	Low(3)	3	4	5	

Priority Level		Team Response Time	Resolve Time
	1 - Critical	15 Minutes	4 Hours
	2 - High	1 Bus. Hour	8 Bus. Hours
	3 - Medium	8 Bus. hours	2 Bus. Days
	4 - Low	2 Bus. Days	7 Bus. Days
	5 - Planning	5 Bus. Days	14 Bus. Days

Table 1: Priority Calculation

Table 2: Response and Resolution Service Level Targets

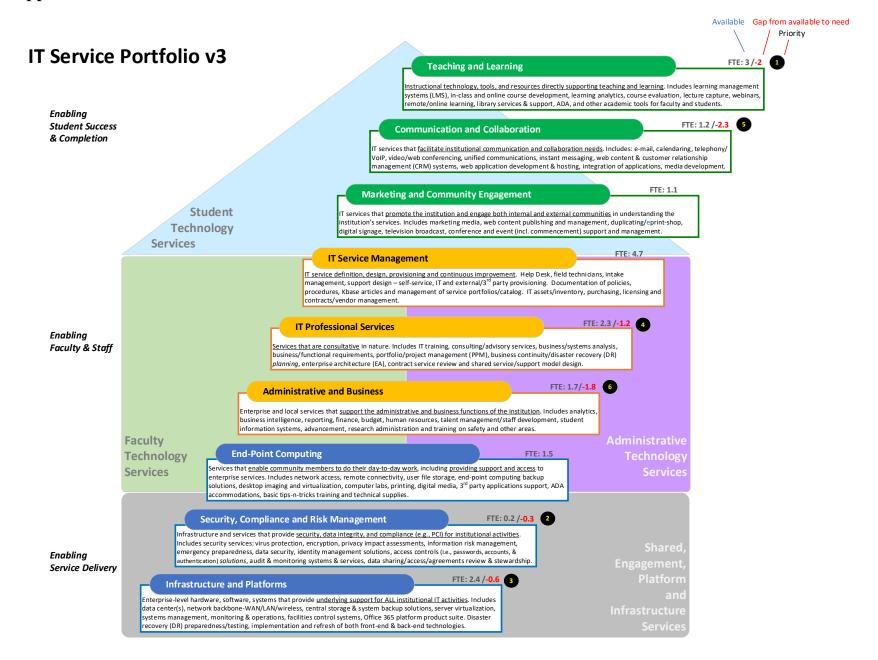
(If no other work exists, lower priority requests may be resolved faster.)

Service Level Target Definitions

Impact: Impact is the effect that an incident has on the College. Impact can be determined by considering the number of users (e.g., college-wide, site/department/class/ multiple users, single user) that are influenced by the incident, with 1 representing the largest impact and 3 the least impact.

Urgency: Urgency is the extent to which the incident's resolution can <u>bear delay</u> until it presents a significant impact to the College, with <u>1 representing the highest urgency</u> and 3 the lowest urgency.

Priority: Priority dictates the sequence in which an incident is addressed when evaluated against the landscape of all other open incidents. Priority is automatically calculated based on the Impact and Urgency settings.


*Note: All P1s require a Root-Cause Analysis presented to management/CAB. RCAs for P2...P5 are on case-by-case. Response: Response is measured as the time from when an Incident is created until the time the Incident is assigned to an individual team member and he/she responds to the customer.

Resolution: Resolution is measured as the time from when an Incident is created until the time the incident reaches a "Resolved" state. Resolution requires customer feedback/validation for the service.

Note: Pending an incident directly or via creation of Change or Problem record from the Incident will pause the Resolution 'timer' for the Incident.

		Priority Definitions and Examples
P1	Business Impacting; Urgent & Important	An unplanned outage/interruption sustained in a critical system, which directly affects the ability of the College to fulfill its Core Business functions across a large segment of Faculty, Students, and/or campuses. "Disaster Declaration Decision (DDD)" can be made any time; must be made once Resolution Time threshold is exceeded. Examples: * Complete network outage affecting a facility. * Regulatory/legal issue e.g., data breach. * Classroom interrupted & unable to function. * LMS outage.
P2	Time Sensitive Issue	Critical functionality interrupted, degraded or unusable, having a severe impact on services availability. No acceptable alternative is possible. (Some P2s may become P1s!) Examples: * A Security issue, VIP need or subset of the HR/Finance/Admissions teams cannot access the Internet. * Course scheduling application is running "very slow" during enrollment period.
Р3	Inconvenienced/ Low Impact	Non-critical function or procedure, <u>unusable or hard to use</u> having an operational impact, but with no direct impact on services availability. A workaround is available. Examples: * Active Directory password reset for a single user. * Ticketing system portal navigation is "slow" for IT Department.
P4	Very Low Impact to Business	Application or personal procedure unusable, where a <u>workaround or alternative is available</u> , or a repair is possible. Examples: * Email not available from mobile device for single user; alternative modes working. * End-user desktop/laptop is "running slow" but operational.
P5	Plannable; Nice to have fix	Non-critical end-user <u>inquiry</u> or request for a <u>future need/event</u> . * Would like to know how to change a software's color theme. Schedulable work.

Appendix E¹ – IT Service Portfolios

Appendix E² – IT Service Catalog

Service Portfolios	Service Category	Front-Facing Services
Enabling Administration	End-Point Computing	End-User Accounts, Security Access & Home Drives
Enabling Administration	Marketing and Community Engagement	Events Support and Management (incl. commencement)
Enabling Administration	IT Service Management	(1 of 2) IT Help Desk
Enabling Administration	Marketing and Community Engagement	ePrint Shop (Binding, Banners, Large Print/Copying Batches, Foamboards, Laminating, etc.)
Enabling Administration	End-Point Computing	Printing & Copying Services (incl. paper)
Enabling Administration	End-Point Computing	Digital Media Services (CD, DVD, Jump Drives, Copying, etc.)
Enabling Administration	Marketing and Community Engagement	Digital Signage, Cable TV, Broadcast Services
Enabling Administration	IT Professional Services	IT Consulting, Solution Planning and Design
Enabling Administration	Marketing and Community Engagement	Web Content Access, Creation, Management
Enabling Administration	IT Service Management	IT Purchasing, Licensing & Contracts/Vendors
Enabling Administration	End-Point Computing	(1 of 2) 3rd Party Applications and Software Support
Enabling Administration	Administrative and Business	Data Integrations, Reports Consultation and Design
Enabling Administration	End-Point Computing	Remote Connectivity and Access to Campus Resources
Enabling Academics	End-Point Computing	Equipment Check-Out
Enabling Academics	Teaching and Learning	Educational, Instructional Technology Design, Build Management
Enabling Academics	Teaching and Learning	Audio/Visual, Classroom Design, Build and Support
Enabling Academics	Administrative and Business	Administrative Academic Technologies Support (need for accreditation)
Enabling Academics	Teaching and Learning	Lab Technology Support (Simulations, VR, Theatre, TV, Broadcast, etc.)
Enabling Academics	End-Point Computing	(2 of 2) 3rd Party Applications and Software Support
Enabling Academics	Teaching and Learning	Lecture Capture & Retrieval (online + on-prem services should be same)
Enabling Academics	IT Professional Services	IT Architecture Management
Enabling Student/Learning	Teaching and Learning	Library Services and Support
Enabling Student/Learning	IT Service Management	(2 of 2) IT Help Desk
Enabling Student/Learning	Teaching and Learning	(1 of 2) Student Onboarding/Orientation Support
Enabling Student/Learning	Teaching and Learning	Online Learning Management Systems (LMS) Support (D2L, other tools, etc.)
Enabling Student/Learning	Teaching and Learning	(1 of 2) ADA, Disability and Accomodations Services
Enabling Student/Learning	Infrastructure & Platforms	WiFi Connectivity and Access (on personal/BYOD devices)
Enabling Personal Productivity	Infrastructure & Platforms	Office 365
Enabling Personal Productivity	End-Point Computing	(2of 2) ADA, Disability and Accomodations Services
Enabling Personal Productivity	Communication and Collaboration	Workgroup, Teamwork, File Sharing and Collaboration (incl. SharePoint, Teams, etc.)
Enabling Personal Productivity	Communication and Collaboration	Email and Calendaring Management
Enabling Personal Productivity	End-Point Computing	File, Storage, Content/Document/Repository Management
Enabling Personal Productivity	Communication and Collaboration	Phones/Communication
Enabling Personal Productivity	Communication and Collaboration	Instant Messaging and Web/Video Conferencing (Zoom/Teams)
Enabling Personal Productivity	Infrastructure & Platforms	Database Design and Administration
Enabling Personal Productivity	Infrastructure & Platforms	Backup and Data Recovery Services
Enabling Personal Productivity	Administrative and Business	(2 of 2) Staff Onboarding/Offboarding/Orientation
Enabling Personal Productivity	End-Point Computing	Technology Store Front - Supplies (batteries, etc.)
Enabling Personal Productivity	End-Point Computing	Training & Communication on Technology & Software

Service Portfolios	Service Category	Back-End Services
Shared Services & Platforms	IT Service Management	IT Policies, Standards, Procedures (SOPs), Kbase articles
Shared Services & Platforms	Infrastructure & Platforms	System Monitoring
Shared Services & Platforms	Infrastructure & Platforms	Facilities Control Systems Administration (HVAC, etc.)
Shared Services & Platforms	Security, Compliance & Risk	Security, Compliance and Risk Management
Shared Services & Platforms	Infrastructure & Platforms	Routine System Maintenance and Upkeep
Shared Services & Platforms	IT Professional Services	Strategic IT Planning
Shared Services & Platforms	Infrastructure & Platforms	Data Center Administration
Shared Services & Platforms	Infrastructure & Platforms	Hosting Services
Shared Services & Platforms	Infrastructure & Platforms	Content Storage: Cloud + On-Premise
Shared Services & Platforms	IT Service Management	IT Service Operations Management
Shared Services & Platforms	Administrative and Business	IT Administration/Overhead (incl. personal development)
Shared Services & Platforms	IT Service Management	Process Improvement/Coordination
Shared Services & Platforms	Administrative and Business	Budget Management
Shared Services & Platforms	Infrastructure & Platforms	Network/Connectivity Services (incl. cabling, add/move/change, etc.)
Shared Services & Platforms	IT Professional Services	Partner Service Coordination (Systems Office/MinnState, WSU, UofM, MPOP, etc.)
Shared Services & Platforms	End-Point Computing	Desktop Management/Image Management
Shared Services & Platforms	End-Point Computing	Mobile Device Management (MDM)
Shared Services & Platforms	IT Service Management	Assets/Inventory Management
Shared Services & Platforms	Infrastructure & Platforms	Refresh Management

Top Service Requests

- 1 Office 365
- 2 Star ID
- 3 Email
- 4 D2L Brightspace LMS
- 5 Zoom Video
- 6 PaperCut Printing
- 7 WiFi
- **8 Classroom Support**
- 9 Telephones and Mobile Devices
- 10 Data and Reports
- 11 Document and File Storage and Sharing
- 12 Software Help
- 13 Hardware Repair
- 14 Virus & Malware Removal
- 15 Events Support and Management

Technology Services for Students

- E-Mail
- D2L Brightspace
- One Drive File Storage
- Office365 / Adobe Software
- Computer Labs / Schedules
- WiFi Access
- Printing

- La Technology Checkout
- Multi-factor Authentication
- Computer Recommendations
- Zoom / Video Collaboration
- in Linkedin Learning

 - Anti-Phishing Tips

Appendix F – RCTC Strategic Plan

STRATEGIC PLAN 2024 Pathways to Success

GOAL ONE STUDENT SUCCESS

Improve student retention and completion by increasing access to learning opportunities, leveraging educational technology, enhancing support services and resources, and strengthening pedagogy and curriculum.

- Strategy 1: STUDENT SUCCESS PLANNING: Create processes, structures, and opportunities for students to successfully plan and achieve their educational goals in a timely manner.
- Strategy 2: FLEXIBLE AND ACCESSIBLE EDUCATION: Expand access through high-quality online learning, flexible scheduling, and alternative pathways to fit the needs of students
- Strategy 3: SUPPORTING LEARNING: Implement integrated institutional practices, technology, and services aimed at supporting student learning and improving student outcomes.
- Strategy 4: ASSESSMENT OF STUDENT LEARNING: Further cultivate a culture of assessment to better
 understand how students learn and use assessment results to improve teaching and learning inside and
 outside of the classroom.

GOAL TWO

INSTITUTIONAL SUSTANABILITY

Ensure the College's offerings, functions, and processes are sustainable and responsive to the evolving needs of internal and external stakeholders.

- Strategy 1: ADVANCE A CULTURE OF CONTINUOUS IMPROVEMENT: Institution-wide commitment to
 foster systematic processes for assessing, evaluating, measuring, and communicating RCTC improvement
 efforts.
- Strategy 2: BOLSTER AN EXCEPTIONAL TEAM OF EMPLOYEES: Recruit talent and further develop staff
 and faculty to meet the changing needs of students and stakeholders.
- Strategy 3: EFFECTIVE PLANNING & ALIGNMENT: Realize RCTC's Mission through a meaningful planning
 process that aligns resources with the College's strategic priorities.
- Strategy 4: ENSURE INSTITUTIONAL CONTINUITY: Establish structures and processes that ensure
 continuity of services and processes that impact the ability to serve students and constituents.

GOAL THREE

DIVERSITY, EQUITY, & INCLUSION

Promote equity and inclusion across the institution by increasing cultural competency, culturally responsive pedagogy and service, and partnering with community organizations.

- Strategy 1: FOSTER A CULTURE OF EQUITY AND INCLUSION: Implement a dynamic equity and inclusion
 plan that integrates equity minded strategies across all institutional divisions.
- Strategy 2: EQUITY IN STUDENT OUTCOMES: Ensure equity in student experience and success by applying the lens of Diversity, Equity & Inclusion (DEI) to institutional academic and non-academic services and functions.
- Strategy 3: FURTHER DIVERSITY ENGAGEMENT: Expand resources, opportunities, and infrastructure to better understand and engage diversity, in efforts to impact the experiences of students and employees.

GOAL FOUR

CAMPUS AND COMMUNITY ENGAGEMENT

Promote campus and community engagement that fosters collaborative relationships which mutually benefit the College, our students, partnering organizations, and the economic vitality of the region.

- Strategy 1: GROW EXTERNAL COLLABORATIONS: Establish collaborations and relationships with external
 partners that bring value to the College and favorably impact the experiences of students, faculty, and staff.
- Strategy 2: GROW INTERNAL COLLABORATIONS: Establish internal collaborations that build collegial
 relationships in order to better serve the needs of students and employees.
- Strategy 3: PARTNER TO MEET THE NEEDS OF STAKEHOLDERS: Ensure the College's educational
 offerings serve the best interests of students and needs of the community through engagement of external
 constituents.
- Strategy 4: ADVANCE THE COLLEGE'S SERVICE TO, AND PRESENCE IN, THE COMMUNITY: Active
 engagement of faculty, staff, and students in the community.

MISSION | Rochester Community and Technical College provides accessible, affordable, quality learning opportunities to serve a diverse and growing community.

VISION | Rochester Community and Technical College will be a universal gateway to world-class learning opportunities.

https://www.rctc.edu/about/strategic-and-master-planning/

Appendix G – RCTC Master Academic Plan Strategic Priorities (2020)

- I. Increase opportunities to enhance student success.
- II. Enhance teaching effectiveness and promote continuous quality improvement.
- **III.** Create state-of-the-art **teaching and learning environments**.
- **IV. Align curricular portfolio** to meet the educational, economic, and workforce needs of the community we serve.
- V. Expand private partnerships and create innovative business/industry alignments to generate greater synergies and alternative funding sources.
- VI. Create a structure and support mechanisms to provide comprehensive **faculty and staff professional development** opportunities.
- VII. Expand community outreach, communication, and marketing efforts and opportunities.

Appendix H – Minnesota State Information Technology (IT) Strategic Plan

Goal 1:

Develop an **enterprise IT organization** that anticipates our changing environment and facilitates quality of service and improved relationships with our customers.

Goal 2:

Develop and implement **enterprise IT architecture** that responds to changing conditions and new opportunities.

Goal 3:

Improve the organization's (system office and campuses) capability to use **analytics** to help drive critical system/institutional decisions and outcomes.

Goal 4:

Enhance **risk management and information security practices** to protect system/institutional IT resources/data and respond to regulatory compliance mandates.

Goal 5:

Support innovation in teaching and learning

Appendix I – Educause – Top IT Issues 2021 (Transitioning during COVID)

RESTORE 🦰	EVOLVE	TRANSFORM
#1. Cost Management Reducing institutional costs and increasing workforce effciency	#1. Student Success Advancing student support services to help students attain academic and career goals	#1. Institutional Culture Contributing to a culture of transformation
#2. Online Learning Strengthening online and hybrid education	#2. Equitable Access to Education Providing technologies, support, and policies for diverse users	#2. Technology Alignment Identifying and applying sustainable digital strategies and innovations
#3. Financial Health Revising budget models and IT governance	#3. Online Learning Progressing from emergency remote teaching to online learning	#3. Technology Strategy Developing an enterprise architecture that keeps pace with strategic change
#4. Affordability & Digital Equity Providing increased support for students' technology needs and enabling technology availability	#4. Information Security Developing a cybersecurity operations strategy	#4. Enrollment & Recruitment Exploring and implementing creative holistic recruitment solutions
#5. Information Security Providing information security leadership	#5. Financial Health Partnering to develop new funding sources	#5. Cost Management Focusing on digital transformation

Appendix J – Gartner – Top Technology Trends 2021 and 2022

Top Higher Education Technology and Business Trends for 2021

Student Experience	Sustainability	Scaling the Change	New Normal
Alternative Credentials Corporate Collaboration	Enigmas of Enrollment Tuition Tensions	Changing Role of CIO Online Everywhere	Online Productification COVID-19 Campus
Esports Virtual Experiences	International Students Low-Code Applications	Cloud Now Chatbots	Hybrid Everything Remote Proctoring
Cross-Life-Cycle CRM	Cyberthreats	Hybrid Classrooms	Faculty Info, Systems

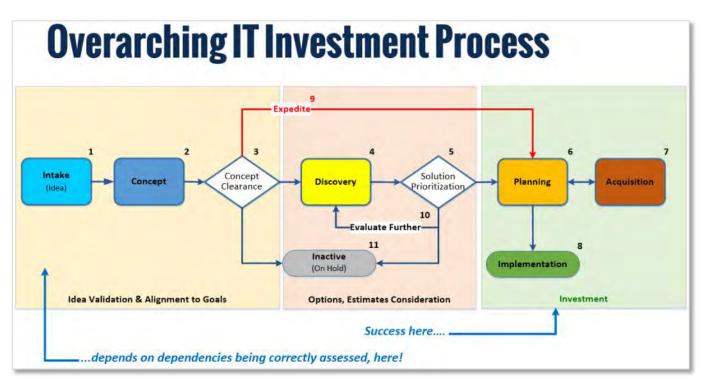
Top Strategic Technology Trends for 2021

People Centricity	Location Independence	Resilient Delivery
 Internet of Behaviors Total Experience Privacy-Enhancing Computation 	Distributed CloudAnywhere OperationsCybersecurity Mesh	 Intelligent Composable Business Al Engineering Hyperautomation

Combinatorial Innovation

Top Strategic Technology Trends for 2022

Accelerating Growth	Sculpting Change	Engineering Trust
Generative AIAutonomic SystemsTotal ExperienceDistributed Enterprise	Al EngineeringHyperautomationDecision IntelligenceComposable Applications	Cloud-Native PlatformsPrivacy-Enhancing ComputationCybersecurity MeshData Fabric


Source: Gartner 757234_C

Appendix K¹ – IT Investment Process

All IT investments must **follow a disciplined, rigorous process** to ensure that what we do is going to generate value and not be a waste of time, waste of funds and distract our employees. This type of process minimally involves: (a) developing an idea into a concept or business case that aligns to our overarching goals, strategies, architectural roadmaps and standards; (b) identifying key dependencies, such as, time, costs, people's involvement; (c) evaluating the information to make a decision; (d) conducting research or developing prototypes if necessary to assist with making the final decision; (e) prioritizing in the context of all other work, projects and initiatives that are underway; (f) developing a plan; (g) following approved procurement guidelines; (h) implementing using sound project management and change management approaches. The below image shows this approach in a simple flowchart.

Some of the key requirements for successfully executing IT investments include:

- 1. Projects and enhancements must be reviewed, approved, and prioritized by the IT Investment Committee, in the context of all active assignments, before they become a work item for IT.
- 2. Ownership of solutions must have both: (a) functional owners (including executive sponsorship) those that need the solution to further their operational activities and will ensure the use of the solution long-term; and (b) technical owners those that will ensure that the solution is up to date and fully functional/working technically.
- 3. Projects must have a start and end period. Projects cannot be in a 'continuous development' (never-ending) state; however, release cycles can be used to accommodate on-going need for enhancements.

Appendix K² – IT Investment Principles

All IT Principles are designed to help RCTC achieve its **mission** in a consistent and effective manner, increasing focus, reducing confusion with all stakeholders, and reducing waste (time and funds).

Principle 1: Information is a Strategic Asset, Owned by the Enterprise

RCTC's operations centers on knowledge. The College shall **manage information as a strategic, enterprise-wide asset and resource** (vs. silos), using best practices in architecture, data management, application design, security, and technology integration.

RCTC shall invest in IT assets necessary to **effectively communicate** with its varied stakeholder groups including students, families, faculty, staff, businesses, and other partners.

Principle 2: IT Investments will be based on the needs of the Enterprise

RCTC will evaluate potential IT investments with an **enterprise perspective**, seeking where possible to leverage investments to **avoid silos and redundant expenditures**, increase sharing and maximize the Return on Investments (ROI) and seek broader, integrated solutions.

RCTC will establish IT plans and evaluate IT investments within established best practices in **IT Architecture for educational institutions**, to promote coordination and enhance prospects for maximizing funding and standardize services and processes, while also addressing specialized requirements.

RCTC will assist staff **improve business operations** and effectively meet their client and stakeholder needs through well planned IT investments and services that includes an integrated solution of functional processes plus technology.

RCTC employs the "Build Once, Reuse Often" strategy, where application and data strategies and designs will, when feasible, follow an encapsulated, component-based, interoperable, service-oriented architecture, resulting in solutions being implemented/built once, reused often, and maintained efficiently and easily over time. Services are built on standard architecture and integrated with other core services for increased ability to exchange and share information.

To the extent possible, RCTC will leverage **shared**, **commercial**, **and existing** solutions and deploy technology using an "**Out of the Box**" configuration strategy; deviations, customizations and modifications will need business justifications with appropriate Return on Investment (ROI) analysis.

RCTC Budgets will not employ a "Use-it or Lose-it" approach. College functional areas will not be **penalized** for not using their allocated funds within a designated timeframe. Instead, functional areas will be incentivized to be stewards of their allocated funds and update and adjust plans, taking into consideration strategic needs and the associated funding required to support them.

Principle 3: IT Services are Coordinated through a Central Organization

The foundation for RCTC Information Technology operations is a comprehensive **central organization**, responsible for the College's IT Architecture, which works in close cooperation with individual business functions providing excellent customer service.

IT services provided shall be customer/user friendly, reliable, flexible, accessible, secure, and responsive to current and emerging needs.

To the extent possible, RCTC will implement technology with "Self-Service" capabilities to increase client, stakeholder, and functional areas' ability to perform activities on their own expediting operational changes and requiring minimal support.

Principle 4: IT Management Shall Foster Innovation through a Disciplined and Agile Process

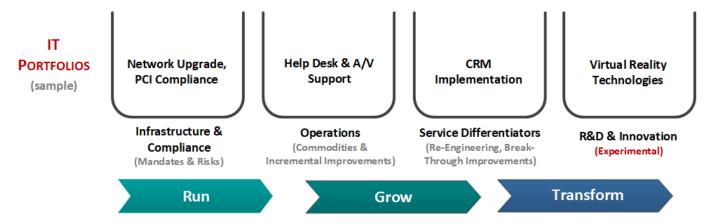
RCTC shall operate within an **established**, **integrated**, **and collaborative governance process** for IT investments across all functional areas, divisions, departments and the college, with defined project identification, prioritization, and escalation processes.

All IT investments will be effectively managed through the **application of best practices in project management**, with the goal of increasing transparency, accountability and achieving project benefits on time and within budget.

As stewards of public resources, all IT investments will be carefully assessed to verify that expected benefits will be realized and are worth the costs i.e., **Total Cost of Ownership** (TCO) and **Return on Investment** (ROI) analysis.

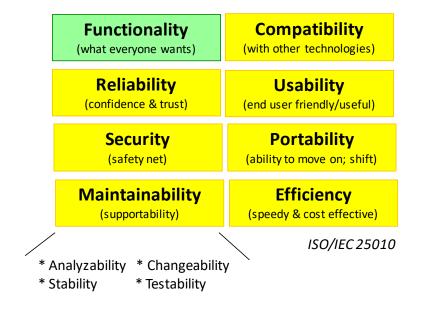
Innovation and emerging technologies (R&D) are encouraged in a disciplined context, needing to be evaluated, piloted, and pursued as appropriate to ensure that RCTC's workforce remains productive, nimble, and responsive to changing needs while the IT environment remains stable and supportable.

Appendix K³ – Run-Grow-Transform mapping to 4 IT Portfolios Management


Portfolios are groupings of work where the decision criteria between each portfolio is slightly different because of the nature and type of work. Also, each portfolio falls into different categories of activities and investment levels that must be supported by the organization, for instance, using the **Run-Grow-Transform** model, the **sequence** of thinking about technologies must follow this pattern:

- 1. Operational times must be maintained to keep the organization working **Run**.
- 2. Existing capabilities may be expanded to enhance current service capabilities **Grow**.
- 3. New capabilities may be implemented that create new, innovative approaches **Transform**.

Within the Run-Grow-Transform model, there are four (4) primary governing portfolios of work assignments/projects that we must manage:


- 1. *Infrastructure/Compliance/Mandates* what we HAVE to do; cannot ignore.
- 2. *Operations* Keep the Lights On (KTLO), sustaining what we *already have*.
- **3.** *Service Differentiation* New/emerging/breakthrough improvements in core business services and functions; growing our ability to do *new* and better things.
- **4.** *Innovation/R&D* Experimental and high-risk efforts that are not proven, but are worth trying, to a limited degree, so that we can determine if they could meet our needs and bring in new ideas.

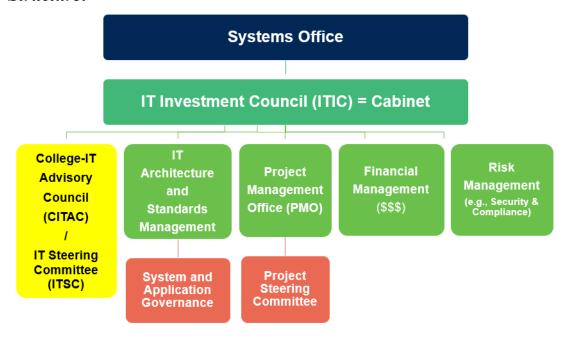
Appendix K⁴ – Technical Debt

Definition: "Technical debt is the deviation of a technology from <u>non-functional</u> requirements."

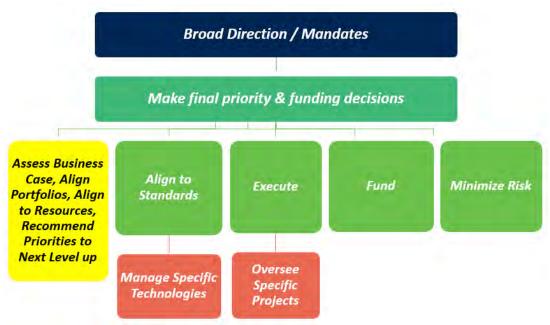
• Nearly all the dissatisfaction and disappointment ("Pain") with current technology stems from failure to meet **non-functional requirements** – the things we try to <u>skip and deal with later</u> (or never do) that <u>contribute</u> to the desired service <u>quality</u>. (For instance, in the image¹¹ below, all the yellow highlighted components are non-functional requirements.)

 Hence, we must balance functionality requirements against non-functional requirements, <u>both</u> must be addressed to get the best experience and ensure sustainability.

¹¹ ISO/IEC = International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC). Together, the two organizations work to develop, maintain, and promote standards in the fields of science and technology.


Appendix L – RCTC Refresh Period Standards based on Policy #5.13.1

Device type	Refresh after (~period/~timeframe)
"Front-End" l	
Desktop Computers (Windows & Macs) (including any Thin Client/Cloud Computers/Dumb Computers)	5 years (~1/5 of inventory-20% per year)
Laptop/Notebook Computers (Windows & Macs)	4 years (~1/4 of inventory-25% per year)
Dual mode devices (hybrid tablets, iPads, etc.)	4 years
Printers/Copiers/Multi-Function Devices (MFD)	As needed, once device starts to break-down (7+ years). Currently on: 5-year lease, w/ 2-year extension.
Computer Monitors	As needed, when they fail. (or 6+ years)
Audio/Visual Equipment ("Room" upgrades)	6 years if required – less if they fail to meet defined business standards or dependent on vendor support
Digital Signage	 5 years 7 years if required – less if they fail to meet defined business standards or dependent on vendor support As needed, once device starts to break-down (6+ years). Not part of refresh – covered out of individual
Standard Productivity Software that typically come with any computer (e.g., Operating Systems, Browsers, MS Office Suite, etc.)	department budgets. To current version of software implemented as standard. (Previous versions with approved justifications.)
"Back-End" I	Devices
Infrastructure, VDI (virtual desktop infrastructure)	5-7 years
Servers / Storage Infrastructure	5-6 years
Load Balancers / Firewalls	5 years
Telephone Trunk Platform (Session Initiation Protocol-SIP)	5 years
Network Infrastructure (e.g., core, aggregation and edge switches, controllers)	5-6 years
Campus LAN (WAN): • Fiber • Copper Wi-Fi: Wireless Infrastructure (indoor & outdoor) 3-Phase UPS (Uninterruptible Power Supply) Systems (in Data Centers) – Comprehensive Upgrade 3-Phase UPS System (in Data Centers) – Battery Replacement 3-Phase UPS System (in Data Centers) – Power Module / Power Supply / Intelligence Module Replacement Smart UPS (Uninterruptible Power Supply) System (in Communication/Data Closets) – Comprehensive Upgrade Smart UPS System (in Comm. Closets) – Battery Replacement Smart UPS System (in Comm. Closets) – Power Module / Power	15 years As needed, as part of a facility remodel/upgrade 5-6 years 10-12 years (Designed life is 10 years when operating at maximum specifications; well-maintained systems should continue to provide reliable protection well beyond 10 years) 3-5 years (under normal operating conditions) 7 years (under normal operating conditions) 7-10 years 3 years (under normal operating conditions)
Supply / Intelligence Module Replacement	5-6 years
Data Center HVAC Systems	15-20 years (with regular maintenance)
Network Closet HVAC Systems	12-15 years (with regular maintenance)


Refresh after (~period/~timeframe)
Labs, Peripherals and Technologies
5 years – paid by programs
5 years – paid by programs
4 years – paid by programs
6 years – paid by programs
3 years – paid by program; as an option, could consider, cascading high-end computers down after 2 years
(not part of IT's "Refresh")
20+ years
5-7 years (with regular maintenance)
 5-6 years 5-6 years 5-7 years 10 years 5-7 years

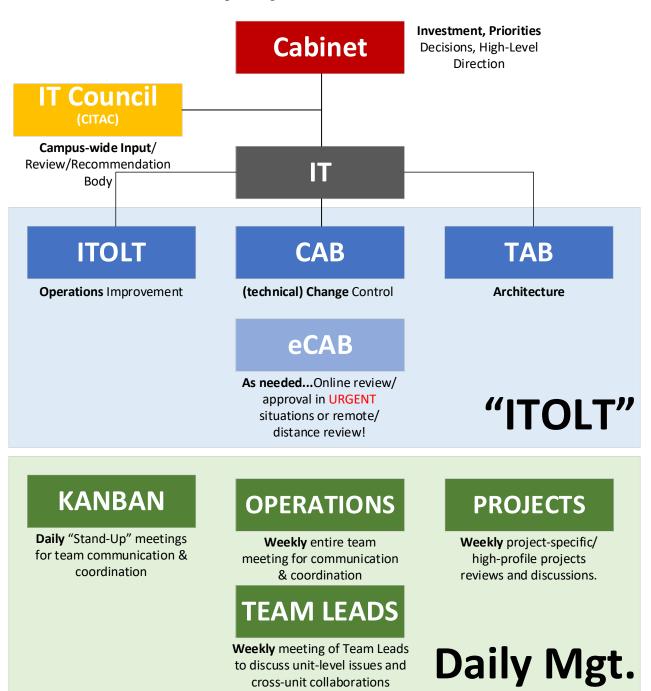
Appendix M¹ – IT Governance Structure & Responsibilities (External Facing)

Structure:

Responsibilities:

1. The President's Cabinet, functions as an **IT Investment Council**, approves final business cases for projects and allocates funds to support them. This group's primary responsibilities are to: (a) set the College's priorities, (b) make better College-wide investment decisions, (c) ensure an integrated, cross-functional participation on key projects, (d) raise the awareness and increase the transparency on active or tentative projects.

2. The next layer is the operational advisory group called, the College-IT Advisory Council (CITAC) or IT Steering Committee, which evaluates project requests, compares and contrasts business cases for projects and recommends moving forward with investment decisions, stopping a low-value effort or putting a project on hold. Supporting the College-IT Advisory Council are a set of operational functions that perform key activities that enhance and provide information to the Council for assessment and decision.



- 2.1. **IT Architecture and Standards Management** ensures that the technical architectural issues surrounding projects has been considered.
- 2.2. **Project Management Office (PMO)** ensures that project requests have legitimate business cases, they are aligned to the College's goals, the technical assessment of the projects has been completed, tentative solutions follow established policies and standards, and information is available to the governance Councils to make an advisory or final decision.
- 2.3. and 2.4 **Financial Management and Risk Management** are two other key functions for consideration, ensuring that projects are (a) funded and (b) any compliance and vulnerability issues for the project have been taken into consideration.
- 3. The last layer is the day-to-day system or software application operational governance structures and project-specific steering committees to support, large, multi-functional, mission-critical system, application or project. At this level, the focus is on the complex workings of a one particular system, platform or application across the stakeholder community e.g., the LMS.

Appendix M² – IT Governance Structure & Responsibilities (Internal Facing)

IT's internal governing structures consist of the IT Operations Lead Team (ITOLT), which performs several functions: (1) operations improvements within IT, (b) acts as a technical Change Advisory Board (CAB), and (c) as the Technology Architecture Board (TAB).

In addition, IT has several operational management structures to ensure that day-to-day issues/needs, communication, and coordination are occurring effectively. Some of these structures are invoked on an *as-needed* basis, depending on the circumstances.

Appendix N – Standard Resource Allocation Model

To effectively plan for work and project assignments, it is important to understand how a 1.0 IT FTE's staff time is distributed across 2,080 standard hours of pay per year.

Standard Resourcing Model

Factor		anent aff	Notes	
Total Hours in a Year	2	,080	52 weeks x 40 hours	
Vacation	-	120	3 weeks	
Holidays	-	80	10 days	
Sick Leave	-	56	Estimated 7 days	
Mandatory Meetings/Events	- 1	32	Estimated 4 days	
Training & Professional Development	- 80		With rapid change of technology, need to develop people (2 weeks/year)	
Continuous Process Improvements, Team Development & R&D	- 78		~ 1.5 hours per week of testing new ideas, fixing issues for the longer term; brainstorming	
Administrative Overhead	- 52		~ 1 hour per week (ad-hoc issues, time reporting, etc.)	
Total Available Hours:	1	,582		
Percent of Total Hrs.:	7	6%	Available capacity of Staff	
Hours per week:	^	′30		
Available Work Weeks:	4	10	Full-Time (40 hours/wk)	
Operations/Project %:	60%	40%		
Total Available Hours Split:	urs Split: 949 633		FTE time available over 52 week	
W/in 52-Week Partial Hours:			timeframe.	
W/in 40-Week Full-Time Equivalent Hours:	24	16	Project or Contractor time is as needed for staff augmentation.	

Appendix O – Human-Factor Change Management using ADKAR Model

All organization projects, IT and non-IT, have to ultimately be adopted and used by the people of the organization. Without this adoption, the intended and desired outcomes will never be realized. Therefore, RCTC-IT will use the Prosci ADKAR Model as a guideline to ensure that all technologies implemented have the appropriate human-factor change management to increase adoption within the institution.

AUI AUI	KAR* Model		
ADKAR element:	Definition:	What you hear:	Triggers for building:
Awareness	Of the need for change	"I understand why"	Why? Why now? What if we don't?
Desire	To participate and support the change	"I have decided to"	WIIFM Personal motivators Organizational motivators
Knowledge	On how to change	"I know how to"	Within context (after A&D) Need to know <i>during</i> Need to know <i>after</i>
Ability	To implement required skills and behaviors	"I am able to"	Size of the K-A Gaps Barriers/Capacity Practice/Coaching
Reinforcement	To sustain the change	"I will continue to"	Mechanisms Measurements Sustainment

Change Management Tools	A Awareness	D Desire	K Knowledge	A	Reinforcement
1. Communication Plan					
2. Sponsor Roadmap		•			
3. Coaching Plan		•			
4. Resistance Management					
5. Training Plan				•	
Documentation (knowledge base)			•	•	•

Appendix P – Sample Lists of Technologies per College Domains

College-Wide Sample	Academic Technology Sample	Student Services Technology
 Technology List Office365, Zoom, etc. Classroom Emergency Call/Phone System – FreePBX Print Services/Print Accounting (PaperCut) Parking Lot Emergency Call System - Code Blue Building Utility System – UHL Automated Call Attendant – Nuance Key Management System – KeyStone Messaging System (Tightrope) Eduroam, Airtame, AirMedia Blackboard Emergency Alert system (all-campus alert) Fire Alarm System - Custom Alarm Building Access Control System/Physical Security System - RS2 For Foundation: AwardsSpring (scholarships), Quickbooks (finance), ResultsPlus (donors) 	 Technology List Academic Program Review (APR) Faculty Assessment Rubric ePortfolios for Assessment Faculty Activity Report Institutional Research (IR) Data Management (Precision Campus) LMS-D2L Support Early Alert (AdvisorVue) Electrician program tools GlowForge - 3D Printer for Art TurnitIn LinkedIn Learning Lockdown Browser Proctoring Monitor, etc. support Labs Support: Simulation (B-Line), V/R, CAD, A&P (not part of vendor service contracts) Closed Captioning Support Eduroam, Airtame, AirMedia Classroom Technologies and A/V Support ISRS/NextGen Support Production Studio Support Training on Technology for Faculty Automotive – Electude PAIR Networks - Art & CS use for web development LAWE – CrimeZone TaskStream - Assessment & Accreditation Planning 40+ Academic Technologies (see SCCM/Monkey for list) Etc. 	 uAchieve/DARS (Degree Review) Maxient - student discipline management Hobson's CRM for Enrollment Management AdvisorVue (Early Alert) Proctoring Solution ISRS/NextGen Support Admissions Letter System EMR Support Book Deferment – FA Chat Disability Services/ADA-compliance tools eForms Support Document Imaging ReadSpeaker Support for Disability Services ID Card System AdvisorVue/Early Alert System TRIO Early Intervention Reports Support Etc.

Appendix Q – Healthcare "First Responder" Analogy – Need for *Emergency* Services

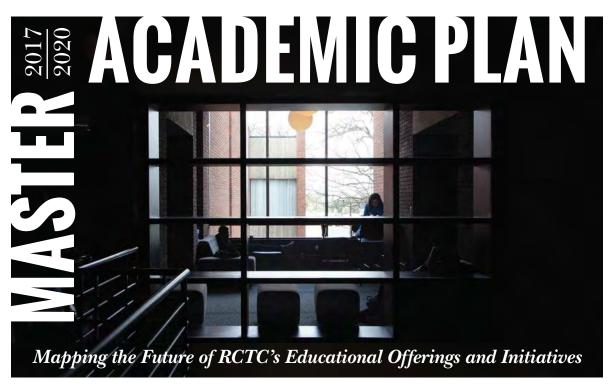
"911" services require immediate response, but to a very acute set of needs/circumstances, with limited capabilities to solve all healthcare related problems. Escalation of needs must occur to emergency rooms (ERs) and/or hospitalization, for long-term problems/ issues. Some services can never be solved through a "911" call, for instance, an organ transplant, these must be planned and handled by more mature hospital processes and specialized doctors. Also, prevention is key! It is important to avoid calling "911" by being proactive and planful – getting routine checkups, being educated on dos/ don'ts, exercising, having good nutritional habits, etc.

Appendix R – IT Primer Guidelines for RCTC Staff to Use IT

IT PRIMER GUIDELINES - CHEAT SHEET V. 1.0 (5/6)/2021

PURPOSE: This document is created as a quick-reference guide to using technology services at the College. This document is intended to provide the key guidelines to <u>ask for, get and use technology</u> at the College – it is meant to reduce confusion and increase clarity. The topics here are important and are usually things that people either forget or do not know how to interpret.

	HOW TO START A REQUEST FOR SERVICE I.E., GET THINGS?
SUBJECT:	INTAKE AND REQUESTS FOR SERVICE
GUIDELINE:	If you have a need, please submit your request, preferably in the form of a problem or need that you want to fulfill (rather than a specific tool or pre-defined solution) to IT at tech.help@rctc.edu or call 507-536-5555 (especially time-sensitive, urgent, and emergency needs). This will allow us to take in the request, prioritize, do some research or follow-up work, identify options including if we already have a tool or solution that meets the need, and then collaboratively, come to some conclusions.
SUBJECT:	PROJECT INITIATION (Projects tille more complex set of tasks that take up mare time e.g., > 40 hours, money and people.)
GUIDEUNE:	All ideas and projects should be supported through a reasonably defined 'business case' that defines: (a) what it is, (b) what value it provides, (c) what are the resourcing needs – time, people, money, (d) what are the one-time and on-going costs to both implement the project and keep it going operationally. DO NOT BUY FIRST, THEN PLAN!
	Also, upfront, you MUST involve/include key areas and people who will enable and support the work to ensure (1) that they understand the need, (2) they can provide 'technical' input/feedback that ensures the quality and success of the solution, and (3) later on, there is buy-in and commitment for resource assignment & timeframes.
SUBJECT:	INNOVATION AND RESEARCH & DEVELOPMENT (R&D) PROJECTS
GUIDELINE:	Innovation projects are like any other project ; however, they may be <u>faster paced</u> , the <u>risks and benefits</u> can be higher, they need to be <u>segregated</u> from operational environments due to <u>risks</u> , the investment of time and funding could be <u>throwaway</u> due to the increased likelihood of <u>failure</u> , <u>learning</u> is a key goal, there is a <u>cost</u> and level of <u>effort</u> required to <u>transition</u> from innovation to operations; it does not happen automatically!
SUBJECT:	EVENTS COORDINATION AND MANAGEMENT
GUIDEUNE:	Events are small-scale projects: (1) ensure all resource needs for events are identified (space, technology, etc.); (2) make sure that service areas have enough lead time to schedule & provide the support, ideally 2-week notice; (3) make sure that any 3 rd party services provided by anyone outside of RCTC has been coordinated — <u>critical</u> note: IT may need to know technology specific information to allow equipment to connect into the network, etc.


SUBJECT:	SERVICE LEVEL OBJECTIVES FOR RESPONSE AND RESOLUTION OF DEGREE OF PROBLEMS							
GUIDELINE:	Priority Calculation Matrix					Priority Level	Team Response Time	Resolve Time
			IMPA	CT		1 - Critical	15 Minutes	4 Hours
	URGENCY		High(1)	Med(2)	Low(3)	2 - High	1 Bus Hour	8 Bus. Hours
		High(1)	17	2	3	3 - Medium	8 Bus hours	2 Bus Days
		Medium(2)	2	3	4	4 - Low	2 Bus. Days	7 Bus. Days
		Low(3)	3	4	5	5- Planning	5 Bus. Days	14 Bus. Days
	Table 1: Priority Calculation					Table 2: Fesp	inse and Resolution Ser	vice Level Targets

SUBJECT:	"PRIORITY 1" SERVICE-LEVEL PROCESS FOR OFF-HOURS SUPPORT
GUIDELINE:	Priority 1 incidents are mission-critical systems that are down, key services cannot be provided and there are no alternatives. Only Priority 1 incidents warrant calling in people from home, at night or during the weekend to restore services. Protocol for "P1"s are: (1) determine if the need is critical enough to warrant calling people in and if the delay in time either to the next business day or until the technician comes to campus (considering transportation delays) can be absorbed, (2) call your respective manager to confirm the need, (3) receive permission from your respective areas VP to call people in for support, (4) contact IT.

HOW TO BUY/USE THINGS LEGALLY AND WITHIN COMPLIANCE?			
SUBJECT:	PURCHASING, LICENSING AND CONTRACTING		
GUIDELINE:	As an institution, we are expected to follow licensing requirements that are established for us, through the State, MnSCU or via our own institution. We cannot use technologies that are not licensed to our institution. Personal use and Business uses are different things, that come under different licensing and terms of use requirements.		

IT PRIMER GUIDELINES - CHEAT SHEET 1.0 (5/6/1021)

	IT PRIMER GUIDELINES - CHEAT SHEET 1.0 (5/6/1021)
	Please follow the statewide <u>procurement procedures</u> that requires security reviews, legal reviews, etc. which can take 2-6 weeks, <u>before</u> making contractual arrangements with a vendor. Also consider FERPA and MGPDA regulations. Critical Note: 80% of IT costs occur <u>after</u> purchase! [source: Gartner Research]
SUBJECT:	STANDARD COMPUTER/HARDWARE SPECIFICATIONS TO CONSIDER BEFORE BUYING
GUIDELINE:	Look on the Technology Internet site: https://www.rttc.edu/services/technology/computer-recommendations/
	HOW TO FIND WHAT WE ALREADY HAVE?
SUBJECT:	SOFTWARE LIBRARY: NEED SOFTWARE, DON'T KNOW WHAT'S AVAILABLE?
GUIDELINE:	Look in "Software Center" for PCs and "Managed Software Center" for Macs If you don't find what you need, follow the "Intake and Request for Service" guidelines above.
	HOW TO STAY SAFE?
SUBJECT:	SECURITY IS EVERYONE'S RESPONSIBILITY
GUIDELINE:	Daily work, as well as any arrangements with third parties, requires that a data/security/privacy assessment be conducted to prevent potential data loss, theft, or breach. Ensure that you are conscious of emails/phishing approaches and attempts. Contractual arrangements should be mindful of student or employee data legalities.
	IMPORTANT AWARENESS ISSUES — RULES TO LIVE BY!
SUBJECT:	DATA OWNERSHIP a.k.a. "DATA STEWARDSHIP"
GUIDELINE:	Data ownership is the responsibility we all have for the <u>data that we create or access</u> or use in the institution FUNCTIONAL OWNERSHIP: business or functional data is owned by functional areas, for example, registration of students and records – is owned by the Registrar's Office; grades are owned by the faculty. TECHNICAL OWNERSHIP: technical data is owned by IT, for example, network IP addresses, system administration passwords, etc. Note: a student's social security number or grade, in a database, does not make it technical data.
SUBJECT:	PROCESS OWNERSHIP
GUIDELINE;	Process ownership is the responsibility we all have for the management and maintenance of certain key <u>activities</u> . "WHAT": Functional/business areas own and are responsible for the <u>processes, needs and requirements</u> related to the <u>activities</u> that they perform to support various services, e.g., registration process, book sales process, etc. "How/DESIGN": IT owns and is responsible for the <u>technology or automation architecture</u> to provision the required services in the most effective, efficient manner using technology or automation, e.g., a cloud database
SUBJECT:	SYSTEMS OF RECORD
GUIDELINE:	A System of Record is an application, software, or database that stores the original form of transactions and data. A System of Record is the "master" source for current and updated information. If data is pulled from a System of Record for other uses, the data pulled must be refreshed on a regular basis for it to continue to be relevant. WARNING1: Do not modify data outside of the System of Record and create another "source" of data, unless it is for a "one-time" use e.g., for a report. WARNING2: If data is being collected via forms, surveys or other means, make sure consideration is given to whether the data should be stored/updated in the "System of Record", e.g., updating ISRS records for employees/students based on a survey of key performance metrics, for instance, assessment/diversity.
SUBJECT:	EMPLOYEE IT ONBOARDING / IT OFFBOARDING
GUIDELINE:	When possible, develop a plan with the employee, <u>HR</u> and IT <u>before they start/leave</u> . (a) develop a transition plan of key activities, (b) ensure information/documents are kept/backed up in central repositories, (c) define "autoforwarding" and "out of office" criteria, (d) ensure ID badges, keys, equipment are logged/given/received.
SUBJECT:	ACCESS TO RESTRICTED/SENSITIVE SPACES/AREAS
GUIDELINE;	Access to Communication/Data Closets and the Data Center is <u>restricted</u> and requires: (a) IT to be made aware ahead of time that access is needed, (b) the time of entry must be scheduled, (c) in some instances the work required in these areas may have to be overseen/monitored by an IT staff person.
8 BAD DESIGNS:	(1) Manual Re-Keying of Data, (2) Collection of Single Solutions vs. Integrated Solutions, (3) Redundant Applications doing Similar Things, (4) Copies of Data Stored in Multiple Locations, (5) Too Many Interfaces, (6) Customization & Complex Integrations, (7) Workarounds and Shadow Systems, (8) Obsolete Technology.

EXECUTIVE VICE PRESIDENT'S MESSAGE

"The future belongs to those who prepare for it."
- RALPH WALDO EMERSON

Dear Colleagues,

For 100 Years Rochester Community and Technical College has provided high-quality educational and technical training opportunities for Rochester, the region, and beyond. As community, state and national educational needs continue to evolve, the skills gap between what is needed to drive the U.S. economy and the skills possessed by the available workforce continues to expand. This "Skills Gap" is a concern of epic proportion as it relates to the future economic prosperity of our nation. With the increasing demand for postsecondary education, RCTC's Master Academic Plan, Mapping the Future of RCTC's Educational Offerings and Initiatives, provides the direction for the College's programs and services to meet the community's educational and economic needs.

The following are excerpts taken from the Georgetown University, Center on Education and the Workforce report entitled Recovery: Job Growth and Education Requirements through 2020.

- By 2020, 65% of all jobs in the economy will require postsecondary education and training beyond high school.
 - In Minnesota, 74% of all jobs will require postsecondary education.
- At the current production rate, the U.S. will fall short by 5 million workers with postsecondary education by 2020.
- There will be 55 million job openings in the economy through 2020. Twenty four million from newly created jobs and 31 million due to baby boomer retirements.
- Job openings in healthcare, community services, and STEM will grow the fastest among all occupational clusters.

The strategic priorities identified in RCTC's Master Academic Plan (MAP) support the College's strategic plan, mission and vision. MAP strategic priorities communicate the direction for RCTC's instruction, academic support, student support, information technologies and educational technologies. Information and data provided in this plan are designed to guide the creation of the RCTC's Comprehensive Facility Plan and Master Technology Plan.

The creation of this document, RCTC's first comprehensive master academic plan, was shaped by the Master Academic Plan Steering Committee, a group of dedicated faculty, staff, and administration from across the campus over the course of the 2016 academic year, and finalized in the fall of 2016.

The results of the good work of the MAP Steering Committee and all the faculty and staff who dedicated significant time and effort in the development of this plan will be used in future program and services development, and annual program review processes. I would like to express my sincere appreciation to everyone who worked to create this plan over the past year and to their many years of commitment to student success, Rochester Community and Technical College, and its many stakeholders.

Sincerely

Greg. A Mosier, Ed.D.

Executive Vice President, Academic Affairs

CREATING THE MAP:

Designed to create the roadmap to advance RCTC's institutional mission, vision, and values for the next three years and beyond, the Master Academic Plan provides the foundation for intentional actions to ensure our academic programs and services meet the holistic needs of our students, workforce and community. Four primary goals of the MAP were to:

- 1. Identify external and internal demands to create a portfolio of programs and services to meet current and future student, community, and business and industry needs.
- 2. Develop strategies to increase student learning and success.
- 3. Identify needs for the creation of a comprehensive faculty and staff professional development program.
- 4. Identify campus and instructional technology needs to develop a comprehensive instructional delivery plan that supports innovation and enhances student success.

To begin the process, the MAP Steering Committee researched planning documents from colleges across the country, created the MAP Outline, an Academic Area Planning Tool, and a Student Support Planning Tool to assist faculty and staff across the institution in the creation of their Area MAPs. Campus wide informational sessions were held to answer questions and provide additional guidance about the use of the tools as people began work in their respective areas.

Over the course of the 12 month period, 55 program, discipline, and service Area MAPs were created, grouping areas of like offerings and services into joint reports. Those Area MAP Reports were then consolidated into five Division Summary Reports, which provided the data to create the Institutional Summary.

SIGNIFICANT FACTORS:

To support the creation of a comprehensive plan, all programs, disciplines, and academic support areas analyzed internal and external factors of significance. At the institutional level, the following factors arose as common themes:

INTERNAL FACTORS:

- Highly credentialed and recognized faculty
- Dedicated, long-term faculty and staff
- Multiple program and co-curricular opportunities for students
- Long-held partnerships with business and industry, and educational providers
- 518 acre campus provides opportunities for new programs and services
- Pressures on enrollment and tuition revenue
- Increased demands from developmental and English language learners
- Additional retention opportunities exist for all students and high-risk student populations
- Recent turnover in executive level leadership
- Opportunities to meet unmet institutional needs with realignment of academic divisions
- Opportunities exist for facility, classroom and technology updates

EXTERNAL FACTORS:

- Destination Medical Center (DMC) initiative to invest nearly \$7 billion in downtown Rochester
- DMC anticipated to add 30,000 jobs to local economy, and double local population
- Regional, eight county, growth opportunities with Journey to Growth initiative: Advanced Healthcare, Computer Systems Design and Production, Food Manufacturing, Tourism, Transportation
- Rochester ranked #1 midsize city to live in U.S. (Livability.com)
- Rochester named one of best places for business and careers (Forbes)
- High demand on local workforce
- Rochester unemployment rate less than 3%; effective rate less than 1% (Summer 2016)
- Entry level positions paying \$12-\$17 per hour
- Decreased state funding for higher education

MAP STRATEGIC PRIORITIES:

During the creation of the five Division Summary Reports, the deans from the respective areas carefully examined and evaluated information provided in each Area MAP report and created short- and long-term division goals and deans' priorities. Reviewing this division-level information with the MAP Steering Committee, several overarching themes became evident. This information led to the development of eight Academic Strategic Priorities. Within these eight priorities, a total of 59 goals were identified.

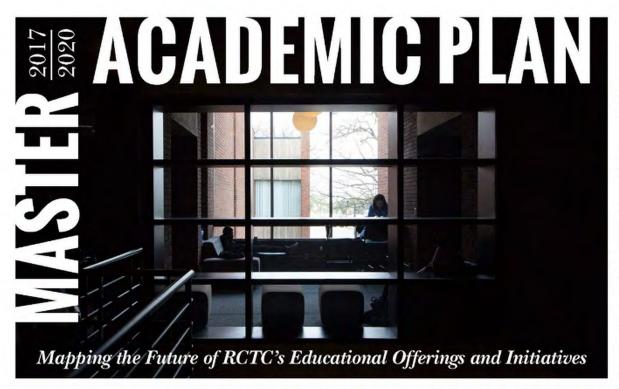
RCTC Academic Strategic Priorities:

- Realignment of academic divisions
- •Increase opportunities to enhance student success
- Enhance teaching effectiveness and promote continuous quality improvement
- •Create state-of-the-art teaching and learning environments
- •Align curricular portfolio to meet the educational, economic, and workforce needs of the community we serve
- Expand private partnerships and create innovative business/ industry alignments to generate greater synergies and alternative funding sources
- Create a structure and support mechanisms to provide comprehensive faculty and staff professional development opportunities
- Expand community outreach, communication, and marketing efforts and opportunities

NEXT STEPS:

To advance the strategic priorities and achieve the goals identified in our Master Academic Plan, RCTC faculty and staff have already moved towards implementation. The realignment of academic divisions is complete and many initiatives have been launched. The creation of this comprehensive plan has provided direction for the College's academic programs and services, and has generated a great deal of energy and excitement amongst the College community.

During the course of the next three years, RCTC will focus on the continued implementation of initiatives to move the concepts identified in this plan to reality. Maintaining a focus and purposeful alignment with the institutional strategic plan, MAP goals will be reviewed on an annual basis, integrated into the annual updating of strategic plan initiatives, and reported upon in annual program reviews.


As RCTC has entered its next Centennial, the College's Master Academic Plan enables the institution to continue its long-held heritage of providing rigorous and relevant educational and training opportunities to meet the ever-changing needs of the Rochester community and the region we serve. RCTC invites all our important stakeholders to read the plan in its entirety at www.rctc.edu/MasterAcademicPlan and help advance the Important work identified within its pages.

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE MASTER ACADEMIC PLAN:

Mapping the Future of RCTC's Educational Offerings and Initiatives

FY 2017 - 2020

OUR MISSION

Rochester Community and Technical College provides accessible, affordable, quality learning opportunities to serve a diverse and growing community.

OUR VISION

Rochester Community and Technical College will be a universal gateway to world class learning opportunities.

OUR CORE VALUES

Learner-Centered
Excellence
Respect
Teamwork
Innovation
Fun

TABLE OF CONTENTS

Acknowledgements	2
Message from President	
Message from Executive Vice President, Academic Affairs	
RCTC Strategic Plan: Vision 2020.	
Minnesota State colleges and universities Strategic Initiatives	
RCTC Institutional Profile.	
Master Academic Plan Vision and Goals.	
MAP Process.	
RCTC Master Academic Plan Institutional Summary	
MAP Division Summary: Liberal Arts and General Education	
MAP Division Summary: Sciences and Health Professions	
MAP Division Summary: Career and Technical Education & Business Partnerships	
MAP Division Summary: Academic Effectiveness and Innovation	
MAP Division Summary: Student Support Services	
Appendix	

ACKNOWLEDGEMENTS

Faculty from all programs and disciplines, and staff from academic and student support departments contributed significant work and input into the creation of RCTC's Master Academic Plan (MAP). This work was led by the Master Academic Plan Steering Committee who created the overall structure of the plan as well as instructional and academic/student support planning tools to help lead the campus community in the development of their individual area MAPs.

Sincere gratitude is expressed to the faculty, staff, and deans who contributed to the development of this plan. Without the efforts put forth by each person in their area MAPs and divisional summaries, the creation of the Master Academic Plan would not have been possible.

A special thanks goes to the members of the Master Academic Plan Steering Committee:

Ginny Boyum, Ph.D. - Dean, Academic Effectiveness and Innovation Jen Bruce – Librarian Veronica Delcourt, Ed.D. - Dean, Liberal Arts and General Education Brian Fors, Ph.D. – Interim Dean, Sciences and Health Professions Safawo Gullo, DVM, Ph.D. – Dean, Sciences and Health Professions David Hansen – RCTC Student Jason Jadin - Chemistry Faculty Lisa Mohr - Dean of Student Success Greg Mosier, Ed.D. - Executive Vice President, Academic Affairs Michelle Pyfferoen − Dean, Career and Technical Education & Business Partnerships Scott Sahs – Chief Information Officer Heather Sklenicka, Ph.D. – Chemistry Faculty Brian Steele - Art/Photography Faculty

Thank you to all members of the RCTC community for your multiple and varied contributions to the development of this plan. With your efforts, RCTC is poised to continue to meet the needs of our students and community. Your time and energy dedicated to this project is recognized and greatly appreciated!

MESSAGE FROM THE PRESIDENT

With implementation of the Strategic Plan Vision 2020: The Next 100 Years underway, Rochester Community and Technical College is ensuring that we deliver the best possible education to our next generation of students. The framework created in the strategic plan facilitates the next steps of integrated planning to connect academic programming, student support, technology and facilities. The interconnected networks further enable student engagement in the learning process. To better navigate these complex systems that drive a successful higher education enterprise, the College has designed its first official Master Academic Plan, or MAP, to deliberately guide RCTC's path forward.

As a result of the dedicated work of the members of the MAP task force along with other internal and external contributors, I am confident that this plan targets academic goals and priorities to drive momentum for delivering on the long-range vision for our future. In addition, the finalization of our master academic plan positions RCTC to move forward with other major plans necessary to support our academic work - the Master Technology Plan and Comprehensive Facilities Plan. These other plans ensure the fiscal, facility, and human resources available at the College are used in alignment with the focus of our mission of providing accessible, affordable, quality learning opportunities to serve a diverse and growing community.

I'd like to thank Dr. Greg Mosier, Executive Vice President, Academic Affairs, for taking the lead on this important initiative; and to the members of the task force (found on page 4 of this plan). Through Dr. Mosier's leadership, and the commitment of the team, the results of their efforts have proven that collaboration is an essential part of any planning process.

As RCTC addresses the scope and complexities of today's students and society through higher education, "Alone we can do so little, together we can do so much." - Helen Keller.

Sincerely,

Mary Davenport Mary Davenport, Ph.D.

Interim President

MESSAGE FROM THE EXECUTIVE VICE PRESIDENT, **ACADEMIC AFFAIRS**

For 100 Years, Rochester Community and Technical College has provided the citizens of Rochester, the region, and beyond high-quality educational and technical training opportunities. As community, state, and national educational needs continue to evolve, the skills gap between what is needed to drive the U.S. economy and the skills possessed by the available workforce continues to expand, the demand for postsecondary education continues to increase. This "Skills Gap" is a national concern of epic proportion as it relates to the future economic prosperity of our nation. RCTC's Master Academic Plan (MAP) provides the direction for the College's future educational offerings and initiatives to meet the community's educational and economic needs and help decrease the span of the local and national skills gap.

The following are excerpts taken from the Georgetown University, Center on Education and the Workforce report entitled Recovery: Job Growth and Education Requirements through 2020.

- By 2020, 65% of all jobs in the economy will require postsecondary education and training beyond high school.
 - o In Minnesota, 74% of all jobs will require postsecondary education.
- At the current production rate, the U.S. will fall short by 5 million workers with postsecondary education by 2020.
- There will be 55 million job openings in the economy through 2020. Twenty four million from newly created jobs and 31 million due to baby boomer retirements.
- Job openings in healthcare, community services, and STEM will grow the fastest among all occupational clusters.

The strategic priorities identified in the MAP support the College's Strategic Plan, mission and vision. MAP strategic priorities communicate the direction for RCTC's instructional, academic support, student support, information technologies and educational technologies. Data provided in the Master Academic Plan is designed to guide the creation of the College's Comprehensive Facility Plan and Master Technology Plan.

The creation of this document was shaped by the Master Academic Plan Steering Committee, a group of dedicated faculty, staff, and administration from across the campus. The MAP was developed over the course of the 2016 academic year, and finalized in the fall of 2016.

The results of the good work of the MAP Steering Committee and all the faculty and staff who dedicated significant time and effort in the development of the plan will be used in future program and services development and annual program review processes. I would like to express my sincere appreciation to everyone who worked to create this plan over the past year and to their many years of commitment to student success, Rochester Community and Technical College, and its many stakeholders.

Sincerely

Executive Vice President, Academic Affairs

RCTC STRATEGIC PLAN: VISION 2020

Strategic Priority 1:

Provide high-quality, affordable, learner-centered educational pathways, workforce training, support services, and resources to meet the diverse needs of students, the region, and the global community.

- 1.1: Advance programs and services that support student success through evidence-based systemic planning, assessment, and review.
- 1.2: Achieve excellence in teaching and learning through rigorous and relevant educational offerings, engaging and innovative instructional delivery, and superior support services.
- 1.3: Nurture a comprehensive, learner-centered culture to support student from inquiry through completion.
- 1.4: Advance educational, business, and community partnerships to create opportunities for students to attain their educational and career goals.

Strategic Priority 2:

Collectively develop strategic approaches to systemically plan, prioritize, and implement future-focused initiatives.

- 2.1: Implement continuous environmental scanning processes to strategically position the College for the future.
- 2.2: Engage college-wide stakeholders in the planning and allocation of resources to create innovative learning and working environments.
- 2.3: Create on-going employee professional growth and advancement opportunities.
- 2.4: Advance continuous quality improvement processes to ensure College-wide accountability.

Strategic Priority 3:

Cultivate a culture of collaboration and communication that values diversity and mutual respect.

- 3.1: Foster an environment to encourage collaboration across College units that embraces our Core Values.
- 3.2: Improve internal communication structures and processes.
- 3.3: Provide exemplary, engaging service to students, employees, alumni, and the greater community.
- 3.4: Expand community partnerships that focus on diversity and inclusiveness to encourage multi-cultural experiences.

Strategic Priority 4:

Enhance RCTC's image as the region's college and employer of choice.

- 4.1: Communicate the value of RCTC's high-quality, affordable, and accessible programs and services.
- 4.2: Heighten RCTC's reputation as a world-class educational institution.
- 4.3: Recruit and retain exceptional and diverse employees.
- 4.4: Improve the effectiveness and efficiency of hiring and onboarding processes.

MINNESOTA STATE COLLEGES AND UNIVERSITIES STRATEGIC INITIATIVES

Minnesota State colleges and universities play an essential role in growing Minnesota's economy and opening the doors of educational opportunity to all Minnesotans. To that end, in 2012, the Minnesota State system initiated Charting the Future, a system-wide initiative to help better prepare Minnesota students for success and achieving a more prosperous Minnesota.

To help reach the overarching goals of Charting the Future, specific work plans were developed. In 2016, those work plans involved the following areas: Academic and Student Affairs, Diversity and Equity, Finance and Facilities, Human Resources, and Information Technology Services.

The charge with Charting the Future relates to accomplishing the following Strategic Framework Initiatives:

Ensure access to an extraordinary education for all Minnesotans

- Our faculty and staff will provide the best education available in Minnesota, preparing graduates to lead in every sector of Minnesota's economy.
- We will continue to be the place of opportunity, making education accessible to all Minnesotans who seek a college, technical or university education; those who want to update their skills; and those who need to prepare for new careers.

Be the partner of choice to meet Minnesota's workforce and community needs

- Our colleges and universities will be the partner of choice for businesses and communities across Minnesota to help them solve real-world problems and keep Minnesotans at the leading edge of their professions.
- Our faculty and staff will enable Minnesota to meet its need for a substantially better educated workforce by increasing the number of Minnesotans who complete certificates, diplomas and degrees.

Deliver to students, employers, communities and taxpayers the highest value / most affordable option

- Our colleges and universities will deliver the highest value to students, employers, communities and taxpayers.
- o We will be the highest value / most affordable higher education option.

In addition to meeting the College's local needs, the strategic priorities, goals, and action plans identified in RCTC's Master Academic Plan were also created to assist the Minnesota State system in meeting its Strategic Initiatives.

INSTITUTIONAL PROFILE

Mission:

Rochester Community and Technical College provides accessible, affordable, quality learning opportunities to serve a diverse and growing community.

Vision:

Rochester Community and Technical College will be a universal gateway to world class learning opportunities.

Value Proposition:

Improving Student Lives

College Values and Service Attributes:

- **Learner-Centered**: Be approachable and attentive to students' and others' needs
- **Excellence**: Anticipate, create and recognize engaging experiences
- **Respect**: Demonstrate understanding and sensitivity when serving
- **Teamwork**: Collaborate and engage each other to better serve
- **Innovation**: Explore, empower and implement creative ideas to better serve
- Fun: Foster a pleasant, personable and enjoyable environment

Core Outcomes:

- **Communication**: Students will read, write, speak and listen professionally.
- **Critical Thinking:** Students will think systematically by integrating skills and using a variety of appropriate resources and methods.
- Global Awareness/Diversity: Students will demonstrate understanding of and respect for human diversity through their words and actions.
- Civic Responsibility: Students will understand larger social issues, demonstrate social responsibility, and contribute to positive community change through civic engagement.
- Personal and Professional Accountability: Students will take ultimate responsibility for achieving their education and personal goals.
- **Aesthetic Response:** Students will make and support personal judgments from an informed perspective.

Established in 1915, Rochester Community and Technical College (RCTC) is the largest higher education provider in the fastest-growing city in Minnesota, serving more than 12,000 students per year; approximately 7,500 in credit courses and 4,500 in non-credit continuing and workforce education programs. RCTC combines the best in liberal arts, technical, and life-long learning with more than 70 credit-based programs and over 100 credential options.

RCTC's expansive 518-acre campus includes university partnerships, a diverse student body, and a vibrant student life program. RCTC provides a unique learning environment that offers the feel of a four-year university campus with the commitment to access and opportunity of a two-year college.

The College offers numerous services that support its diverse student population. RCTC has Student Health Services, Comprehensive Learning Center, Disability Support Services, Advising/Counseling Services, Multicultural Advising, Veteran's Advising, Veteran's Resource Center, International Advising, Sports Center, and TRIO. Student Life offers performing arts, sporting events, open gym, campus activities and multicultural events, a student newspaper and student leadership opportunities with 30+ student clubs and organizations. RCTC has 10 NJCAA athletic teams and extensive sports facilities.

RCTC is accredited by the Higher Learning Commission and participates in its Academic Quality Improvement Program (AQIP).

RCTC FACTS:

Enrollment: FY 2016	Demographics (FY 2016)	
Unduplicated Annual Headcount: 12,060	White/Caucasian:	72%
Unduplicated Credit Headcount: 7,515	Black/African-American	11%
Unduplicated Hourly Student Headcount: 4,744	Hispanic:	5%
Total (FYE) Full-year Equivalent: 3,948	Asian:	5%
Percent Female: 60	Two or More Races:	3%
Percent Male: 40	Unknown:	2%
Percent Full-time: 40*		

Percent Part-time: 60*

^{*}Based on FYE

MASTER ACADEMIC PLAN VISION AND GOALS:

RCTC's Master Academic Plan provides the roadmap to advance our institutional mission, vision, and values for the next three years and beyond. It will provide the foundation for intentional actions to ensure RCTC's academic programs and services meet the holistic needs of our students, workforce and community. It will provide data to inform decision-making processes for the development of RCTC's Comprehensive Facility Plan and Master Technology Plan.

The Master Academic Plan Goals are to:

- 1. Identify external and internal demands to create a portfolio of programs and services to meet current and future student, community, and business and industry needs.
- 2. Develop strategies to increase student learning and success. (IE: college level preparedness, persistence, retention and completion, assessment of student and program outcomes; developmental education and gateway courses)
- 3. Identify needs for the creation of a comprehensive faculty/staff professional development program.
- 4. Identify campus and instructional technology needs to develop a comprehensive instructional delivery plan that supports innovation and enhances student success.

MAP PROCESS:

Prior to the first meeting of the MAP Steering Committee, the Executive Vice President, Academic Affairs and the academic deans researched a variety of similar documents from colleges across the country. To begin the process, a draft of the MAP Outline and an Academic Area Planning Tool were created. The steering committee then took on the task of revising and ensuring the documents fit the needs of all areas involved. Through this review it was determined that a second planning tool should be created to meet the needs of the academic/student support areas.

The Academic Area Planning Tool was further revised with input from faculty. The goal was to ensure the tool was easy to understand, was parallel throughout, and had a focus on student learning which is aligned with the system and college mission statements. The final tool was shared with the campus community along with a video walk-though instructing faculty in how to complete the tool. Informational sessions were held to answer questions and give additional information about the tool.

The Academic Student Support Planning tool was developed to meet the diverse needs of the support areas by a subcommittee of the Steering Committee. The tool was developed in line with the Academic Area Planning Tool with similar sections and format. The data section of the tool allowed areas to provide and discuss any types of assessment of their area that they have developed. Meetings were held with leaders of MAP teams in the Student Support areas to answer questions and provide information about the tool.

To collect meaningful and relevant information at local levels across the institution, from the more than 70 different academic degree and discipline areas, and multiple academic support and student support services areas, nine primary reporting areas were created. Within those nine

primary reporting areas, 55 program/discipline/service area clusters were created. Each of the 55 cluster areas submitted an Area MAP Report. Those Area MAP Reports were then consolidated into five Divisional Summaries. The five Divisional Summaries provided the data to create the Institutional Summary.

To ensure the creation of a successful and usable document, a five phase production timeline was created. The identified phases and timing for the creation of RCTC's Master academic plan were:

- Phase 1: Preplanning; September – October, 2015
- Phase 2: Plan Finalization and Soft Rollout; November - December, 2015
- Phase 3: Fall Kickoff and Area MAP Production; January - April, 2016
- Phase 4: Area MAP Production; May - August, 2016
- Phase 5: MAP Finalization and Submission; September - November, 2016

INSTITUTIONAL SUMMARY

The creation of RCTC's Master Academic Plan, chartered during the fall 2015 semester, was designed to collect and report multiple internal and external data points from departments across campus that contribute to the success of RCTC students. Following the Institution's Centennial year, the plan was designed to provide immediate direction for the College for the next three years and lead RCTC's long-term academic vision for the next 100 years.

The data-driven, evaluative design of the MAP is structured to provide the foundation for ongoing program evaluation and future program creation. Examining both internal and external factors that contribute to the growth or decline of academic programs and services best positions the institution to be able to forecast and respond to the community's needs. As a community and technical college founded to meet the needs of the community it serves, RCTC must continuously scan the environment in which it exists in order to be nimble and adapt to its ever-changing environment.

Pride Points:

RCTC has many points of pride for which it has been recognized and for which faculty and staff should be extremely proud. It is the contributions of the faculty and staff that has allowed the college to achieve these accolades. A sampling of RCTC pride points are identified below:

- As the largest provider of higher education in the Rochester region, and as the primary trainer and re-trainer of the local workforce, RCTC offers more than 70 credit-based programs and over 100 credential options, and a wide range of customized and continuing education opportunities.
- RCTC serves more than 12,000 unique students annually in both credit and noncredit offerings.
- RCTC offers more than 300 courses online.
- RCTC offers students learning opportunities from highly-educated, highly-qualified faculty, and award-winning faculty, locally and nationally recognized in their area of specialty.
- More than 45 RCTC faculty hold doctorate or terminal degrees in their field, and many hold nationally recognized industry credentials.
- RCTC offers joint programs with the Mayo School of Health Sciences.
- RCTC resides on a beautiful 518 acre campus, offering multiple co-curricular and extracurricular activities, and space for future expansion opportunities.
- RCTC's Omicron chapter of Phi Theta Kappa, charted in 1927, is one of the oldest PTK chapters in the country and is a recognized Five Star Chapter.
- RCTC has long-held, strong partnerships with the business community, secondary, and postsecondary educational providers.
- RCTC has a variety of highly-sophisticated, technology-enhanced classrooms and labs.
- RCTC maintains highly transferable programs and articulation agreements with colleges and universities both in and outside of Minnesota.

- The Goddard Library hosts a robust collection of resources that support undergraduate, graduate, and doctoral degree programs.
- Short term study abroad programs have provided students with global learning and service experiences in multiple countries.

Four-Year Enrollment Trend:

The following chart presents the four-year enrollment trend at both the division and institutional level. Similar to national and local economic and educational trends, RCTC has experienced a declining enrollment pattern over the past four years. The college experienced enrollment growth from 2008 through 2010. Since the peak of the recession in 2010, RCTC has experienced a continuous decline in enrollment. Efforts are underway to conduct comprehensive external environmental scans to determine current programmatic offerings alignment to educational and workforce needs, and to proactively plan for new offerings to meet forecasted labor market growth sectors.

Division	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	5-Year % Change
Career & Technical Education	908.00	910.06	892.47	855.23	793.77	-12.6%
Liberal Arts & General Education	2,366.63	2,340.37	2,185.93	2,142.17	2,053.83	-13.2%
Sciences & Health Professions	1,220.03	1,241.10	1,247.33	1,160.47	1,130.80	-7.3%
Institutional	4,494.67	4,491.53	4,325.73	4,157.86	3,978.40	-11.5%

Significant Internal Factors:

Mentioned above, RCTC has experienced declining enrollment over the last several years. Looking at enrollment factors of both recruitment and retention, the College has placed significant focus on enhancing services and processes to increase retention. In 2014, RCTC created the Strategic Enrollment Management Council (SEMC), a cross institutional council comprised of faculty, staff, administration, and students, to identify proactive measures to increase retention. In 2016, as part of an HLC Action Project, SEMC identified five high-risk student populations to place additional retention efforts.

As the demographic composition of the Rochester and surrounding community has changed, RCTC serves additional English language learners, and additional students not adequately prepared for college. To help this population be more successful, and as part of the college's retention strategy, additional efforts are underway to prepare these students to be successful in college level work.

With declining enrollment, fiscal resources, due to reduced tuition income, have also decreased. These reductions in revenue have impacted staffing levels and the institution's ability to invest as significantly in projects, facilities, and technology that would enhance the student learning environment. These reductions have also increased the demand and workload on faculty, staff, and administration. Additionally, the Minnesota state legislature decreased the amount colleges

and universities can charge in tuition by 1% in fiscal year 2017. This decreased tuition revenue places additional financial burden on institutions. The challenge, therefore, is to maintain and increase the quality of education and services provided with fewer resources.

With many of the college's facilities being built in the 1960s, the age and condition of portions of campus no longer present as ideal learning conditions to meet the needs and expectations of today's students. RCTC was up for a \$20 million state bonding project to begin in fiscal year 2017 that would replace and renovate some of the college's most out-of-date facilities and those most in need of improvement. The State was not able to come to agreement related to bonding during the legislative session, therefore the bonding bill was not passed. RCTC will continue its efforts to receive bonding in the next funding cycle.

Additionally, RCTC has experienced considerable change at the executive leadership level and in other key personnel positions during the past five years. During these times of change, focus and follow through on critical institutional projects wavered. Where previously key initiatives were created by and housed out of a single administrator's office, now key initiatives are being created and co-chaired by faculty, staff, and administration so that if a member of the executive leadership team departs the institution forward movement on initiatives can continue.

Significant External Factors:

The City of Rochester and the regional economy is heavily influenced by the health and wellbeing of the Mayo Clinic, with its home office located in downtown Rochester. A world-renowned provider of healthcare services, the Mayo Clinic has embarked on a "20 year economic development initiative to position Rochester, Minnesota as the world's premier destination for health and wellness." This nearly \$7 billion project, called Destination Medical Center (DMC), "represents the largest economic development initiative in Minnesota and one of the largest in the United States." The combined synergies of private investment, city, and state investment is anticipated to significantly grow the overall population of Rochester, and add more than 30,000 jobs to the local economy over the next 20 years. (http://dmc.mn)

In alignment with the growth projected in DMC, which focuses on the Rochester downtown environment, the eight county region adjacent to Rochester has created an economic development plan entitled Journey to Growth (J2G). This five-year plan is focused to grow the economic viability of the region "beyond healthcare by focusing resources on other growth sectors, leveraging existing regional assets, and developing the regional talent base." (http://j2gmn.com) The eight counties included in the J2G initiative include: Dodge, Fillmore, Freeborn, Goodhue, Houston, Mower, Olmsted, Steele, Wabasha, and Winona. The J2G initiative targets six industry sectors. Those sectors are: Advanced Healthcare, Computer Systems Design and Production, Food Manufacturing and Processing, Tourism, and Transportation Equipment. As Rochester Community and Technical College directly serves the Southeast Minnesota region, the College needs to remain diligent to meet the needs of the region.

In addition to the significant economic development initiatives currently in place for the city of Rochester, and the surrounding region, Rochester, Minnesota has been named the Number One best midsized city to live in the United States for 2016 by Livability.com. Rochester ranked number two in 2015 and number seven and 2014. In 2016, Forbes magazine also named Rochester number 59 in its list for best small places for businesses and careers.

These, and other factors, have placed a high demand on the local workforce. According to Minnesota Department of Employment and Economic Development data, July 2016, the unemployment rate for Olmsted County was 3.0%. The unemployment rate for the City of Rochester was 2.7%. When calculating, and removing, individuals determined as unemployable, the effective unemployment rate for the city of Rochester remains at less than 1%. Local advertisements promoting starting pay for entry-level positions at grocery stores, home improvement stores, and fast food restaurants is \$16 - \$17 per hour.

While the above growth provides tremendous long-term opportunities for the city and region, the same growth, demand on the local workforce, and high starting salaries introduces additional challenges for institutions of higher education. As history has proven, college enrollments are reverse cyclical to the local economy. With the recent growth of the local economy, the college is experiencing a somewhat expected decline in enrollment.

The following table presents data on High Demand/High Pay Occupations for Southeast Minnesota (2012-2022)

<u>Occupation</u>	Estimated Employment 2012	<u>Percent</u> <u>Change 2012 -</u> <u>2022</u>	2012 - 2022 Total Openings	Median Annual Salary 2016
Total, All Occupations	262,725	6.40%	80,880	\$36,964
Registered Nurses	10,186	21%	4,120	\$60,870
Licensed Practical and Licensed Vocational Nurses	1,813	20.60%	810	\$42,405
Carpenters	1,941	22.80%	680	\$40,596
Accountants and Auditors	1,581	1.50%	490	\$57,379
Electricians	923	19.40%	350	\$61,383
Plumbers, Pipefitters, and Steamfitters	930	24.30%	350	\$67,318
Machinists	992	11.20%	340	\$41,594
Industrial Machinery Mechanics	711	17.90%	330	\$45,050
Medical and Health Services Managers	678	20.80%	300	\$102,909
Sales Representatives, Services, All Other	738	11.20%	280	\$57,442
Welders, Cutters, Solderers, and Brazers	821	8.40%	270	\$41,291
Police and Sheriff's Patrol Officers	784	-4.10%	250	\$54,353
Radiologic Technologists	587	25.90%	230	\$67,480
Medical Records and Health Information Technicians	434	23.30%	220	\$47,814
Medical Assistants	581	19.40%	220	\$37,516
First-Line Supervisors of Mechanics, Installers	708	3.80%	220	\$60,840
Postal Service Mail Carriers	617	-23.30%	220	\$55,584

Medical and Clinical Laboratory Technicians	376	29.80%	210	\$44,397
Pharmacists	613	10.30%	210	\$131,812
Physical Therapists	401	24.20%	200	\$82,957
Medical Equipment Repairers	285	40%	190	\$73,910
Physician Assistants	298	42.60%	180	\$115,282
Computer Occupations, All Other	556	16.50%	180	\$65,154
Community and Social Service Specialists, All Other	480	12.50%	180	\$39,938
Dental Hygienists	425	13.60%	170	\$70,194
Food Batchmakers	405	5.20%	150	\$41,077
Heating, Air Conditioning, and Refrigeration Mechanic	343	15.50%	140	\$49,821
Clinical, Counseling, and School Psychologists	360	11.10%	140	\$75,269
Cost Estimators	265	18.90%	130	\$54,632
Computer Systems Analysts	377	18.30%	130	\$72,013
Police, Fire, and Ambulance Dispatchers	299	15.10%	130	\$46,292
First-Line Supervisors of Housekeeping and Janitor	358	8.40%	120	\$39,936
Computer Network Architects	388	15.70%	120	\$106,157
Graphic Designers	372	5.10%	120	\$39,661
Life Scientists, All Other	269	19.70%	110	\$52,384
Respiratory Therapists	279	25.40%	110	\$69,080
Payroll and Timekeeping Clerks	320	10.90%	110	\$42,311
Dispatchers, Except Police, Fire, and Ambulance	288	5.60%	100	\$45,359

Minnesota Department of Employment and Economic Development Employment Outlook: June, 2016

Reviewing the data presented in the Minnesota Department of Employment and Economic Development (MNDEED) High Demand/High Pay Occupations chart and other MNDEED sources, it is evident that a majority of the future occupational needs of the region encompass healthcare professions and supporting services to a region heavily based on the growth of the healthcare sector. RCTC and its programming must remain cognizant of the region's forecasted growth patterns in the identified sectors in order to be proactive in maintaining an educational portfolio of programs and services that meet the community's needs.

MAP Themes:

In creating the five Divisional Summary Reports, the Deans from the respective areas carefully examined and evaluated the information and data provided in each Area MAP Report. This information was used to create the Division Summary Reports for the creation of short- and longterm Overarching Division Goals and the Deans' Strategic Priorities. Information provided in Area MAP Reports also provided important information that confirmed the need to examine the current structure within academic affairs to better align programs and services to meet the needs of faculty, staff, and students, and to create a functional structure that would fill identified voids that have occurred within the institution over the last several years.

Examples of such voids include: re-implementing an institutional professional development structure for faculty and staff to help them be more successful in their areas of responsibility, reinstituting and providing institutional support for a campus-wide Assessment of Student Learning committee and an Institutional Assessment Plan, reforming and providing institutional support for an Institutional Quality Council, re-engaging and providing institutional support for an Online Learning and Educational Technology structure and plan, and other critical areas that will promote greater student success.

The outcome of this analysis resulted in the reshaping of the assignments and responsibilities of the existing four academic deans.

The previous structure for the academic deans was as follows:

- Dean of Health Sciences
- Dean of Career and Technical Education
- Two Deans of Liberal Arts and General Education

With the realignment of academic programs/disciplines into a more functional configuration and creating a new formal structure to support areas of need not previously addressed, the new academic structure is as follows:

- Dean of Sciences and Health Professions
- Dean of Career and Technical Education and Business Partnerships
- Dean of Liberal Arts and General Education
- Dean of Academic Effectiveness and Innovation

Organizational Charts for the new Academic Affairs structure is provided in Appendix A.

Additional reoccurring themes were identified in the individual Area MAP Reports. Those themes fell into seven overarching categories. Within those categories, 59 key strategic priorities emerged.

I. Increase opportunities to enhance student success.

- Provide additional tutoring services; in the physical classroom, in structured tutoring environments (such as: Comprehensive Learning Center, Goddard Library, and informal learning environments), and in online class and resource
- b. Adopt and implement an English language proficiency placement exam and courses to support the growing number of English language learners.
- Partner with four-year institutions of higher education, business and industry, and civic organizations to expand tutoring services.
- d. Research and implement academic planning models aligned to "meta-majors".
- Enhance and expand articulation agreements with four-year partners to create seamless academic pathways for transfer students.
- Fully engage and promote the new Minnesota State Transfer Pathways Curricula.
- Conduct needs analysis to identify best times to offer general education courses that align with the needs of students seeking degrees in program areas.
- h. Expand course/program offerings to include flexibility in time/location/delivery options, including experiential learning such as internships, credit for prior learning, online and flipped classrooms, and cohort/learning communities.
- Expand practice of program orientations and/or application processes to create 'early and often' student engagement opportunities.
- j. Leverage faculty involvement in academic advising.
- k. Leverage relationships with the co-located Workforce Center and/or other strategic partners to provide enhanced career services for RCTC students.
- Grow and expand cultural learning opportunities through International Study Abroad.
- m. Expand services for online tutoring, advising, and counseling.
- n. Increase retention activities and services for targeted student populations.
- o. Develop mentoring program for students identified at risk.

II. Enhance teaching effectiveness and promote continuous quality improvement.

- Finalize the creation of the Institutional Assessment Plan and create formal assessment plans for all academic programs, disciplines, and academic/support services.
- b. Acquire assessment tracking software to input, track, and report assessment plans, activities, and progress for all academic programs, disciplines, and academic/student support services.
- Explore the use of interdisciplinary instruction to provide greater real-life scenarios.
- d. Create greater consistency across curriculums, with foundational information necessary in the online learning platform.

- e. Revise the faculty evaluation process to include teaching effectiveness measures and student learning assessment.
- Review and revise general education and developmental education curricular inventory.
- Establish and implement the RCTC Institutional Quality Council to promote continuous quality improvement.
- h. Develop an Online Strategic Plan that incorporates multiple forms of learning technologies and addresses: student success, professional development needs, instructional expectations, and necessary infrastructure.
- Create a process for faculty to explore e-learning technologies and a structure for technology adoption and support.

III. Create state-of-the-art teaching and learning environments.

- Provide students high-quality and up-to-date learning environments.
- b. Renovate and furnish general classrooms with current, state-of-the-art, instructional technology that meets the needs of 'standard' classroom delivery modes, while promoting active-engaged student learning.
- Renovate and furnish specialized classrooms with current, state-of-the-art, instructional technology that meets the custom needs of programs requiring additional technological infrastructure.
- d. Introduce additional simulation equipment and environments into the learning arena.
- e. Renovate and create flexible, high-engagement, high-impact classrooms that promote active-engaged student learning.
- Renovate, redesign, and build learning environments that replicate real-world work environments.
- Implement best practices for creating inviting and comfortable learning environments that enhance student learning.

IV. Align curricular portfolio to meet the educational, economic, and workforce needs of the community we serve.

- a. Establish active advisory committees for all RCTC programs and disciplines.
- b. Update curriculum development and review process to include examination and measurement of curricular proposals' alignment with economic and workforce needs.
- Conduct regular comprehensive reviews of program viability, based on labor market information, to ensure curricular alignment with educational and workforce demands.
- d. Develop Liberal Arts focus areas to assist students in their academic planning processes, and for better alignment with four-year transfer opportunities.
- e. Obtain additional program accreditations and industry certification opportunities for students.
- f. Develop program offerings to meet the high-demand of a growing Information Technology (IT) workforce.
- Rebrand the Automotive Mechanic Technology and Building Utility programs for better alignment with job titles in high-demand occupations.

- h. Expand programming in Building Maintenance and Repair to meet new skill requirements, including alternative energy management.
- Develop new programming to meet the high-demand, high-growth occupations including hospitality and construction management.
- Conduct further needs analysis to assess demand for possible liberal arts degree in the performing arts.

V. Expand private partnerships and create innovative business/industry alignments to generate greater synergies and alternative funding sources.

- Create win-win partnership models to increase opportunities for private business and industry to become more involved with the buildout and enhancement of class and lab environments.
- b. Construct a simulation house for law enforcement skills training to be jointly used by partners of the Regional Public Safety Training Center.
- c. Explore opportunities to retain a shared grant writer with Rochester Public Schools, other local school districts, or sister Minnesota State institutions.
- d. Expand opportunities to promote and attract students for RCTC/Mayo joint programs.
- e. Explore opportunities to create additional RCTC/Mayo joint programs.
- f. Explore feasibility of shared instructional spaces.
- g. Explore partnerships with community organizations to attract and retain diverse students.

VI. Create a structure and support mechanisms to provide comprehensive faculty and staff professional development opportunities.

- Create a year-round schedule and infrastructure to develop, promote, and deliver faculty and staff professional development.
- b. Develop an on boarding structure and process for new faculty and staff.
- Improve opportunities for faculty and staff to engage in meaningful professional development activities, on and off-campus.
- d. Create topic specific professional development opportunities related to curricular planning, mapping, assessment, and student learning outcome measurement.
- e. Develop a process and structure to pilot new and emerging instructional technologies and pedagogy.
- f. Increase collaborative efforts in programming related to diversity and civility.
- Create and deliver professional development related to the needs and challenges of RCTC targeted and at risk student populations.
- h. Create and deliver professional development opportunities related to civility.

VII. Expand community outreach, communication, and marketing efforts and opportunities.

- Increase outreach and communication to prospective traditional and adult learner populations.
- b. Communicate the value and grow Concurrent Enrollment and Postsecondary Enrollment Option programs.
- c. Develop a "cluster-based" program and discipline marketing strategy.

Divisional Summaries and Individual Area MAPs:

The five Divisional Summary Reports (Liberal Arts and General Education, Sciences and Health Professions, Career and Technical Education and Business Partnerships, Academic Effectiveness and Innovation, and Student Support Services) that follow, and the individual Area MAPs located in RCTC's SharePoint here, provide greater detail as to the current status, goals and aspirations of each area. In total, 55 individual Area MAPs were created that provided the data and information necessary to create the Divisional and Institutional Summaries.

To help guide the creation of the individual Area MAPs, the steering committee created a ninestep template for departments to follow, however areas were allowed flexibility to somewhat vary from the template to ensure the reports were meaningful locally and provided an appropriate fit for services provided in each area. A full listing of all programs/disciplines/departments reported on in the Area MAPs is included in the Master Academic Plan Outline provided in Appendix B.

The template had nine reporting areas:

- Mission
- Vision
- **Pride Points and Long-Range Aspirations**
- Internal Data Scans
- **External Factors**
- **Current Outcomes and Assessment**
- Specific Goals
- Resource Needs
- Action Plan

LIBERAL ARTS AND GENERAL EDUCATION

Programs:

Associate of Art: Liberal Arts

Associate of Fine Art:

- Art + Design: Art
- Music Studies
- Music Creative Technology

Associate of Science

- Computer Information Systems
- Computer Science
- Graphic Design
- Individualized Studies
- Web Design

Certificate:

- Communication Studies
- Computer Programming Skills
- Dance
- Digital Art
- Mobile Applications Development
- Motion Graphics
- Music Technology
- Photography

Disciplines:

- Anthropology
- Art
- Communication
- Computer Science
- \bullet Dance
- English
- History
- Humanities
- Mass Communication
- Mathematics
- Music
- Philosophy
- Psychology
- Sociology
- Theatre
- World Languages

MAP Division Summary: Liberal Arts and General Education

Introduction:

The Liberal Arts and General Education division (the division) offers programming including an Associate of Art in Liberal Arts. The Association of American Colleges & Universities (AACU) defines liberal education as follows:

Liberal Education is an approach to learning that empowers individuals and prepares them to deal with complexity, diversity, and change. It provides students with broad knowledge of the wider world (e.g. science, culture, and society) as well as in-depth study in a specific area of interest. A liberal education helps students develop a sense of social responsibility, as well as strong and transferable intellectual and practical skills such as communication, analytical and problem-solving skills, and a demonstrated ability to apply knowledge and skills in real-world settings. (https://www.aacu.org/leap/what-is-aliberal-education)

In addition, the Division offers eight associate degree programs and eight certificate programs in disciplines including computer science, music technology, and art & design. The division also oversees the institution's general education courses in the areas of English, math, humanities, and social science. With over 120 highly qualified faculty members, the division provides required, recommended, and elective general education courses to over 70 programs college-wide.

The division is committed to high quality programming, excellence in instruction, and student retention, persistence, and success. The division primarily focuses on transfer programming, workplace skills development, and the transferability of general education courses. The Division also oversees the disciplines responsible for developmental education: Reading, English, and Math. In 2015, the following enrollments in developmental classes were reported with the following success rates (success defined as A, B, or C grades).

English: 635 enrollments 64.69% success Math: 61.41% success 1310 enrollments 63.50% success Reading: 508 enrollments

The English, Math, and Reading department MAPs all address developmental education with plans to employ several strategies such as communication with program faculty, instructor led study sessions, and bundling READ, ENGL, and MATH courses in the academic schedule to increase student success.

In academic year 2015-2016, the departments wrote Master Academic Plan (MAP) documents resulting in several emerging goals that are discussed in this document, such as examine program effectiveness, develop Liberal Arts emphases and explore new programming that can lead to jobs in demand. Per the computer science MAP, jobs are outnumbering skilled workers and colleges are not keeping up with the demand.

Programs/Disciplines/Services:

The Liberal Arts division includes the programs and disciplines shown in the table below. In addition, the division oversees specialized programming such as: A.S. Individualized Studies, First Year Experience, and Study Skills. In addition, the division oversees specialized programming such as: A.S. Individualized Studies, First Year Experience, and Study Skills.

Programs:	Disciplines:
Associate of Art: Liberal Arts Associate of Fine Art: Art + Design: Art Music Studies Music Creative Technology Associate of Science Computer Information Systems Computer Science Graphic Design Individualized Studies Web Design Certificate: Communication Studies Computer Programming Skills Dance Digital Art Mobile Applications Development Motion Graphics Music Technology Photography	Anthropology Art Communication Computer Science Dance English History Humanities Mass Communication Mathematics Music Philosophy Psychology Sociology Theatre World Languages

Mission/Purpose:

The Division of Liberal Arts and General Education provides programming that leads to a strong liberal education preparing students for transfer to four-year institutions and develops valuable skills for the workplace that prepares students to compete in a global economy. The division's general education courses serve institutional program requirements that meet Minnesota Transfer Course goal areas and broaden student awareness of the world and themselves.

Pride Points:

The Liberal Arts and General Education faculty and staff have contributed their expertise internally, regionally, statewide, and nationally in curriculum development, programming, discipline specific publications and exhibitions, and services. The faculty included in the division programs and general education disciplines are proud to offer the following accomplishments:

- Highly qualified and award winning faculty who are recognized for their contributions, publications, and exhibits locally and nationally;
- Transferable programs to four-year institutions inside and outside of the Minnesota State system;
- Programming that develops skills for the workplace, such as computer science and workplace communication, with plans to expand offerings based on industry needs;
- Short term study abroad programs that have seen hundreds of RCTC students gain global awareness and service learning experiences;
- Collaborations with program faculty to develop and deliver MnTC general education for programs through required, recommended, or elective courses;
- Collaborations with other areas of the college, such as student life, admissions, and advising;
- Leadership and collaboration on a retention and engagement project to address the needs of student athletes;
- Identification of curriculum and teaching strategies that address low reading and writing skills and students with limited English language proficiency; and
- Hosted regional and statewide professional development in English and Reading from grant funded opportunities.

The contributions and accomplishments of the faculty are much more numerous than this list can provide. Thanks to the hard work of the departments, programs and courses provide depth and breadth of learning leading to a quality foundational education. Courses also fulfill valuable general education requirements for programs institution-wide, and students gain knowledge and skills in areas including global and cultural awareness; personal and professional ethics; logical reasoning, data analysis and evaluation for problem solving; various forms of communication; research; critical and creative thinking; and technology to embrace a changing world. Courses are delivered as online, hybrid, and on-campus offering various teaching strategies such as flipped classrooms, group activities, as well as through hands-on experiences in computer labs and studios. Faculty work with four-year institutions and Minnesota State transfer pathways to ensure transferability of courses and programs.

Significant Internal Factors:

Every RCTC degree program includes general education courses that satisfy Minnesota Transfer (MnTC) requirements based on ten core goal areas (see: http://www.mntransfer.org/students/plan/s mntc.php). Though some courses are required by programs, such as ENGL 1117 Reading and Writing I, other courses are recommended to satisfy specific program curricular needs. To better understand student performance in general education courses, the Academic Affairs Standards Councils (AASC) conducted a study of ten gateway courses, which examined over 18,000 enrollments. Results show that 74.88% of students are successfully completing the general education gateway courses with an A, B, or C grade. While the college celebrates the success of these students, it is responding to the 25.12%of students, who are not succeeding by examining expanded services in academic support, conducting studies to determine retention issues and student needs, and identifying professional development needs of faculty in working with a diverse student demographic.

The Division is examining additional factors that affect general education disciplines. A minimum 60-credit limit on programming offers limited exploration of general education courses for interest or skills building. For example, language classes are not required by any RCTC programs, which resulted in scheduling challenges. Unable to run intermediate or advanced languages classes resulted in a faculty layoff and graduates with little to no language experiences. Creative problem solving of this issue has resulted in positive efforts that focus on providing bilingual learning opportunities for students, such as the development of Liberal Arts emphases in Spanish, French, and Arabic.

Additional internal factors that impact programming of general education courses include:

- Programs dependent on updated technology,
- Classrooms and labs need to be redesigned for optimal learning environments,
- Need for tutoring in online courses,
- English language proficiency placement testing,
- Communication with programs on general education requirements,
- Gateway course analysis next steps (direction, compensation),
- Address policy and planning conflicts in establishing program advisory boards, and
- Developing new programming to meet workforce demands in computers/IT.

In the last year, faculty participated in a developmental education workgroup that included math for the first time. The workgroup studied important topics including placement testing, academic support, and students with English language barriers. Results from the work of this group include the approval of a halftime CLA position dedicated to academic support for low skilled readers and English language learners. In addition, plans to propose a new accelerated reading curriculum for READ 0800 are in place for this fall. The new curriculum will expand credits, embed learning outcomes from READ 0900 and prepare students, through an immersion learning environment, for ENGL 1117.

Three-Year Enrollment Trend:

Three-year enrollment trend data, reported in Full Year Equivalents (FYE) is provided in the following table. One FYE is equal to 30 credit hours.

FYE Comparisons 2012 to 2015*

Student FYE: Total Credits/30						
Program/ Discipline	2011-12	2012-13	2013-14	2014-15	2015-16 (To date)	% change
Arabic	2.53	4.80	2.13	0.13	2	-20.95%
Art	162.03	152.90	156.57	170.13	155.27	-4.17%
American Sign Language	6.70	8.70	8.70	7.80	5.9	-11.94%
Anthropology	13.30	10.90	8.90	4.90	2	-84.96%
Communication Studies	115.80	110.27	127.33	139.13	126.7	9.41%
Computer Science	32.77	36.67	33.27	32.47	36.33	10.86%
Dance	13.40	14.70	7.60	10.20	11.2	-16.42%

English	545.13	495.50	478.73	485.70	461.07	-15.42%
First Year	19.57	16.30	15.00	13.47	9.23	-52.84%
Experience	10.07	10.50	10.00	13.17	3.20	02.0170
French	9.77	5.73	6.40	7.60	7.93	-18.83%
Geography	15.50	20.80	17.20	19.70	17.8	14.84%
History	83.20	83.10	81.80	81.30	79.3	-4.69%
Humanities	56.73	42.47	36.33	37.93	35.13	-38.08%
Mass	32.43	36.60	29.60	27.57	21.57	-33.49%
Communications	32.43	30.00	29.00	21.51	21.57	-33.49/0
Math	467.87	461.43	429.10	365.37	346.27	-25.99%
Music	69.80	78.10	67.17	62.77	69.6	-0.29%
Philosophy	104.50	104.00	80.70	98.80	106.3	1.72%
Political Science	33.00	38.20	35.70	36.90	36.2	9.70%
Psychology	184.77	224.63	218.97	227.30	234.9	27.13%
Reading	104.07	104.60	88.50	76.47	60.13	-42.22%
SOC	144.60	147.80	126.60	126.80	125.2	-13.42%
Spanish	25.21	26.39	25.93	21.42	17.17	-31.89%
Study Skills	4.20	4.67	3.40	5.63	7.47	77.86%
Theatre		16.30	14.70	13.50	12.1	-25.77%

^{*}Student FYE: Total Credits/30

Significant External Factors:

The Liberal Arts disciplines, at the two-year level are not typically categorized as high-demand, high-growth job areas and are often classified by the Bureau of labor Statistics as "below average" industry demand. Instead, they are disciplines that offer courses or programs designed for transfer to 4-year institutions. Faculty work to ensure the transferability of courses to create seamless pathways for students, saving them time and money. The Liberal Arts disciplines provide paths to careers through continued education as well as provide the unique skills gained from a liberal arts education that develop soft-skills and abilities needed and valued in the workplace. These skills, such as writing, problem solving, communication, critical thinking, analyzing and evaluating, are highly sought after by all sectors of the business and industry community. For example, the communication department's MAP reports that "Minnesota employers are looking for, but not finding, communication training in the following areas: interpersonal communication skills, team/group communication skills, conflict management skills, presentation skills, and interviewing skills (source: http://www.iseek.org/careers/workforce).

Additionally, the division programs in music creative technology, art & design, and computer science. The Minnesota Employment and Economic Development website (source: https://mn.gov/deed/data/data-tools/oid/) shows high demand in areas such as health, energy, manufacturing, data centers, computers and banking. As the division does include programming that can lead to jobs at the associate degree level, or transferability into bachelor degrees that can lead to jobs, the following table provides a sample of current and projected Minnesota jobs that satisfy areas within the division.

The following table shows employment data in the areas of Art, Music, and Computers (source: DEED's Employment Outlook Data Tool).

Art, Music, and Computer Employment

Job Title	2012 Employment	Projected 2022 Employment	Percent Change	Replacement Openings	Total Openings	Median Wage
Minnesota - Art						
Craft Artists	96	98	2.1%	20	20	\$22.39
Fine Artists	192	193	.5%	50	50	\$25.75
Multimedia						
Artists and	959	986	2.8%	230	260	\$31.52
Animators						
Commercial						
and Industrial	653	661	1.2%	170	2180	\$29.10
Designers						" '
Graphic						
Designers	6,596	6,725	2.0%	1,740	1,870	\$23.61
Set and						
Exhibit	266	273	2.6%	70	80	\$26.58
Designers	200	413	2.070	1	00	Ψ20.50
Southeast Minn	esota - Art					
Multimedia	CSOta THT					
Artists and	71	70	-1.4%	20	20	\$33.81
Animators	/1	70	-1.1/0	20	20	φ33.61
Commercial						
and Industrial	38	35	-7.9%	10	10	\$32.84
	30	33	-7.970	10	10	\$32.04
Designers						
Graphic	372	391	5.1%	100	120	\$20.31
Designers						
Minnesota - Cor	nputer					
Computer and						
	9,852	10,491	9.5%	1,330	2,240	\$59.19
Information						
Systems Mgrs						
Computer						
and	200	9.09	10.407	F0	00	#F0.00
Information	320	363	13.4%	50	90	\$58.98
Research						
Scientists						
Computer	19.005	15 010	15.00	0.000	4.000	#41.0C
Systems	13,085	15,312	17.0%	2,060	4,290	\$41.36
Analysts						
Database	2.560	2.858	11.6%	480	780	\$43.94
Administrator						
Network and						
Computer	8,683	9,054	4.3%	1,360	1,730	\$37.42
Systems	'	,		<u> </u>	•	
Administrator						
Computer	6.746	c 055	2.12	Z	222	# 12 a =
Network	3,748	3,977	6.1%	590	820	\$45.88
Architects						
Computer		,				
Occupations	7,260	7,949	9,5%	1,140	1,830	\$35.38
All Other						
Southeast Minn	esota - Compute	er				

Computer and Information Systems Mgrs	630	668	6.0%	90	130	\$56.71
Computer Systems Analysts	377	446	18.3%	60	130	\$30.92
Database Administrator	129	142	10.1%	20	30	\$41.46
Network and Computer Systems Administrator	511	578	13.1%	80	150	\$34.14
Computer Network Architects	388	449	15.7%	60	120	\$49.55
Computer Occupations All Other	556	648	16.5%	92	180	\$31.65
Minnesota – Mu	ısic					
Music Directors/ Composers	1,718	1,767	2.9%	460	510	\$23.32
Musicians and Singers	3,452	3,505	1.5%	930	980	\$18.34
Performers, etc.	353	365	3.4%	40	50	\$11.16
Southeast Minnesota - Music						
Music Directors/ Composers	176	175	06%	50	50	\$21.81

Due to high employment demand projections, the computer science MAP includes a plan to examine industry needs in IT fields, such as networking. The Minnesota Department of Employment and Economic Development (DEED) reports thousands of projected job vacancies in areas such as networking, computer support specialists, computer systems analysts, and more.

The performing arts MAP reports plans to administer surveys to the internal and external community to learn how theatre and dance can serve the planned Rochester expansion. With projected expansion projected for the region, dance studios and academies may be able to meet needs of families to teach children interpersonal skills, collaboration, and wellness, while the theatre department seeks to determine how acting training and role-playing can be useful for training health, education, and service professionals.

Curriculum Relevance to Meet Community Needs:

As previously mentioned, the performing arts (theatre and dance) and computer science MAPs have indicated plans to conduct a needs assessment in business and industry for their respective disciplines. Results will assist the division and college in determining next steps for programming in these areas.

The RCTC academic programs and Minnesota State System 4-year institutions are two other communities that the division serves by providing and scheduling needed MnTC goal general education courses. Departments within the division have plans to align curriculum for transfer through the Minnesota State System Transfer Pathways or through individual articulation agreements. Computer science currently works annually with Winona State University (WSU) to examine their articulation agreement and the math department recently worked with WSU to ensure course needs for math were met in the WSU Teacher Education program. The philosophy department works closely with health programs for Bioethics in meeting the needs of MnTC Goal 4 in the Logic course.

The English MAP reports plans to review literature and humanities course curriculum for transferability. The department also works closely with READ and MATH courses to create bundled courses for students, who need additional class time prior to becoming college ready.

Program/Course Delivery Trends:

The Division is exploring the placement of students in developmental education classes. Anecdotal information from faculty suggests that some students may be placed into classes beyond their skill level. To better understand this phenomena, the Division is planning on conducting a study in the fall 2016 semester that examines Accuplacer and ACT scores, and if students signed placement score waivers in random first-semester classes. Results can guide a collaboration between academic and student affairs and even policy for placing incoming students.

Currently, the Liberal Arts program includes approximately 1,300 matriculated students. However, the program has challenges that prohibit dedicated focus to student success. For example, the division currently is unable to identify the interests of the students, track their progress, develop faculty/student relationships based on disciplines, or have a vehicle to establish faculty mentoring/advising discipline specific needs. To meet these concerns, the departments have expressed interest in developing Liberal Arts emphases as well as participate in the Minnesota State Transfer Path initiative, which will:

- Identify majors in a given discipline
- Provide opportunities for departments to develop and market specific 4- and 6-semester program plans
- Provide a means for faculty and students to intentionally discuss discipline related careers and pathways to further their education
- Provide data for 4-year institutions when developing articulation agreements
- Provide departments with student plans to help ensure the retention, persistence, and completion of their program students through advising
- Provide data for scheduling needs of 1,300 students

Currently, departments report assessing class fill rates to determine ideal course scheduling. The division is taking additional measures by conducting outreach to programs college-wide to identify best times to offer general education courses that satisfy program needs. For first year program students, the division plans to develop tutor embedded classes (librarians or tutors) to work with faculty, particularly within online courses. While departments have identified their delivery through online, hybrid, and on-campus, faculty have also identified assessment on delivery effectiveness is needed.

In addition, a growing international student demographic has become a focus and instructors have reported as much as 15% of their class being filled with students who may have limited English proficiency. The division has responded by exploring an English proficiency placement exam and developing cohort based classes for English language learners at the developmental level, as well as funding a half-time tutor position to focus on low level readers and English language learners.

The College supports D2L Brightspace as a learning management system to deliver online and the online portion of hybrid classes, as well as enhance classroom courses. Though it is not known how faculty use D2L to enhance their on-campus classes, a recent study on gateway courses showed that 85% of the faculty use D2L to communicate grades to students. Faculty reports that new students require a transition period to become comfortable with D2L but are able to use the platform with skill as they progress in their program. The college recognizes that consistency in offering foundational information in D2L shells that support on-campus courses is needed institution-wide (syllabus, schedule of assignments and assessment, contact information, etc.).

Assessment Accomplishments/Opportunities/Needs:

The College has experienced changes in leadership at the administrative level and also in college committees during the last three years. This change has disrupt the assessment process, resulting in a lack of consistency of assessment practices across the division. The creation of an institutional assessment plan, and the acquisition of a platform to input and track assessment initiatives and results will provide needed resources to generate greater faculty involvement.

The following table provides an overview of various assessment tools currently being used in departments:

Assessment Accomplishments

Assessment Tool	Courses Assessed	Outcome level (Course, Program, Institutional)
PLACEMENT TEST SCORES		
Accuplacer Placement Test	All MATH courses	Institutional
PRE- and POST TESTS		
Pre and Post	MATH 0093	Course
Pre and Post	Theatre Appreciation	Course

RUBRICS (various)		
Core Outcome Rubrics	MATH 2350, MATH 2208,	Course, Institutional
(critical thinking and	MATH 1111, MATH 0098,	
Communication)	MATH 1115	
ASL Responsive Rubrics	ENGL 1118	Course
Rubrics (unspecified)	MUSC-1601, MUSC-1602,	Course and Program
\ 1 /	MUSC-1621, MUSC-1622	
Communication Rubric	COMM 1114	Institutional Level
RCTC Computer Science	COMP2243 and	Course and Program
Assessment Rubrics	COMP2247	
Paper Rubrics	All except PHIL 1145	Course
Discussion Board Grading	PHIL Online sections	Course
Rubrics		
PORTFOLIOS		
Portfolio Development	MUSC-1002, MUSC-1003,	Course
r or nono Development	MUSC-1002, MUSC-1003,	Course
Portfolio Development	MUSC-1601, MUSC-1602,	Course and Program
	MUSC-1621, MUSC-1622	
Portfolio (ART)	ART Portfolio	Program
SUMMATIVE TESTS (MID &		
FINAL) End of semester and Midterm	All PHIL sections	Course
Student Self-Assessments	All PHIL sections	Course
Midterm and Final	MATH 0990/1090 Statway	Course
Midderin and Finai	MATH 0990/1090 Statway	Course
POWER OF ONE		
Power of One Assessment	Fundamentals of Public	Program Level
Tool – specifically,	Speaking, COMM 1114	
organizational strategies that	8, 1	
appropriate to topic,		
audience, occasion and		
purpose within an		
intro/body/conclusion		
COLD ADIGON CENTRY		
COMPARISON STUDY	MATTIL 0000 (G:	
Comparison Study	MATH 0099 (flipped vs. trad.)	Course
VARIETY OF COURSE &		
PROGRAM LEVEL		
ASSESSMENT		
PRCA-24 (Personal Report of	COMM 1114, 1130, 2130, 2100	Program Level
Communication		Ü
Apprehension)		
Calibrated information	COMM 1114	Program Level
speech assignment		
Intercultural Competent	COMM 2100	Program Level
Communicator		

Various assessment tools	All ART courses	Course
Dance uses project-based	All	Course
learning, competency-based		
instruction, collaborative		
learning		
Aplia Homework System	PHIL 1145	Course
Quizzes and Exams	All PHIL sections	Course

Overarching Division Goals:

The department MAP goals suggest several emerging themes that will drive the division goals for the coming years. In addition, organization of the new Liberal Arts and General Education division at the division and department level is crucial. Goals for the division include:

- Develop emphases in Liberal Arts disciplines;
- Establish advisory boards for all programs;
- Continue to study and address the needs of the college's growing ELL population;
- Review and revise general education and developmental education curriculum inventory;
- Create a database to document institutional program general education needs,
- Collect data on classroom learning environment needs to provide input for Facilities Master Plan;
- Collaborate with IT to communicate program technology needs;
- Participate in system Seamless Transfer and develop articulation agreements; and
- Explore new program opportunities in computer technology fields.

Dean's Strategic Priorities and Resources Needed to Achieve Division Goals: The following division goals are driven by department MAP documents, the college's strategic plan, and academic affairs goals.

Area	Goal/Alignment	Action Step	Action Step Outcome	
English,	Assist 3 to 5 Liberal	Year 1	*Identified	*Faculty release to
Philosophy,	Arts departments	* Develop proposals with	pathways for	develop emphasis
Psychology,	with proposals to	identification of a 4-yr	Liberal Arts	*Develop promotional
Sociology,	establish a Liberal	institution for an	students in specific	materials
History, Math,	Arts emphasis in a	articulations agreement,	disciplines;	*Develop a social media
Spanish,	discipline. (Strategic	develop a 4- and 6-semester	*Faculty advising	campaign
French, Arabic,	Plan: P1: 1.2, 1.3)	education completion plan	model; and	
Theatre,		and identify steps to	*Articulation	
Dance		establish an advisory board.	agreements with 4-	
		Year 2	year institutions in	
		*Approve proposals, secure	specific Liberal	
		articulation agreements	Arts disciplines.	
		Year 3	*Advisory boards	
		*Matriculate students and		
		schedule according to		
		emphasis plan per		
		semester.		
General	*Conduct outreach	Year 1	*Schedules and	*At least one credit

Education	to collect data as at	*Conduct outrooch to	offerings are	faculty release to
Education Disciplines	to collect data on at least two program area (e.g. health, business, career & technical education) general education scheduling and course offering needs per semester. (Strategic Plan: P1: 1.2, 1.3	*Conduct outreach to program faculty to document program general education needs Year 2 *Adjust schedules or develop curriculum as requested Year 3 *Assess effectiveness of revised scheduling and curriculum, celebrate successes or make changes accordingly.	offerings are redesigned for student access to promote completion.	support time needed to meet with program faculty and revised schedule and one faculty release to develop new curriculum as needed by business and industry.
PL/DCs, Department Faculty	*Develop and document assessment plans that measure student learning outcomes *Develop assessment plan to measure department effectiveness toward goals. (Strategic Plan: P1: 1.2, 1.3 Strategic Plan: P2: 2.2, 2.3)	Year 1 *Establish and document department structure and annual plan for assessment of student learning outcomes for at least 2 courses. *Develop at least 3 departmental strategies to collaborate with the CLC tutors *Implement and document assessment plan during spring semester. Year 2 *Assemble department assessment structure and determine goals for academic year. *Study results of student performance from prior year and document. *Continue collaboration with CLC to study effectiveness of Year 1 and continue efforts. *Implement changes to teaching methods as needed, document, revise teaching as appropriate. Year 3 *Repeat year 2. Spring semester, measure effectiveness and progress	Faculty have a documented process to align with budget for assessment professional development. Teaching methods are studied and improved as necessary. Students benefit from faculty focus on the learning environment.	Software to document assessment process, including inventory and effectiveness of assessment tools, student learning, department goals, curriculum, and any teaching method changes.
Dean, OAS,	Structure Liberal	toward goals. Year 1	At least 2 new	Need data to drive
PL/DCs	Arts and General Education disciplines to meet individual MAP and college related goals. (Strategic	* Review program effectiveness and sustainability, identify at least 2 new program growth areas *PLDC meetings	program growth areas and cost savings will be identified. Division and departments will be	review of program effectiveness, faculty need time to establish advisory boards. Faculty will also need time to implement

	Plan P1: 1.1, 1.4)	2x/month to advance goals through examination of division data. * Establish departmental assessment plans to measure effectiveness *Explore, establish, and document student placement and retention efforts Year 2 * Establish first advisory board meetings for all program offerings *Collaborate with student affairs for at least two retention strategies Year 3 *Evaluate program effectiveness and sustainability model	accountable for operations through data driven decision making. Advisory boards will be established for all programs leading to better opportunities for students.	strategies to meet MAP goals.
Dean, PL/DC, Department Faculty	Remodel and expand facilities to improve safety and increase capacity, efficiency and student learning (Strategic Plan: P1: 2.2)	Year 1 *Evaluate classrooms and studios for capacity and learning environment (including technology) *Develop a plan to remodel or expand space to accommodate growth *Submit for master facilities plan Year 2 Secure resources to expand/remodel facility Year 3 Facility construction	Begin planning process to reorganize classroom and studio facilities	Collaboration with facilities, architects, IT, etc.
Dean, Department Faculty	Examine developmental education curriculum for effectiveness; and design an accelerated, immersion model for READ 800 and ENGL 0950. (Strategic Plan P1: 1.1, 1.2, 1.3)	*Identify developmental target groups through placement and design curriculum to meet needs of students *Propose new curriculum to AASC for approval *Develop collaborations with student affairs for admissions/advising/acade mic support Year 2 *Schedule fall semester offerings and document effectiveness of assessment aligned to learning outcomes. Year 3 Assess effectiveness of	Students with low reading skills, English language barriers, or low writing skills are placed into an immersion, accelerated one semester learning environment that prepares them for college ready courses. Potential is that students can be college ready in one semester rather than two.	Collaborations among READ and ENGL departments, Proctoring Center, Academic Support Center, Counseling/Advising, IR

accelerated developmental	
first semester experience	
and implement changes as	
needed.	

SCIENCES AND HEALTH PROFESSIONS

Programs and Disciplines:

Associate of Art: Liberal Arts

Associate of Science

ALLIED HEALTH:

- Emergency Medical Technology
- Health Unit Coordinator
- Surgical Technology

NURSING

- Associate Degree Nursing
- Practical Nursing
- Nursing Assistant

BEHAVIORAL SCIENCES

- Alcohol and Drug Counseling
- Human Services

DENTAL ASSISTANT DENTAL HYGIENE HEALTH INFORMATION

Cancer Registry Management

MANAGEMENT CAREERS

- Coding Specialist
- Healthcare Informatics
- Health Information Technology

NATURAL SCIENCE

- Biology
- Biotechnology
- Broad Field Health Sciences
- Earth Science
- Environmental Science
- Laboratory Science
- Science Foundations A & B

PHYSICAL SCIENCES

- Chemistry
- Engineering
- Physics

RCTC/MAYO JOINT PROGRAMS

- Cardiovascular Invasive Specialist
- Clinical Neurophysiology Technology
- Emergency Medicine Paramedic
- Histology Technician

MAP Division Summary: Sciences and Health Professions

Introduction:

The Sciences and Health Professions division provides science transfer courses and programs as well as programs related to the healthcare professions. The division historically serves the needs of the regional healthcare community, collaborating closely with numerous facilities in all discipline and program areas. In addition, the division has aligned curriculum and programming with area universities and has developed a mutually beneficial relationship with the Mayo Clinic, resulting in the creation of four joint programs offered in collaboration with RCTC and the Mayo Clinic School of Health Sciences.

Programs/Disciplines/Services:

- Allied Health (Emergency Medical Technology, Health Unit Coordinator, Surgical Technology)
- Nursing (Associate Degree Nursing, Practical Nursing, Nursing Assistant)
- Behavioral Sciences (Alcohol and Drug Counseling, Human Services)
- Dental Assistant and Dental Hygiene
- Health Information Management Careers (Cancer Registry Management, Coding Specialist, Healthcare Informatics, Health Information Technology)
- Natural Science (Biology, Biotechnology, Broad Field Health Sciences, Earth Science, Environmental Science, Laboratory Science, Science Foundations A & B)
- Physical Sciences (Chemistry, Engineering, Physics)
- RCTC/Mayo joint programs: Cardiovascular Invasive Specialist, Clinical Neurophysiology Technology, Emergency Medicine Paramedic, and Histology Technician.

Mission/Purpose:

The Sciences and Health Professions division offers high quality transfer courses that give students a strong foundation in the sciences as well as prepares competent health professionals serving the community.

Pride Points:

As the faculty and staff continue to identify opportunities to improve, the division already maintains high quality and accessible instruction serving a growing diverse population. As a result, there are a number of achievements the division is proud to highlight:

- RCTC programs in the Health Professions have exceptionally high success rates on professional national certification examinations.
- The Nursing program has been fully accredited since 1972, the Dental Assistant and Dental Hygiene programs have been accredited since their inception in 1971 and 1991 respectively, the Surgical Technology program has existed since 1974, the Health Unit Coordinator program has existed since 1979, and the Child, Youth, and Family Studies program is over forty years old.
- RCTC maintains unique program collaborative partnerships with the Mayo Clinic School of Health Science, as well as many long-held partnerships with Olmsted Medical Center and other healthcare facilities in the region. Dental Hygiene has partnerships with the

- Federal Medical Center, Mayo Periodontology Department, Apple Tree Dental, Periodontal Specialists, and Good Samaritan Dental.
- The Science program area offers courses to meet the needs of students in three academic tracks—liberal arts, allied health, and science/engineering.
- Science faculty work closely with the programs in the Health Professions as well as align programs and courses with majors at various state universities and the University of Minnesota.
- •The Cancer Registry Management program is one of six certificate programs in the country.
- The programs have exceptionally high job placement rates, in some cases 100% in recent
- The division offers study abroad programming combining cultural immersion and professional skill development.
- The Nursing program began an Alpha Delta Nu Nursing Honor Society chapter for the College.
- The Sciences annually host regional science fair activities.

Three-Year Enrollment Trend:

The following chart provides three-year student enrollment trend data, reported in Full Year Equivalents (FYE). One FYE equals 30 credit hours.

FYE Comparisons 2012 to 2015

Program/Discipline	2011-12	2012-13	2013-14	2014-15	3 year % Change
Biology	315.43	326.77	329.19	302.53	-4%
Chemistry	141.32	144.59	144.97	120.85	-14%
Child Development	52.54	22.95	_	_	-30%
Child, Youth, and Family	_	_	23.46	32.14	9%
Studies					
Dental Assistant	33.83	31.28	29.18	28.24	-17%
Dental Hygiene	23.26	23.13	22.79	22.79	-2%
Emergency Medical	15.13	14.8	14.1	11.13	-26%
Technology					
Engineering	4.02	3.8	3.12	3.16	-21%
Health Information	114	126.21	159.05	140.4	23%
Technology					
Health Unit Coordinator	22.98	30.48	30.25	26.88	17%
Human Services	44.56	47.99	48.98	39.12	-12%
Nursing Assistant	69.93	61.64	67.72	59.1	-15%
Associate Degree Nursing	143.83	135.48	136	130.85	-9%
Practical Nursing	30.63	31.77	28.57	45.27	60%
Surgical Technology	24	25.46	24.06	26.59	11%
Nutrition	16.16	15.30	16.10	15.70	-3%
Earth Science	33.01	33.51	24.62	27.57	-16.5%
Emergency Medical Care	6.40	5.0	3.90	2.20	-65.6%
Occupational Skills Program	13.11	10.48	10.91	5.37	-59%

Significant Internal Factors:

Constrained budgets provide the greatest challenge to the programs as they work to maintain facilities, update technology and anticipate changes and demands from external stakeholders. The programs play a crucial role in serving the community needs while requiring extensive resources to do so. In particular, maintaining laboratory facilities in all the programs and integrating updated technology is necessary to offering a rigorous curriculum that attracts new students and retains current students.

Attention to these factors also increases the marketability of the programs and their attractiveness to a diverse and savvy student body. Students understand there are numerous options for them and the faculty and administration are looking to make the program curriculum attractive and engaging for them. Options are being explored for new programming and coursework, new delivery methods, new teaching models, and new opportunities for students to connect to the workplace. This innovation will keep the academic offerings in the division relevant while operating within the current budget structure.

Current facilities, technology, equipment and staffing:

While the programs in the division are excelling in their ability to meet stakeholder needs with current facilities, technology and staffing, the demand to plan for innovative initiatives and upgrading equipment remains. In highly technical, professional programs and disciplines as those residing in the division, the need to stay current in technology, equipment and materials is a constant challenge.

In order to address the community's Destination Medical Center goals and objectives, the division will need to continuously update and expand offerings in a manner that is fiscally responsible. This will require expanding the use of technology, examining unique delivery options, and expanding partnerships with the healthcare community.

The division looks to remain relevant in the rapidly changing scientific and healthcare world in an environment where facilities and learning resources for the division range from acceptable to exceptional. As a result, the division is exploring opportunities to introduce new technology into the curriculum, particularly with experiential learning activities. This includes the need to expand smart classrooms, maintain and upgrade lab equipment and facilities, and expand simulation options. Supporting these efforts through leveraged partnerships and identifying alternative resources is a priority, meets the strategic goals of the division and programs, and meets the needs of the community.

The division will need to integrate technology in the classroom, engage students with changes in technology in the professional fields, and work to invest in the college facilities in order to maintain high quality educational programming in these fields.

Significant External Factors:

The Mayo Clinic, private partners and funders, and the State of Minnesota are undertaking a significant 20-year project known as Destination Medical Center (DMC). The estimated cost is more than \$6.5 billion dollars and is projected to double the population of Rochester. It will create more than 30,000 new jobs, many of which will be in healthcare areas. This provides a tremendous opportunity for RCTC to work with Mayo Clinic and other community partners and stakeholders to prepare healthcare and other professionals. The Sciences and Health Professions division will play a very important role in training students and preparing competent graduates that will contribute to the growth created by DMC initiatives.

The DMC will impact all programs in the division. There already is significant growth projected in the Alcohol and Drug Counseling, Surgical Technology, and other healthcare related fields such as programs related to medical records, emergency health services, and dentistry. In addition, there will be increased demands on the Science professions that support the programs as well as lead into other science-based professions such as laboratory scientists, biotechnologists, engineers, and field researchers.

The Dental Hygiene and Dental Assistant programs maintain an on-campus dental clinic that serves the preventive needs of people from the surrounding communities. The Dental Assistant program partners with dentists across the region to offer internships for students completing the program. Both Dental Hygiene and Dental Assistant programs contribute dental health education services to numerous schools, agencies, and healthcare facilities to enrich the program curricula.

Occupational demand data for careers served by programs within the Sciences and Health **Professions Division:**

Job Title	2012 Employment	Projected 2022 Employment	Percent Change	Replacement Openings	Total Openings	Median Wage
Alcohol and Drug Counseling	1,956	2,445	25.0%	420	910	\$22.04
Child, Youth and Family Studies	2,837	3,094	9.1%	257	830	\$10.02
Dental Assistant	5,149	5,390	4.7%	241	1,070	\$21.08
Dental Hygiene	4,601	5,131	11.5%	530	1,180	\$34.67
Emergency Med. Tech.	4,404	5,053	14.7%	649	1,200	\$17.68
Health Unit Coordinator	2,965	3,523	18.9%	559	570	\$17.32
Licensed Practical Nurse	17,422	20,661	18.6%	3,239	4,250	\$20.36
Registered Nurse	55,953	65,430	16.9%	9,477	10,850	\$34.63
Social and	1,615	1,840	13.9%	225	420	\$14.58

Human Services						
Surgical Technician	1,795	2,130	18.7%	335	180	\$24.67
Healthcare Support Occupations	91,474	107,588	17.6%	16,114	36,230	\$13.93
Healthcare Technicians	163,612	183,754	12.3%	56,370		\$32.34

Curriculum Relevance to Meet Community Needs:

Program faculty and advisory committees review program curricula annually and make the necessary adjustments. Curriculum updates and adjustments are based on several factors such accreditation mandates, employer's requirements, articulation agreements, and transferability of programs to 4-year colleges. Dental Hygiene faculty and the advisory committee updated program goals and outcomes in spring 2016.

On an annual basis, an advisory committee reviews and provides feedback on the curriculum for each program. In order to maintain the quality of programs and meet requirements set by their respective accrediting organizations, the Dental Assistant, Dental Hygiene, Emergency Medical Technology, Nursing, Surgical Technology, and Health Information Management Careers follow specific accreditation guidelines. For example, the Surgical Technology program curriculum is set by the Association of Surgical Technologists. The sixth edition core curriculum was implemented in August 2013. The curriculum was mapped to all the required courses for the graduates receiving an AAS degree. The next curriculum revision release is scheduled for 2018 and at that time the curriculum will need to be re-mapped by the next accreditation visit in 2019.

The transferability of courses or programs are taken into account when conducting curriculum reviews. In some cases, necessary program adjustments must be made before articulation agreements are signed.

Program/Course Delivery Trends:

There are a mix of delivery methods throughout the programs that include hybrid, online, simulation and other experiential learning activities, and traditional lecture-based options. Currently no unified divisional focus exists regarding delivery trends. While programs develop curriculum changes and retention plans based on assessment practices, there will be an opportunity to identify common practices where appropriate.

Faculty in all of the programs have introduced alternative delivery options for students to achieve their academic goals. The alternatives have been prompted by occasional initiatives, however, and the programs and the students might be served by a comprehensive approach. As the strategic priorities are addressed over the next three years, such coordinated planning could emerge.

Assessment Accomplishments/Opportunities/Needs:

Assessment practices across the division vary significantly. The accredited programs have clearly delineated course and program learning outcomes tied to the professions. As the Minnesota State system develops transfer pathways that RCTC Science programs can align to, there will be clearly defined statewide course and program learning outcomes.

In anticipating the transfer pathway structure and a visit by the Higher Learning Commission in 2017, student learning outcome assessment plans are currently underway to conduct assessment at the course level which then will be tied to the program level assessment. Assessment efforts are a strategic priority for the division as is supported by the data available through the program trend analysis sheets and by the data being integrated into the annual program review process.

Divisional Strategic Priorities:

The following are top strategic priorities to improve the quality of programs within the Sciences and Health Professions:

Area	Strategic Plan Goal	Action Step	Outcome	Resources
All Programs	Develop and implement retention plans and initiatives. (Strategic Plan: 1.3)	Year 1: Research and develop holistic retention plans and develop strategies to implement. Year 2: Implement identified strategies after prioritizing them. Year 3: Reassess to determine effectiveness of the plan.	Increase fall to fall retention rates by 10% in area programs.	Data to establish benchmarks and research to determine best practices.
Dental Hygiene, Nursing Assistant, Surgical Technology, Behavioral Sciences, Healthcare Informatics/ CRM/HIT, Sciences	Examine curriculum for effectiveness and develop and revise new programming options to meet community needs. (Strategic Plan: 1.1, 1.2, 1.3, 1.4)	Year 1 Review curriculum and identify areas for revision and program development connected to changing needs of students and employers. Year 2 Develop new programs and courses and begin to implement them. Year 3 Preliminary review of the new programs and courses.	Revise and update curriculum, including new courses and programming.	Potential release time for new programming options.

All Programs	Develop and implement marketing strategies to attract students to the programs and raise awareness about employment opportunities. (Strategic Plan: 4.1)	Year 1 Development and implement a comprehensive marketing & recruitment plan. Year 2 Implement identified initiatives. Year 3 Make recommendations for adjustments for improvement.	Develop and implement targeted marketing plans for all the programs.	Collaboration with marketing department, data, and guidance regarding new marketing approaches.
Behavioral Sciences Mayo/RCTC Joint Programs Sciences	Create assessment map for programs that aligns course, program, and institutional level assessment, and implement initiatives based on the assessment process. Strategic Plan: 2.1.	Year 1: Faculty develop assessment maps that model best practice. Year 2: Gather the assessment data aligned with the mapping, review data and initiate opportunities for improvement. Year 3: Review collected data regarding initiatives and recommend adjustments in the process.	Complete one assessment process iteration for the noted programs.	Data, best practices in assessment processes, and technological support.
All Programs	Establish priorities for facilities upgrades and integrating new technology into the curriculum.	Year 1: Faculty develop list of equipment and software upgrades and new technology to be integrated in the curriculum. Year 2: Map out specifically how new technology will be integrated and establish first, second and third year purchase and integration priorities. Identify alternative resources and partnerships to support implementation. Year 3: Begin developing alternative resources in order to purchase priority items and begin implementation.	Integration of new technology in the classroom.	New partnerships, collaboration and fiscal resources.

CAREER AND TECHNICAL EDUCATION & BUSINESS PARNERSHIPS

Programs and Disciplines:

Associate of Art: Liberal Arts

Associate of Science

BUSINESS:

- Accounting
- Business
- Economics
- Supervisory Leadership

MEDICAL/ADMINISTRATIVE ASSISTANT

- Administrative Assistant
- Administrative Clinic Assistant
- Customer Service Specialist
- Healthcare Documentation Specialist
- Medical Administrative Assistant

TECHNICAL/SKILLED TRADES

- Building Utilities Mechanic
- Carpentry
- Computer Aided Design
- Precision Manufacturing
- Welding

LAW ENFORCEMENT

- Criminal Justice
- Law Enforcement

BUSINESS AND WORKFORCE EDUCATION

SCIENCES

- Equine Science
- Horticulture
- Veterinary Technology

MAP Division Summary: Career and Technical Education & Business Partnerships

Introduction:

The Business, Career, Technical and Workforce Education division includes academic transfer, occupational and non-credit programs in which faculty and/or staff serve in leadership roles for their respective areas. Specific details of each area are included in Appendix A.3

Programs/Disciplines/Services:

- Accounting
- Administrative Assistant/Administrative Clinic Assistant/Customer Service Specialist
- Automotive Mechanic
- Building Utilities Mechanic
- Business
- Business and Workforce Education
- Carpentry
- Computer Aided Design
- Criminal Justice
- Economics
- Equine Science
- Horticulture
- Law Enforcement
- Medical Administrative Assistant/ Healthcare Documentation Specialist
- Precision Manufacturing
- Supervisory Leadership
- Veterinary Technology
- Welding

Mission/Purpose:

Programs within this division meet the diverse needs of learners serving students who are pursuing entry into career paths, re-skilling for career change or advancement or for lifelong learning opportunities. In addition, this division includes programs serving entrepreneurs in the Southeast Minnesota region. Programs and services range from credit based Associate Degree, Diploma and Certificate programs to short-term, non-credit programs for customized training and continuing education and consulting services. Educational content focuses on specialized technical skill attainment, but also addresses the critical workplace skills of analytical and critical thinking, communication and ethics that support the current and future workforce needs of employers throughout the region.

Pride Points:

In planning for the next 3-5 years, programs look to build upon many strengths to continually improve the educational opportunities for students and align with regional workforce demands. Within the representative programs the following pride points provide a foundation for which to grow programming and enrollment:

• Strong interdepartmental and cross discipline collaborations

- External accreditation that validates program quality and learner outcomes
- Increased alternative course offerings (web, hybrid, face-to-face, and accelerated to meet student's needs)
- Faculty members, both full-time and adjunct, are well-qualified and maintain industry experience and specialized certifications
- Active and engaged advisory committees
- Specialized facilities with indoor and outdoor lab environments that support applicationbased learning
- Support of industry partners that provide program resources, experiential learning opportunities and job placement
- Hands-on, fast-paced demanding programs
- High career placement rates
- Multiple industry-recognized certifications and licensures
- Strong collaborations with business and community partners for incumbent workforce education
- Success in securing grant resources for course and program development that leads to sustainable college offerings

Three-Year Enrollment Trend:

The following chart provides three-year enrollment trend data, reported in Full Year Equivalents (FYE). One FYE equals 30 credit hours.

FYE Comparisons 2012 to 2015

Program/Discipline	2011-12	2012-13	2013-14	2014-15	3-Year
	00.00	00.45	00.05	07.00	% Change
Accounting	98.66	98.45	83.65	85.39	-13%
Automotive Mechanic	41.02	39.92	38.26	44.96	13%
Adm. Asst./Customer Service	174.52	113.19	141.47	137.4	21%
Building Utility Mechanic	94.05	94.89	87.85	84.23	-11%
Business	123.72	126.99	120.81	126.14	0%
Computer Aided Design	23	23.71	24.13	24.2	2%
Carpentry	17.05	18.65	15.61	19.71	6%
Criminal Justice	13.1	15.1	15.26	7.8	-48%
Economics	75.39	72.95	69.43	63.87	-12%
Equine Science	23.45	22.34	17.4	16.3	-27%
Horticulture	26.88	21.6	17.08	20.21	-6%
Law Enforcement	63.86	51.2	48.53	41.8	-18%
Law Enforcement – Skills	24.1	21.98	15.65	17.37	-21%
Medical Adm. Asst.; Documentation Specialist		81.03	67.27	62.73	-23%
Precision Manufacturing Technology			8.64	5.87	-32%
Supervisory Leadership	3.78	3.68	.93	.41	-89%
Veterinary Technology	49.56	56.58	64.45	55.78	-1%
Welding			24.22	18.25	-25%

Student FYE: Total Credits/30

Significant Internal Factors:

The ability to continuously improve and advance programming relies heavily on institutional prioritization and focus. Within the division, the following internal factors influence the capacity of programs to fully execute the proposed strategies to achieve goals.

- Overall enrollment decline similar to national, state and institutional trends
- Declining state investment in higher education and pressure to reduce costs for students
- Due to enrollment, some programs have limited UFT faculty to effectively support and grow the program by developing partnerships, co-curricular activities, outreach and involvement in institutional initiatives
- Declining and competition for scarce resources do not allow for programs to keep pace with the changing technology
- Student projects support institutional initiatives, programs and services including grounds and vehicle maintenance and marketing and promotion
- Disparities in student abilities and access to technology off campus

Significant External Factors:

Regional economic development initiatives position RCTC to build new and expand existing programs to meet the labor market demands. Employers value the knowledge and skills of graduates and seek opportunities to provide experiential learning that supports the application of these skills. Based on Labor Market Information (LMI) provided by the Department of Employment and Economic Development (DEED) occupational demand providing the most significant gainful employment opportunities in the southeast Minnesota region for graduates of programs within this division include the following:

			Projected	Char	nge			
Program	Job Title	Job Title 2012 Employment		Percent change	Numeric Change '12-'22	Replacement Openings	Total Openings	Median Wage
Accounting	Billing and Account Clerk	757	879	16.10%	122	140	260	\$17.01
Administrative Assistant	Secretaries/ Admin. Assistants	1,747	1,884	7.80%	137	210	350	\$16.88
Automotive	Automotive Service Tech	1,310	1,358	3.70%	48	330	380	\$17.21
Building Utility	Maintenance and Repair Workers	1,761	1,820	3.40%	59	340	400	\$18.63
Business	General Operations Manager	2,697	2,832	5.70%	153	500	650	\$36.45
Carpentry	Carpenter	1,941	2,383	22.80%	442	240	680	\$19.61
Customer Service Specialist	Customer Service Rep.	3,545	3,686	3.90%	138	960	1,100	\$14.36

Law Enforcement	Police and Sheriff's Patrol Officers	784	752	-4.10%	-32	250	250	\$25.89
Medical Administrative Assistant	Medical Secretaries (statewide)	7,893	9,807	24.20%	1914	950	2860	\$19.18
Precision Manufacturing Technology	Computer Numerically Controlled Machine Technology	93	134	44.10%	41	30	70	\$21.10
Welding	Welding, Soldering, Brazing	258	346	34.10%	88	60	150	\$19.42

While new growth within some of the occupations is flat or declining, replacement hiring due to retirement, as well as the limit of program offerings within the region, are contributing factors in program prioritization. In addition to occupational demand, wage data is a key factor to ensure employment opportunities in the prioritized programs provide good earning potential and advancement opportunities for students. Finally, in many of these fields the demand was greater in Southeast Minnesota than the projected growth statewide.

Occupational demand that is stable or declining or is limited in the total number of job openings in southeast Minnesota within this division include the following:

		9019		Ch	ange	n i	T 1	N. P.
Program	Job Title	2012 Employment	2022 Employment	Percent change	Numeric Change '12-'22	Replacement Openings	Total Openings	Median Wage
Computer Aided Design	Mechanical Drafters	18	18	0.00%	0	10	10	\$38.34
Equine Science	Animal Trainers	60	64	6.70%	4	30	30	\$20.90
Horticulture	Pesticide handlers, sprayers and applicators	126	125	-0.80%	-1	30	30	\$15.49
Software Application Specialist	Desktop Publishers	37	36	-2.70%	-1	10	10	\$21.17
Veterinary Technology	Veterinary Technologists and Technician	216	246	13.40%	29	20	50	\$17.62

Employment growth in both percentage and total openings provide data to support program prioritization and investment. RCTC has identified specific goals to develop or expand programming to serve the workforce needs for occupations with significant projected growth.

Curriculum Relevance to Meet Community Needs:

Curriculum content is largely determined by external licensure bodies and advisory boards. Regular review and updates gauge the relevancy of content and the degree to which programs meet the relevant learning objectives. A comprehensive review of program viability, based on labor market demands, will ensure that the education level attained by students is necessary and results in gainful employment for students. The current economic climate, labor shortage and projected growth of the region, has increased the demand for all occupations for which RCTC offers educational programs. However, in some cases employment opportunities are not significantly better for graduates than for job seekers without similar education.

Program/Course Delivery Trends:

Courses in Accounting, Administrative Assistant, Business, Economics and Healthcare Documentation are offered in multiple formats including hybrid, on-line and face to face. Programs that have courses with significant lab components have limited or no on-line offerings. Delivery methods must be responsive to the demographic and societal changes of students served. National, state and local trends indicate that students enrolled in college are:

- More likely to enroll part-time
- Have family and work responsibilities
- Less likely to be prepared adequately for rigors of higher education

Program courses need to offer flexibility by providing, experiential learning through internships, credit for prior learning, on-line and flipped classrooms, learning communities, etc.

Assessment Accomplishments/Opportunities/Needs:

Programs within the division determine learning outcomes through national skill standards and advisory board and employer input. Accredited programs are more structured in the process of assessment and data collection. Due to content structure, most programs are offered in a cohort model that allows faculty to regularly assess student learning. The college is in the process of developing a comprehensive Institutional Assessment Plan that will provide clarity and consistency in the process. Programs within the divisions will need to collect data on the relevance of program learning outcomes and measure the extent to which graduates of the program meet those outcomes. Efforts to improve the assessment of student learning in highly demanded workplace skills needs to be implemented.

Division Goals:

The collective goals of programs within the division align with the institutional strategic priorities of student success, teaching and institutional effectiveness and program alignment with economic and workforce needs.

Student Success: Engaging with students early and often is critical to ensure student success. The following engagement efforts will be implemented to improve student retention and completion:

- Implement program orientation and/or application process
- Faculty involvement in academic advising

Teaching Effectiveness: Improvement in teaching effectiveness will be achieved through the following area strategies:

- New program accreditation
- Curriculum mapping and student learning outcomes assessment
- Explore the feasibility of alternative delivery formats including simulation, experiential education and shared facilities
- Evaluate the facility needs for technical programs to expand and centralize labs and improve teaching effectiveness and efficient scheduling
- Flexible offerings through strategic scheduling
- Expand on-line programming with established quality standards
- Align professional development and evaluation with program and student learning

Program Alignment with Economic and Workforce Needs: Collaborative partnerships will be explored to develop new programs, expand experiential learning opportunities and increase opportunities for leveraged funding to financially support investment in facilities, equipment and professional development.

- Rebrand the Automotive Mechanic Technology and Building Utility programs for better alignment with job titles in high demand occupations
- Expand programming to meet new skill requirements in Building Maintenance and Repair including alternative energy management
- Develop new programming to meet the demand of high growth occupations including hospitality and construction management
- Develop secondary education and Baccalaureate degree career pathways
- Increase awareness of career and technical education through the use of social media
- Secure NATEF certification that will lead to the development of state of the art automotive technology center
- Construct a simulation house for the law enforcement skills training program that will be utilized by partners of the Regional Public Safety Training Center
- Increase alignment with business and industry to expand experiential learning partnerships to meet the changing workforce needs

Dean's Strategic Priorities and Resources Needed:

Given the significant internal and external factors identified, a realignment within Academic Affairs is necessary to achieve these goals. To increase our visibility in the community and meet the rapidly changing needs of the workforce, a newly created Associate Dean of Career and Technical Education will support the efforts of the division.

Based on the analysis of individual area reports and program goals that were developed through this planning process the following strategies and initiatives have been identified as strategic priorities that will require investment in the next 3 years and beyond.

Area	Goal/Alignment	Action Step	Outcome	Resources
Automotive	Achieve NATEF certification (Strategic Priority 1.2)	Year 1 *Draft application and supporting documents *Identify gaps in processes, data, assessment *Solicit feedback from advisory board *Visit other automotive programs for best practices Year 2 *Plan for space reorganization that will allow for more learning labs and additional equipment *Submit recommendations for inclusion in master facility plan *Secure funding to remodel space including fund raising campaign and leveraged equipment Year 3 *Begin space reconfiguration	Certification will allow the program to receive donations from large dealers that will provide the latest technology to prepare students for the career within this field.	Initial certification and annual reaffirmation expenses Faculty release for application development and on-site evaluation Facility remodeling costs include design and construction
Accounting/ Business/ Marketing	Increase enrollment by 2% annually through partnerships with businesses, community organizations, educational partners and active promotion (S.P.: 1.4) Collaborate with the Business Technology department to create a hospitality emphasis within the management degree that includes customer service focused courses (1.4)	Year 1 * Develop hospitality career pathways and articulations with K-12 and partner with businesses for awareness and promotion * Partner with businesses to develop and execute an awareness and promotion campaign Year 2 *Develop university articulations for Bachelor degree completion Year 3 *Program/course evaluation for alignment with relevant program learning outcomes	Hospitality pathway from CTECH to Bachelor's degree that results in enrollment growth and program sustainability	*Develop promotional materials *Develop a social media campaign
Admin. Assistant	Collaborate with the Business department to offer customer	Year 1 *Develop hospitality career pathways and articulations with K-	Hospitality pathway that meets the	*Promotional materials

	service courses in	19 and partner with businesses for	occupational	
	service courses in	12 and partner with businesses for	occupational	
	the Management -	awareness and promotion	demand	
	Hospitality Emphasis	* Partner with businesses to		
	degree	develop and execute an awareness		
	(Strategic Priority:	and promotion campaign		
	1.4)	Year 2		
		Evaluate results and make		
		adjustments		
	Create a Hospitality	Year 1		
	with Concierge	* Meet with area hospitality		
	emphasis and onsite	businesses to explore opportunity		
	customer service	to offer a customer service courses		
	training (Strategic	on-site that would		
	Priority: 1.4)	*Develop new or revise existing		
	,	courses to meet identified need		
		that may include on-site and on-		
		line courses.		
		Year 2		
		* Partner with businesses to		
		schedule and promote on-site		
		course offerings		
		Year 3		
		*Evaluate program effectiveness		
		and sustainability model		
Building	Implement	Year 1	Provide	Internal resources
Utilities/	-			
-	Programming in	*Survey employers	continued	for survey
Welding	Alternative Energy	*Conduct full needs and	learning	development;
	Maintenance	sustainability analysis	opportunities	travel to explore
	program (Strategic	*Revise curriculum	for incumbent	best practices in
	Priority:1.2)	*Determine facility/technology	workers that	facility and
		needs and develop plan	addresses the	curriculum
		Year 2	skill gap	development.
		*Identify resources for		Facility
		implementation		reorganization
		Year 3		and remodeling;
		Implement plan		Equipment
				purchases
				Additional faculty
				and lab assistant

	Remodel and expand facilities to improve safety and increase capacity, efficiency and student learning (Strategic Priority:1.2)	*Evaluate model programs and facilities *Develop a plan to remodel or expand space to accommodate growth *Submit for master facilities plan Year 2 Secure resources to expand/remodel facility Year 3 Facility construction	Begin planning process to reorganize lab/lecture facilities	Facility/space/ lab/technology needs will be determined through the planning process
Carpentry	Expand programming in construction management (Strategic Priority: 1.2)	*Review 2-4 year program models *Identify curriculum that may include components from the Building Utility and Carpentry programs. *Solicit input for local employers, and advisory boards *Determine facility and staffing needs to accommodate growth Year 2 *Submit curriculum through AASC *Plan for space reorganization that will allow for more learning labs and additional equipment *Submit recommendations for inclusion in master facility plan *Secure funding to remodel space including fund raising campaign and leveraged equipment Year 3 *Begin space reconfiguration	Establish a collaborative program that meets the workforce needs of a growing community.	Facility/space/lab/technology needs will be determined through the planning process
Law Enforcement	Build a simulation structure to accommodate Law Enforcement Skill program needs (Strategic Priority: 1.4)	Year 1 *Develop site plan *Solicit support contributions from local agencies and/or building supply companies Year 2 *Work with Carpentry program to build facility	Follow through with commitment to regional public safety training center to construct a shared facility Promote the LAWE program with building signage	Design and construction costs assuming a student based project

ACADEMIC EFFECTIVENESS AND INNOVATION

Programs and Disciplines:

Associate of Art: Liberal Arts

Associate of Science

PHYSICAL EDUCATION:

- Health
- Physical Education
- Recreation
- Sport Management

ACADEMIC EFFECTIVENESS AND INNOVATION

- Assessment Methods
- Evidence-based Decision Making
- Classroom Management for Safety
- Curriculum Mapping
- Teaching Excellence

ALTERNATIVE LEARNER PATHWAYS

- Credit for Prior Learning
- Concurrent Enrollment
- Honors/Phi Theta Kappa
- Postsecondary Enrollment Options (PSEO)

ACADEMIC SUPPORT **SERVICES**

- **Career Planning Services**
- Comprehensive Learning Center
- Library

INSTITUTIONAL QUALITY COUNCIL

INTERNATIONAL STUDY **ABROAD**

ONLINE EDUCATION AND **EDUCATIONAL TECHNOLOGY**

MAP Division Summary: Academic Effectiveness and Innovation

Introduction:

The Academic Effectiveness and Innovation division covers a range of responsibilities, initiatives and academic support services that seek to promote teaching excellence and alternative learner pathways, enhance the student learning experience, improve student success, and promote a culture of continuous quality improvement. The Master Academic Planning data suggest the need to expand professional development activities which promote a culture of assessment, inclusion, safety, continuous quality improvement, and alignment to the College mission. In addition, the (SEMC, 2016) data suggest a need to align academic support services and limited resources with those students most at risk. Both alignments will require a coordinated, comprehensive, collective, and collaborative effort across all divisions and departments and provide the resources necessary for advance the institution.

Programs/Disciplines/Services:

- Academic Effectiveness and Innovation Professional development that provides: effective models of teaching excellence (learning communities, Integrated Instruction, team teaching, Fastrac); evidenced based decision making to improve instruction and learning; classroom management techniques that promote safety; curriculum mapping; developing and implementing assessment methods that accurately measure learning, prior learning, and competence.
- Expanding alternative learner pathways: Credit for Prior Learning (CPL); Honors/Phi Theta Kappa; Concurrent Enrollment; Postsecondary Enrollment Options (PSEO).
- Academic support services that promote student success: Comprehensive Learning Center; Library; Career Planning Services.
- Institutional Quality Council: provides direction, support, resources, and reporting of work directly associated with institutional quality; development, implementation and reporting of an integrative assessment system that promotes continuous quality improvement.
- International Study Abroad
- Online Education and Educational Technology
- Physical Education, Health, and Recreation; Sport Management

Purpose:

To support quality education to a diverse and growing community of learners by highly trained faculty and staff, assist RCTC to fulfill its mission of teaching excellence and student learning, and demonstrate accountability to our stakeholders. All educational pathways and teaching must holistically provide relevant, inclusive curriculum, and academic support services that engage the learner and promote success.

Pride Points:

There are a number of impressive accomplishments from areas within this division that offer foundational support for future innovation necessary for improving instruction, student learning and success. The accomplishments are as follows.

- Increased collaboration across disciplines resulted in the creation of innovative course curriculum and delivery, including team teaching, learning communities, integrated instruction and accelerated formats.
- Faculty who incorporate active, engaged, or project based learning that resulted in improved learning or retention presented best practices to the college community at "Lunch and Learns".
- Interdepartmental collaboration at PLDC meetings to enhance course scheduling to better meet program needs and student success.
- Continued promotion of quality online education through Quality Matters and hosting of regional professional development workshops for on campus and online faculty.
- RCTC and the southeast region is leading the Minnesota State system in faculty professional development on credit for prior learning (CPL) and competency based assessment (CBE), and increasing the number of courses available for CPL or CBE.
- The institutional response to the Higher Learning Commission 2015 feedback report has been collaborative, comprehensive, and thorough. The resultant work and outcomes include the formation of the Institutional Quality Council and development of an Institutional Assessment Plan.
- The RCTC library supports Winona State University and hosts a robust collection of resources that support undergraduate, graduate, and doctoral degree programs.
- Newly remodeled classroom and meeting space provide the resources necessary for literacy instruction, collaboration, and innovation.
- The Phi Theta Kappa (PTK) chapter received Five Star Status and the chapter advisor received national recognition in 2016. The chapter assisted in the reinstatement of an Honors Program that will begin fall of 2017.
- Post-Secondary Enrollment Option (PSEO) has record high enrollment over the past two years and these students overall maintain high persistence rates and GPA.

Instructional Areas:

Academic Excellence; Assessment; Curriculum; and Faculty, Staff, and Student Worker Professional Development: Data from Area MAPs, HLC Feedback Report (2015), and course schedules identify a number of innovative instructional approaches, grounded and supported in literature, that were incorporated within a variety of departments since 2012 to improve courses success and retention. While there is increasing awareness of national best practices, the College is somewhat limited due to the current technology software. For example, learning communities are extremely valuable with student retention and engagement, however the process for coding and course registration is limited by the student records system. The Minnesota State system is working to address these limitations. A summary of the innovative pedagogy approaches are listed in the following table.

Table: Innovative Pedagogical Approaches utilized:

Sections Offered	FY12	FY13	FY14	FY15	FY15
LCOM	X	X	X	X	X
Accelerated Learning				X	X
Program (ENGX)				Α	Λ
Statway					X
Flipped Classrooms				X	X
Integrated Instruction			X	X	X
Action/Project Based	X	X	X	X	X
Learning	Λ	Λ	Λ	Λ	Λ
Competence Based				X	X
Instruction				Λ	Λ
Team Teaching			X	X	X
Internships	X	X	X	X	X
Simulation	X	X	X	X	X

The College has expanded the application of learning modalities and incorporated innovative approaches to promote student success. Opportunities exist to enhance and maximize discussion, review, and promotion of national best practices. In addition, opportunities exist for training on data informed decision making, classroom management, and assessment activities. While there is a dedicated RCTC committee and council for curriculum development and revision, the process can be made clearer. The curriculum review process needs to be better documented and transparent, encouraging discussion and continuous improvement.

Due to our changing student demographic, additional training related to diversity and equity as it relates to classroom management and curriculum would benefit both faculty and students. This training would help advance learning environments of inclusion and safety, and be responsive to the growing diversity of our students, faculty, and staff. A documented process of continued quality improvement for these areas will continue to moving the College forward.

Curriculum is largely determined by RCTC faculty and managed in Academic Affairs and Standards Committee (AASC) in collaboration with administration. Members of AASC are working to document the process and standards in which curriculum is reviewed. In addition, RCTC uses Program Navigator when offering new programs or making changes to existing ones. While a number of departments work with programs to create courses that will address specific content, there is no formal process to assure transferability of general education or Liberal Arts supported courses or structured time for faculty to collaborate on curriculum.

Professional Development Goals:

- Create and provide professional development opportunities that support student engagement, a culture of inclusion, assessment, and high quality curriculum development that increases student success in at risk populations.
- Develop a process to pilot new and emerging teaching models and practices that promote student success.
- Revise the faculty evaluation process to include participation in student learning assessment, evidence of data informed decision making, and classroom management.

- Mentor and support faculty as they design new courses and upgrade existing ones.
- Recognize and promote outstanding achievements.
- Develop an onboarding process for new faculty and academic staff.
- Provide professional development on curriculum mapping and curriculum development.
- Develop a resource kit to document AASC procedures and help new faculty better understand committee processes.

Alternative Learning Pathways:

This area includes concurrent enrollment, Post-Secondary Enrollment Option, Credit for Prior Learning and Honors/Phi Theta Kappa.

Three Year Enrollment Trends specific to this Instructional Area

Area	2011-12	2012-13	2013-14	2014-15	4-Year % Change
Concurrent Enrollment	265	247	301	33	-80%
PSEO (Students Enrolled Fall and Spring)	392/410	369/388	450/484	523/540	+46%
CPL Awarded (Credits Awarded)	246	291	119	297	+20%
International Study Abroad (number of student enrolled)	18	42	25	38	+77%
Online Education (percent of students taking one online class)	17%	18%	22%	23%	+35%

The data suggest several opportunities for enrollment growth. Growth will require a commitment of resources over the next three years.

- RCTC Concurrent Enrollment (CE) offerings is down significantly due to Minnesota Department of Education and HLC clarification on faculty qualifications required to teach at the post-secondary level, and RCTC's response to a CE review. Current faculty and mentors meet credentialing requirements. The lack of processes and procedures to assure high quality, rigor, and student feedback will be addressed in the NACEP accreditation process. The advisory board for this program will begin this work August, 2016. Area secondary school districts are requesting RCTC concurrent enrollment courses at their schools.
- PSEO enrollment continues to grow. The students overall demonstrate higher persistence and GPA in comparison to the general student population. This is a cost effective and productive program that creates pathway to promote and increase enrollment.
- Grant opportunities exist for programs that promote secondary learner pathways to degree completion. While individuals have written grants on behalf of RCTC, a Grant Writer, shared with local school districts or other Minnesota State institutions, would have the dedicated time to seek the necessary financial resources needed to create and pilot innovative initiatives for CE and PSEO, and other collaborative initiatives.
- While faculty report a growth in the number of CPL credits awarded, the data collection, recording, and process of coding and transcribing these credits remains cumbersome and inconsistent across the system. Professional development and Charting the Future

- initiatives are key to faculty creating and promoting these accelerated pathway opportunities for adult learners.
- Data from the 2016 PTK Honors in Action project supported the reestablishment of an Honors Program and will attract new students and provide the rigor and challenge desired.

Academic Support Service:

- There is a need to re-imagine the CLC and develop a new student support model that is responsive to our changing demographics and resource availability. Faculty, staff, volunteers and administration must determine what services will be provided and to whom, develop a process for all tutors to access assignments; explore the notion of "success centers" across campus, identify and implement a sustainable leadership and supervision model for this area, identify and measure meaningful data, and determine an assessment tool for these services.
- The Library seeks to be the center of student and faculty success by promoting a variety of library services, offering informational literacy curriculum, updating their website, promoting a variety of resources for teaching and assessment, and identifying a tool to assess student learning.
- A number of student surveys over the past five years reflect a gap in assistance with career planning and placement. In addition, research suggests a clear academic plan within the first semester as essential to student success and engagement. While several programs offer employment strategy curriculum, this is often taken toward the end of one's program. RCTC has the ability to leverage our relationship with the co-located Workforce Center at Heintz to enhance career services for our students. There is a need to create a realistic and sustainable career orientation and planning process for all students who are uncertain of their major, explore and implement academic planning aligned to "meta majors", and assure students have an academic (career) plan that is accurate and realistic.
- Academic Support Services can enhance the promotion of their services, resources, measurable outcomes, and continuous quality improvement through professional development activities.

Institutional Quality Assurance:

The College has a longstanding history of promoting high quality learning experiences that are routinely evaluated and revised. From 2009-2014, data input and documentation of the overall process resided within the Integrated Planning Process (IPP). During this time, the Strategic Operations Committee reviewed and promoted activities to advance continuous quality improvement. While extensive data was available, faculty and staff had questions related to data integrity and the lack of specific and meaningful data necessary to make informed program or curriculum changes. Due to changes in institutional leadership and the complexity of the process, the use of IPP for annual program review and continuous quality improvement was suspended in 2014. The annual program review process then transitioned to a more manual mode. While the current process does capture department and program information, it does not afford a way to collect continuous quality improvement activities across the campus.

Under current leadership, the College has completed a comprehensive academic program review and attended HLC academies. Data from these activities suggest the establishment of an Institutional Quality Council (IQC) with collaborative leadership from both academic and student affairs. This committee will provide leadership, guidance and direction for projects or continuous quality improvement initiatives such as: strategic planning, HLC Action Projects, Charting the Future initiatives, and stakeholder survey feedback. The IQC will also establish methods to effectively and efficiently communicate and promote this work to all stakeholders.

International Study Abroad:

With a growing need for global awareness and equity, the College is positioned to grow and expand cultural learning opportunities through study abroad. RCTC faculty, staff and administration spent the past year designing and developing a Study Abroad Procedure Manual that meets College, State, and Federal policy and legal requirements. During this time, study abroad was suspended. The new procedure manual will provide faculty and those traveling the safety and protection needed for a high quality, global learning experience. Given the growing diversity of the Rochester community and the value recognition of global awareness and understanding from area employers, this program is now positioned to align with current programs and courses and further expand its offerings. The following are key actions for this area:

- Review with faculty and implement the Study Abroad Procedure Manual fall, 2016. Schedule related curriculum when appropriate per the procedure.
- Assemble a Global Education Advisory Committee to oversee and provide feedback.
- Promote this learning option and explore ways to promote study abroad across the system options.
- Create a process for documentation and recordkeeping that is efficient and in compliance with college, state and federal regulations.

Online Education:

The last online strategic plan was created by the Distance Education Committee in 2010 and completed in 2013. The committee changed the name to Academic Technology Committee (ATC) in 2013, to reflect the role and significance of various technology tools to support student learning. Later for efficiency, the ATC merged into the Technology Committee. While faculty are represented on this committee, the focus is comprehensive.

Educational technology maintains the technology and provides training for D2L Brightspace. The Technology Support Center provides students the help they need and repeatedly receives high satisfaction ratings from students, faculty, and staff (SSI, 2012). RCTC utilizes a variety of technology and resources in its online offerings. To enhance the utilization of these resources and to ensure compliance with ADA requirements and other policy, procedures and best practices, a formal process to review, implement and inventory technology and resources used in classes is needed.

Recent student feedback data suggest students desire access to grades and expect high quality faculty interaction in all learning formats. While Quality Matters (QM) standards are promoted and training provided to RCTC faculty in a variety of formats, a small number of faculty have completed the training, and less have completed the external review process. Faculty who have

completed QM training report significant improvement in student learning and satisfaction. To date, a formal professional development process does not exist to ensure consistent training for faculty new to teaching online. Finally, national data suggest students at community colleges are taking fewer credits and working more hours. As a result, the need for courses necessary for graduation or progression are a growing concern and this new factor impacts course scheduling. A review of the data provided in this division MAP's suggest the following:

- Fully online course delivery has decreased in the past five years by 10%, however the use of technology enhanced delivery (hybrid) has increased by 10%. According to faculty, hybrid models provide greater student learning opportunities and the opportunity for students to learn the use of technology or software with direct help from faculty.
- RCTC has a number of fully online programs, however online support services are limited. Data from national and institutional surveys suggest students desire more online tutoring, online advising, and online counseling (SEMC, 2016; Student Satisfaction Inventory, 2016).
- Fully face to face offerings are not consistent in the use of LMS (D2L) to post syllabi, schedules, communication updates, or grades.
- Educational Technology host a variety of training sessions for faculty throughout the year, however, faculty generally seek one on one training when questions arise. Faculty learn the basics of D2L through D2L 101. Short tutorials that support managing functions within the course are available for faculty to share with students. Awareness of resources available for both students and faculty within Educational Technology vary. There is a need to develop a professional development process for faculty new to teaching online.
- There is a need to develop a process for faculty to explore e-learning technologies for possible adoption and use in RCTC courses. Opportunities also exist to create a repository for e-learning technologies and resources.
- The number of faculty participating in Quality Matters trainings averages 16 per year over the past five years. However, there is no requirement for QM training prior to teaching online. Faculty feedback from this training within the College, system and nationally suggest a strong positive relationship between the process and application of the QM rubric within the course and student satisfaction.
- Strategic Enrollment Management Academic Affairs (SEM AA) analyzes course success within different delivery modes, and develops and implements interventions to increase student success in the classroom. There is a need to identify and support related professional development in this area to achieve planned outcomes.

Given these findings, the institution would benefit from developing a comprehensive Online Education Strategic Plan that will incorporate many forms of learning technologies and address: student success, instructional expectations, professional development needs, and infrastructure. There needs to be a comprehensive inventory of all current technologies being incorporated for instruction and develop a site to maintain such inventory. The plan must address the great disparity in digital literacy and success of students identified in the opportunity gap. Finally, work done on the assessment of student learning must also work in the online learning environment.

Physical Education, Health, Recreation; Sport Management

Three-Year Enrollment Trends:

Program/Discipline	2011-12	2012-13	2013-14	2014-15	4-Year % Change
Health	78.59	83.48	87.06	76.66	-2.4%
Physical Education	80.3	76.72	80.73	64.08	-20%
Recreation	3.8	3	2.3	3.2	-15%
All College Enrollment	4490.77	4488.01	4321.86	4154.31	-7.4%
Awards	2011-12	2012-13	2013-14	2014-15	Total
Sport Management AAS	1	4	3	1	9
Personal Trainer Certificate	0	0	0	1	1
Coaching Certificate	0	1	0	1	2
Coaching Diploma	1	2	4	1	8
Personal Trainer Diploma	2	1	3	8	14
Group Fitness Instructor Diploma	1	0	1	3	5

Enrollment in Health courses remains strong as several of courses in this area are required in health related programs. While there has been a significant decrease in physical education enrollment, the decrease occurred after the introduction of FYEX and may be related to a reduction in number of physical education credits required by our transfer institutions. There is need to evaluate course scheduling to improve fill rates and course success. While there was a significant amount of common course outlines updated during FY16, a number of courses remain to be updated this year.

Occupational Data:

Job Title	2012 Employment	Projected 2022 Employment	Percent Change	Replacement Openings	Total Openings	Median Wage
Fitness Trainers and Aerobics Instructors	358	377	5.3%	40	60	\$15.24
Recreation Workers	401	432	7.7%	50	80	\$11.15

Changes in degree requirements and wages suggest a bachelor degree is key to employment in this sector. While employment options exist for the AAS, Diploma, and Certificate in Sport Management degree pathways as recreation workers, these pathways are limited with small projected growth and do not provide a livable wage. Employment, graduate data, and instructional cost data suggests the need to explore the creation of an AS degree pathway,

articulated to vibrant bachelor degree programs. Health courses also support a number of allied health, nursing programs, and licensure requirements.

Significant Internal Factors:

The following factors are relevant to this entire instructional area, and were taken into consideration while forming divisional goals:

- Declining overall enrollment consistent with national and state trends.
- Requests from faculty for training that addresses ongoing challenges with classroom management, assessment, student engagement, Quality Matters, and curriculum development.
- Not all areas supportive to the awarding of credit for Credit for Prior Learning.
- Multiple Minnesota Transfer Curriculum (MnTC) course options compete for scarce resources, resulting in reduced fill rates and institutional efficiency.
- There is increased diversity in our community and student population.
- A need exist for a process and tool to capture and measure assessment activities at an institutional level.
- Academic support service areas promote student and institutional success with reduced resources.
- Reduction in staffing impacts work volume and capabilities to meet priorities.
- Technology and technology related tools are rapidly growing and changing.
- Required physical or health credits align to our community emphasis on wellness and reinforce the importance of personal responsibility.
- Students are requesting more accelerated degree pathways and Credit for Prior Learning options (ALI, 2015)

Significant External Factors:

A variety of external factors exist that impact actions necessary to be taken within the division. Key external factors are identified below.

- Need for Educated Workforce: The Mayo Clinic, Rochester's largest employer, and other local employers require an associate degree for advancement or promotion. Much of the planned growth through Destination Medical Center (DMC) will require an educated workforce with some form of post-secondary credential.
- **Online Learning:** Students are requesting consistency in the online learning experience and more local higher educational institutions are promoting courses and faculty that have achieved the Quality Matters Seal of Excellence.
- Cost of College: PSEO enrollment at RCTC has exceeded 500, and remains a high quality and affordable option for area high school students.
- Accreditation requirements: the RCTC 2015 Higher Learning Commission Feedback Report notes the need for the creation of an Institutional Assessment Plan providing evidence of student learning, organizational effectiveness, and continuous quality improvement.
- **Instructor Credentialing Requirements.** Local school districts want to grow concurrent enrollment with RCTC. HLC clarification on instructor credentials levels the playing field for post-secondary institutions offering concurrent enrollment. The

- Minnesota State system now requires all post-secondary institutions to be National Alliance for Concurrent Enrollment Partners (NACEP) accredited by 2021.
- Alternative Learning Pathways. Potential students and employers are requesting assessment of business and industry training obtained outside the traditional classroom and are requesting CPL or Credit Certification (CC).
- Minnesota State Charting the Future #3: Directive to certify student competencies and capabilities, expand pathways to accelerate degree completion through credit for prior learning, and foster the award of competency-based credit and degrees.

Assessment Needs:

The college is in the process of developing an Institutional Assessment Plan. The College recently completed the learning outcomes for the Liberal Arts and Science degree. The disciplines and courses that make up general education and the Liberal Arts Degree will undertake curriculum mapping and related assessment to the degree outcomes this academic year. This activity will provide a collective and comprehensive review of course offering and learning objectives and will identify and reduce duplication within major so effectiveness and efficiencies can be achieved.

There is a less developed understanding and approach to assessment within the academic support areas including the Library, Online Education, and Educational Technology, Counseling, Advising, and the Comprehensive Learning Center. National data suggest academic support services are essential to student success, yet how to measure these services at RCTC has remained elusive. Each of the above areas have noted a need for clear and consistent assessment tools.

Overarching Division Goals:

This instructional division supports teaching excellence, effectiveness, and advancing pathways to degree completion by promoting student success for all students and at risk populations. Success in this area will require intentional focus on developing the necessary processes for continuous quality improvement and professional development activities that promote classroom management, inclusion, equity, curriculum development and assessment. Division goals align to RCTC and Charting the Future strategic initiatives. Below are the overarching goals identified within this division's MAPs.

- Promote student success, equity, and inclusion through high quality curriculum, global learning opportunities, and professional development. (MnSCU Goal 1, 3; RCTC 1.2, 1.3, 2.3, 4.3).
- Increase enrollment through the promotion of alternative learner pathways (CTF 2.2.2; RCTC 1.4).
- Create a culture of continuous quality improvement (RCTC 2.1, 2.4).
- Align academic support services to increase student success in identified at risk populations.
- Align programming in Health, Physical Education, Recreation and Sport Management

Resources Needed to Achieve Division Goals:

There were two striking outcomes associated with achieving goals identified in the divisional MAPs. First, there is a need to realign Academic Affairs divisions in order to provide the necessary support and resources to grow initiatives that provide greater student success and academic effectiveness. Second, an institutional culture of continuous quality improvement is necessary if we seek to remain relevant and responsive to local, regional, and national demands. The following resources were identified to reflect these outcomes:

- Input and involvement from faculty and staff to plan, implement, and assess faculty professional development, and assure alignment to academic affairs and institutional strategic priorities.
- Defined process and system for curriculum mapping, evaluation, and assessment.
- Dedicated focus and attention to determine and implement assessment of the library and related services.
- Input and involvement from faculty and staff to create a new comprehensive strategic plan for online learning.
- Enhanced process and structure to increase CPL options, advising, and promoting of such options.
- Faculty and staff engagement in the re-designing of the Comprehensive Learning Center, supplemental instruction, and tutoring.
- Faculty and staff engagement to build and promote a robust Honors Program that will attract new students.
- Technology solution for the planning, tracking, and reporting of assessment initiatives.
- Current e-learning technologies to promote and enhance student success.

STUDENT SUPPORT SERVICES

Programs and Services:

- ADMISSIONS AND RECORDS
- ADVISING/COUNSELING
- CAMPUS SAFETY AND SECURITY
- DISABILITY SUPPORT SERVICES
- FINANCIAL AID
- OFFICE OF STUDENT CONDUCT

- STUDENT EMPLOYMENT
- STUDENT HEALTH SERVICES
- STUDENT LIFE & ATHLETICS
- STUDENT SUPPORT SERVICES (TRIO)
- UPWARD BOUND (TRIO)
- VETERANS SERVICES

MAP Division Summary: Student Support Services

Programs/Disciplines/Services:

- **Admissions and Records**
- Advising/Counseling
- Campus Safety and Security
- Disability Support Services
- Financial Aid
- Office of Student Conduct

- Student Employment
- **Student Health Services**
- Student Life & Athletics
- Student Support Services (TRiO)
- Upward Bound (TRiO)
- **Veterans Services**

Introductory Comments:

Student Affairs is responsible for long-range planning, policy development, implementation and the general administration of student affairs programs (listed above). The vision of Student Affairs is to support and encourage students to achieve their goals and navigate pathways to success by providing comprehensive student services. The divisional mission is to deliver consistent, quality services which support the college and empower students for life and work in a global community.

Pride Points:

- Admissions and Records staff are knowledgeable, experienced professionals that serve as the "go-to" place for answers, strive for excellent customer service, have strong working relationships with area partners including local high schools, and through a partnership with Winona State University-Rochester have shared staff to facilitate transfer.
- Advising and Counseling provided over 17,000 contacts to students through appointments, walk-ins, classroom presentations, workshops and new student registration.
- Advising and Counseling received a grant from Great Lakes Higher Educational Authority to provide startup funds for a student emergency fund totaling \$52,000 over two years. Advising and Counseling received a \$10,000 grant from the Minnesota State system inclusion grant to fund *Moving Forward*, a project aimed at creating greater awareness about poverty and the needs of low-income students. Part of the grant assisted low-income students to be retained in college.
- Counselors began the Career Workshop series with transfer options for students entirely in Rochester. This was presented with Mayo School of Health Sciences and the University of Minnesota Rochester.
- Disability Support Services (DSS) was ranked number one with the Minnesota State system for overall percentage of students served with disabilities compared to total enrollment. Nearly eight percent of students enrolled at RCTC have identified themselves to DSS and are eligible to receive accommodations.
- Financial Aid team disburses \$45 million+ in financial aid annually and maintains a consistent low default rate.
- Student Employment provides positions both on campus and through the community through off-campus work agreements for approximately 600 students per year.

- Student Life offers 29 clubs and programs; a Welcome Day for first-year and transfer students; an award winning Student Senate; Visual and Performing Arts programs in collaboration with faculty and a food cupboard. Athletics has a legacy of champions with more than 191 All-Americans. Athletics offers men's baseball, football, and wrestling; women's soccer, softball and volleyball; and men's and women's basketball and golf.
- TRiO has been at RCTC for over 30 years. The Student Support Services grant has received an exemplary rating in their annual performance report for the last five years in a row.
- Upward Bound has a graduate that went on to attend Yale University. Upward Bound serves 60 students annually and has been successful in meeting their program objectives with their participants since the beginning of the grant program in 1994.
- Veterans Services provides an orientation, Veterans Resource room, Veterans club, hosts a regional benefits coordinator and provides enrollment certification services to 242 Veteran students in FY2016.

Significant Internal Factors:

The new student orientation process was identified as an area that needed attention. Fall 2015, Student Affairs was charged with evaluating and assessing RCTC's student orientation and registration processes. A group of individuals from Admissions, Counseling/Advising, Academic Affairs and Testing met regularly to work on this project. Based on past practice and survey data, we decided to separate assessment/placement testing from orientation/registration for new students. As such we have created a new assessment testing schedule which you will find here. As a result of testing being separated, we are able to reduce the number of orientations while offering a more robust orientation program for new students. Being separate also helps students better focus on the placement assessment on the day of their test. The format has moved from one-on-ones with advisors in the Welcome Center to meeting with advisors in a lab environment. Our goal is that students will be better equipped to navigate e-services for their online registration. We will still provide individualized attention to those who need it with the assistance of Admissions personnel in the labs. The new student orientation (revised) commenced in spring 2016.

The Advising/Counseling department is working on initiatives to increase retention through the use of data collection and analysis, enhancing customer service, the use of student learning outcomes, and targeted outreach and support to students in need.

Disability Support Services reported the number of students served is up 12% since 2011.

Financial Aid is exploring financial literacy education and outreach in collaboration with Student Life.

Student Health Services reported the number of student visits is up 8% since 2011.

Student Life facilities have shown age for those built in the 1970s, e.g., theater, music, student life and athletic facilities due to usage and wear over the last 15 years. Student classrooms in the Regional Sports Center do not meet current academic needs.

The Office of Student Conduct was previously staffed by a .20 position. Over the last year it was determined of the need for a 1.0 position. A new Director of Student Conduct, 1.0 FTE, was hired and began in the summer of 2016. The Director's role includes managing the code of student conduct, coordinating the behavioral intervention team and providing training for faculty, staff and students regarding the code of conduct, students of concern and Title IX related concerns.

Staffing was reported as a key internal issue in a number of departments including Admissions, Academic Advising and Counseling and Student Life.

Significant External Factors:

For the past 3 years, and through year 2020, the number of high school graduates will be declining nationally, regionally, and in Minnesota. Though the decline in Minnesota graduates is not as dramatic as other states, we will begin to see a change in the ethnicity of the students who are graduating from MN high schools, particularly in Southeast MN and Rochester. The changing demographics will force Admissions and recruitment strategies to align with the needs of our changing community.

Over the past ten years there has been an increase in first generation, diverse, underrepresented and low income students. Consequently, the need for Advising and Counseling department services has never been greater. In particular, the increased numbers of students: living in poverty; dealing with depression, anxiety and other mental health issues; single parents; children of helicopter parents; academically (I.Q.) and emotionally (E.Q.) underprepared for the rigors of the college experience; and older adult students. Advisors and Counselors are uniquely qualified, because of their extensive preparation and background experiences, to holistically assist students who might be at-risk for withdrawal and assist them to maintain their academic progress while dealing with extraordinary barriers.

Advisors and Counselors must be more aware of diversity issues and the ways to serve these students of diverse backgrounds. This includes students in financial need and students who are homeless. Other factors that have impacted advising services is the underprepared student that is taking developmental sequencing of classes. This segment of the population has become a target for more individualized services and Advising Services has the background and knowledge to help them through the process and work to maintain academic excellence.

Last year's Minnesota Campus Sexual Assault Legislation, which went into effect on August 1, 2016, requires mandatory sexual violence training within the first 10 days of their first semester for all incoming students.

Implementation of the two-year Minnesota State system occupational grant has an impact on admissions, financial aid, advising and counseling as well as faculty, staff and students. Employees are viewing a webinar to learn more information about the mentoring program.

Veteran's services saw a marked increase in the number of students served, up 64% since 2011, with no increase in staffing. As the military draw down preceded, the number of returning service members increased. Additionally, the change in DOD policy allowing service members to transfer eligibility to family members increased the use of VA benefits. The number of

international students has doubled and both populations are served by the same advisor (1.0 FTE).

Rochester is experiencing a very low unemployment rate. As more community residents are employed full-time, the bigger challenge it will be to recruit those for a change of career or to better equip students for professional promotions. RCTC will need to offer courses and programs at varying times to meet the demands of full-time working students.

Assessment Accomplishments/Opportunities/Needs:

- Student Affairs created four Assessment Liaison positions in April 2016. Three training sessions were held in the summer of 2016 to create student learning outcomes and methods of assessment across student affairs. Student Affairs collaborated with Academic Affairs to provide training on methods of assessment for student affairs leaders.
- Path to Purple Academic Advisor (shared with WSU-R), will serve as the co-chair of the Institutional Quality Council.
- All Student Affairs units will implement one student learning outcome and methods of assessment during fall semester 2016 and spring semester 2017.
- The creation of a student affairs assessment plan will be implemented fall 2016.
- All assessment efforts, including student learning outcomes and methods of assessment, will be tracked in one database, in collaboration with the rest of the College.
- Definitions for co-curricular and extracurricular activities were developed and student learning outcomes will be developed and implemented fall 2016 and spring 2017.

Overarching Division Goals

These goals support the College's, mission, strategic priorities and outcomes:

- Increased outreach and communication to prospective traditional and adult student populations;
- Increased retention activities and services for targeted population of students;
- Assessment of student learning outcomes and the creation of an assessment plan;
- Increase collaborative efforts and programming on diversity and civility;
- Exploration of students' off-campus housing concerns and options.

Resources Needed to Achieve Division Goals:

- Input and involvement from student affairs leaders, faculty, administration, and other staff members:
- Technology tools to better serve student affairs with recruitment and retention efforts. We are waiting for the Minnesota State system to finalize their CRM RFP process to implement a new CRM tool in July 2017;
- Additional internal and external funding resources to scale up retention initiatives;
- Additional community partnerships to attract and retain diverse students;
- Professional development to educate employees on needs and challenges of targeted populations;
- Additional licensure for appropriate personnel to support student outcomes;
- Staff time devoted to assessment of student learning outcomes.

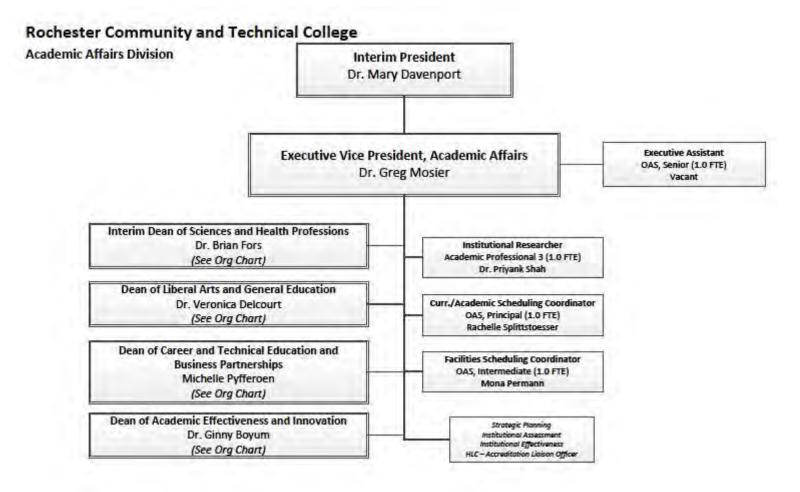
Budgetary Needs to Achieve Division Goals:

Student support requires intrusive advising and creating a high touch culture within each of our departments. The staffing in the division is lean in some areas, specifically Student Life, Advising and Counseling, and Financial Aid. External funding and institutional funding will need to be secured and/or re-evaluated to meet the goals outlined in this MAP.

Vice President of Student Affairs and Enrollment Management's Strategic Priorities:

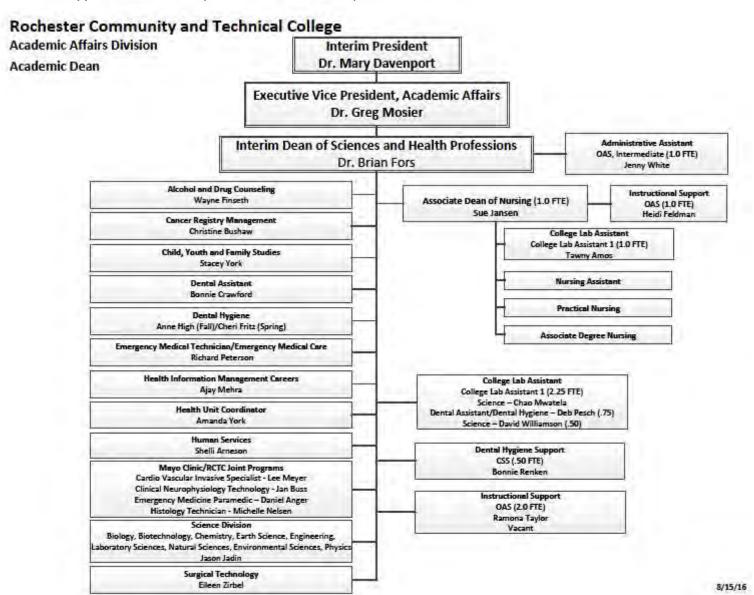
Area	Goal/Alignment	Action Step	Outcome	Resources
Student	Create a	Year 1	*Increase in	* Staff time and
Success;	comprehensive	* Identify which	enrollment of	professional
Admission	plan to best	initiatives are currently	new students	development.
and Records	identify and	working using current	and returning	ac recopined.
	address	data reports and	students.	* Seed funding for
	opportunities to	metrics.		new recruitment and
	advance student	Year 2		retention initiatives.
	recruitment,	* Design retention		
	retention, and	interventions with		
	completion.	faculty and staff input.		
	P	Year 3		
	(Strategic Plan:	*Assess interventions		
	1.1.D)	using various		
	,	quantitative and		
		qualitative measures.		
Student	Develop	Year 1	*Increase in	*Resources for
Success;	mentoring	* Research at-risk	retention,	professional
Student Life	program for	population mentoring	persistence, and	development.
	students at-risk as	programs.	success of at-risk	*Staff time and/or
	a check-in process	Year 2	student	faculty release time to
	for navigating the	*Design pilot	populations.	develop and assess
	College's	program(s).	1 1	outcomes.
	procedures, information, etc.			
	(Strategic Plan:	Year 3		
	1.3.C)	*Assess and expand		
	2.0.0)	pilot program to		
		additional populations.		
Advising /	Implement	Year 1	*Increased	*Resources for
Counseling	strategies to	* Attend NACADA	student success	professional
Staff	assist students in	Assessment Institute and	as measured by	development.
	achieving	define learning	involvement,	*Staff time and/or
	student learning	outcomes and road ma	retention, and	faculty release time
	outcomes.	Year 2	persistence.	to develop and assess
	(Strategic Plan: 1.3.D)	* Define measures of		outcomes.
	1.3.D)	assessment		
		Year 3		
		* Implement and track		
		measures set		
Campus	Create	Year 1	*Increased	*Meeting space, and
Safety and	neighborhood	* Invite members from	retention for	professional
Security;	coalition with	the campus and	students living in	development about

Student Conduct; Business and Finance	Landlords, local law enforcement, and college to address safety and security needs of students, employees and neighbors. (Strategic Plan 1.4.B)	community to join the coalition. Year 2 * Develop resources to share with students and employees. Year 3 *Expand the coalition and resources.	surrounding properties. *Increased involvement from students in the local community.	building community coalitions.
Academic and Student Affairs	Explore a process by which students commit to RCTC's goals and core values (Strategic Plan: 3.1.C)	*Research benchmark institution's tools. Year 2 *Design a tool(s) to utilize with students to increase commitment to goals and core values. Year 3 *Implement/share the tool(s) and resources to increase student commitment to core values and goals.	*Students report greater knowledge, commitment and satisfaction with the College's mission as reported through institutional surveys.	*Research on benchmark institutions and best practices.
Advising / Counseling Staff	Prepare for the implementation of a system wide student services technology tool that engages academic advisors, counselors, faculty, and staff to create comprehensive academic plans for all students. (Strategic Plan 3.3.A)	Year 1 * Select product through the Minnesota State system RFP process. Year 2 * Internal Needs assessment of proper use on campus. Year 3 * Implement and communicate changes to RCTC community.	*Selection and Implementation of CRM tool.	*Resources for purchase of CRM system.
Campus Safety and Security; Student Conduct; Student Life	Create a campus wide initiative to promote a culture of civility. (Strategic Plan: 3.4.B)	Year 1 * Assemble a team to research civility models and launch the campaign. Year 2 * Expand the campaign across campus and the community. Year 3 * Assess the effectiveness	*Student and employee report of civility and empathy as measured on climate surveys will improve year-to-year.	* Best practice research, marketing materials, and staff time to manage the campaign.

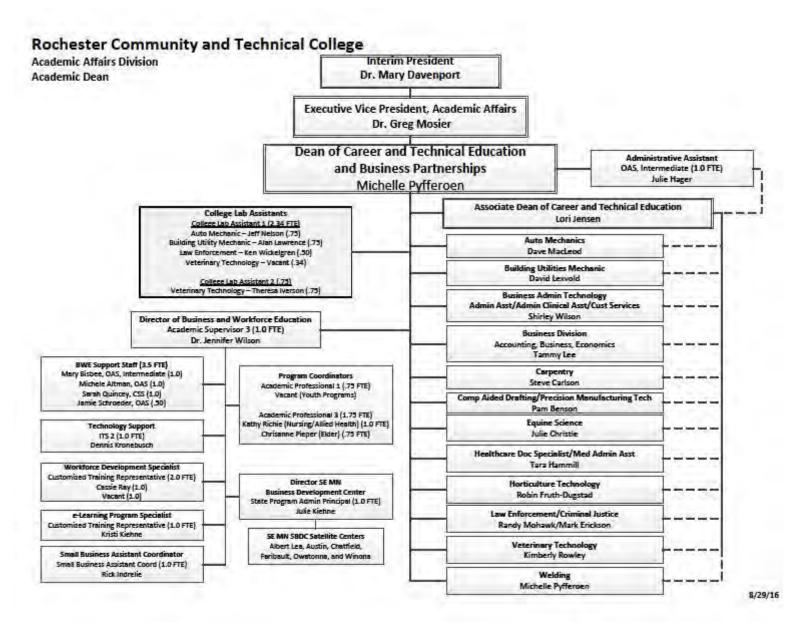

Admissions and Records; SEMC	Review and evaluate recruitment and outreach initiatives and develop a comprehensive recruitment plan. (Strategic Plan: 4.1.A)	of the campaign through campus surveys and focus groups. Year 1 * Establish simple communication flow to relay services and ways to become involved at RCTC. Year 2 * Develop and implement segmented, targeted communication flow to various audiences such as non-traditional,	* Accepted enrolled yield will rise with a greater awareness of services offered at RCTC.	* Functioning CRM system to integrate with ISRS and communicate with students at all stages in the enrollment cycle.
Admissions and Records; SEMC	Research educational needs of adult learners, establish recruitment plan, and foster community relationships to achieve strategic goals. (Strategic Plan: 4.1.B)	veterans, international, PSEOP, etc. Year 3 * Review for outcomes (yield) and revise communication flow as necessary. Year 1 * Research and establish non-traditional recruitment plan, focusing on delivery methods and resources needed to effectively recruit non-traditional students. Year 2 * Hire Adult Outreach Coordinator to engage with non-traditional recruitments and to execute recruitment plan. Year 3 * Evaluate effectiveness of recruitment plan.	*Enrollment yield of non-traditional students will increase by 2% by the end of year 3.	* Functioning CRM system to Integrate with ISRS and communicate with students at all stages in the enrollment cycle. * Additional 1.0 FTE staff member to recruit non- traditional students; staffing to help with increased student needs in Admissions and Records counter. *Will need workspace for additional recruiter as well as workspace for the Lead Registration Specialist, whose tasks cannot be performed at the

	counter workstation.
	* Time and allowance for internal professional development during working business hours. Seminars, webinars, structured meetings to discuss tasks at length is necessary to achieve cross-collaboration.
	*External professional development opportunities for all staff to learn more about higher education and enrollment management to enhance their knowledge and skills.

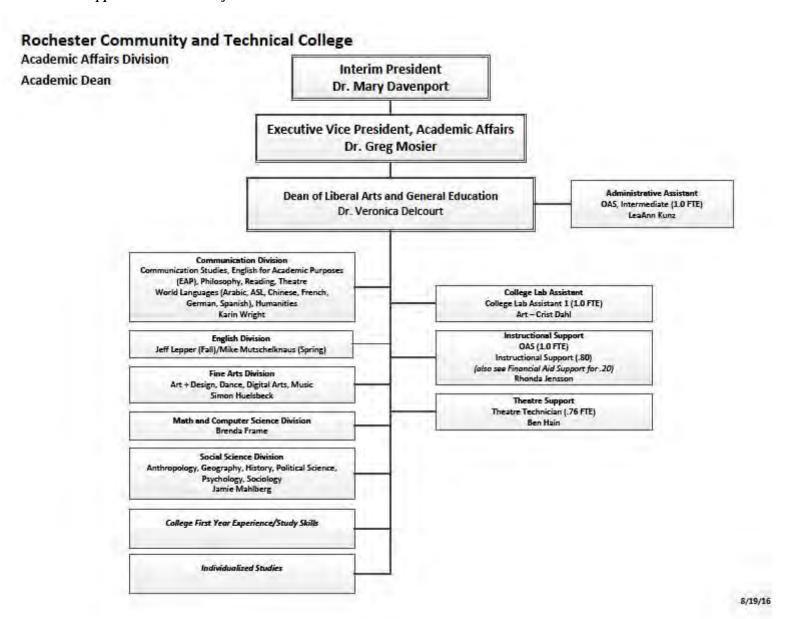
APPENDICIES

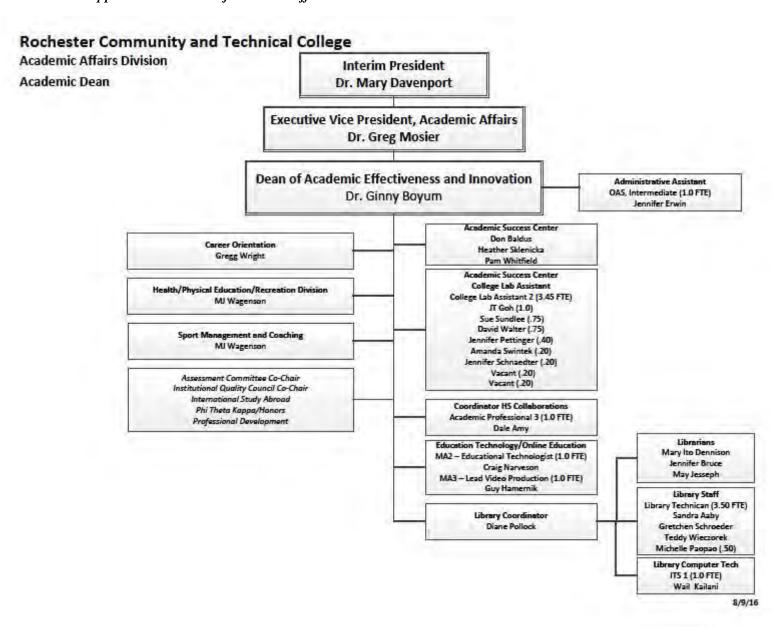

Appendix A: Academic Affairs Organizational Charts	
Appendix A.1—Executive Vice President, Academic Affairs	76
Appendix A.2—Dean of Sciences and Health Professions	77
Appendix A.3—Dean of Career and Technical Education and Business Partnership	s78
Appendix A.4—Dean of Liberal Arts and General Education	79
Appendix A.5—Dean of Academic Effectiveness and Innovation	80
Appendix B: RCTC Master Academic Plan Outline	
Appendix B.1—Introduction	81
Appendix B.2—RCTC Today: Institutional Profile and Current Status	81
Appendix B.3—The MAP Process and Goals	
Appendix B.4—Area Reports	
Appendix B.5—Instructional and Academic Support Areas	82
Appendix B.6—Timeline	86
Appendix B.7—MAP Steering Committee	

Appendix A.1—Executive Vice President, Academic Affairs



9/12/16


Appendix A.2—Dean of Sciences and Health Professions


Appendix A.3—Dean of Career and Technical Education and Business Partnerships

Appendix A.4—Dean of Liberal Arts and General Education

Appendix A.5—Dean of Academic Effectiveness and Innovation

Appendix B

ROCHESTER COMMUNITY AND TECHNICAL COLLEGE **MASTER ACADEMIC PLAN:**

Mapping the Future of RCTC's Educational Offerings and Initiatives

1. Introduction

- a. President's Letter and VPAA Message
- b. Purpose/Overview
- c. Historical Narrative
- d. Minnesota State system Strategic Framework
- Minnesota State Charting The Future Initiatives
- RCTC Mission, Vision, Values and Outcomes
- g. RCTC Institutional Strategic Priorities

2. RCTC Today: Institutional Profile & Current Status

- a. Institutional Demographics
- Student Demographics
- **Current Academic Programming**
- d. Current Student Support Services
- Current Campus/Instructional Technology
- f. **Facilities**
- Current alignment with Minnesota State Goals/National Benchmarks

3. The MAP Process and Goals

- MAP Vision:
- b. MAP Teams:
- MAP Process: (Explaining the process of creating the Master Academic Plan) (Utilizing/Promoting/Supporting evidence-based decision making.)
- d. MAP Goals: The development of a comprehensive Master academic plan will provide the roadmap to advance our academic vision, mission and values for the next threeyears and beyond. It will provide the foundation for intentional actions to ensure RCTC's academic programs and services meet the holistic needs of our students, workforce and community. It will provide data to inform decision-making processes for RCTC's Information Technology and Facilities Plans. Desired outcomes will be to:
 - 5. Identify external and internal demands and needs to create a portfolio of programs and services to meet current and future student, community, business and industry needs.

- 6. Develop strategies to increase student learning and success. (IE: college level preparedness, persistence, retention and completion, assessment of student and program outcomes; ABE/developmental education/gateway courses)
- 7. Identify needs and create a comprehensive faculty/staff professional development program.
- 8. Identify needs and develop comprehensive offering of resources to assist students with career exploration, job placement and transfer opportunities.
- 9. Identify campus and instructional technology needs to develop a comprehensive instructional delivery plan that supports innovation and enhances student success.
- 10. Meet Higher Learning Commission Criteria for Accreditation, 5.C.

4. Area Reports:

(NOTE: Each instructional and academic support area will address the following Core Reporting Areas. Additional guidance and resources are provided in a MAP Academic Planning Tool and a MAP Instructional Support Planning Tool.)

- 1. Mission
- 2. Vision
- 3. Pride Points and Long-Range Aspirations
- 4. Data Scans (Internal)
- 5. External Factors
- 6. Current Outcomes and Assessment
- 7. Specific Goals (Aligned with MAP Goals)
- 8. Resource Needs
- 9. Action Plan
- 5. Instructional and Academic Support Areas: [Area Planning Teams (APT) identified by Roman numerals. Each area identified with a Roman numeral will create a combined MAP.]
 - a. General Education
 - i. Career Exploration/Study Skills/First Year Experience Michelle Cochran, Taresa Tweeten, co-leads
 - ii. English Jeff Lepper, lead
 - 1. Developmental English
 - 2. College level English
 - iii. Health/Physical Ed/Recreation MJ Wagenson, lead
 - 1. Coaching (Cert, Dipl)
 - 2. Group Fitness Instructor (Cert, Dipl)
 - 3. Personal Trainer (Cert, Dipl)
 - 4. Sport Management (AAS, Dipl)
 - iv. Mathematics Brenda Frame, lead
 - 1. Developmental Math
 - 2. College level Math
 - v. Reading Annie Clement, lead

- 1. Developmental Reading
- 2. College level Reading
- b. Liberal Arts
 - i. Communications and Mass Communications Annie Clement, lead
 - 1. Communication Studies (Cert)
 - 2. Workplace Communications (Cert)
 - ii. Fine Art and Design Jeff Jacobsen, lead
 - 1. Art (AFA)
 - 2. Digital Art (Cert)
 - 3. Graphic Design (AS)
 - 4. Mobile Application Development (Cert)
 - 5. Motion Graphics (Cert)
 - 6. Photography (Cert)
 - 7. Web Design (AS)
 - iii. Foreign Languages Annie Clement, lead
 - 1. American Sign Language
 - 2. Arabic
 - 3. French
 - 4. Spanish
 - iv. Humanities Annie Clement, lead
 - Individualized Studies (AS) Deb Vang and Gregg Wright
 - vi. Liberal Arts and Sciences (AA) Ginny Boyum and Veronica Delcourt, coleads
 - vii. Performing Arts (Music, Theatre, Dance) Kevin Dobbe, lead
 - 1. Dance (Cert)
 - 2. Music (AFA)
 - 3. Music Creative Technologies (AFA)
 - 4. Music Industry (AFA)
 - 5. Music Technologies (Cert)
 - viii. Philosophy Annie Clement, lead
 - ix. Social Sciences Jamie Mahlberg, lead
 - 1. Anthropology
 - 2. Geography
 - 3. History
 - 4. Political Science
 - 5. Psychology
 - 6. Sociology
- c. Sciences
 - i. Agriculture Julie Christie, lead
 - 1. Equine Science Horse Husbandry (Cert)
 - 2. Equine Science Riding/Training (AAS, Dipl)
 - 3. Equine Studies (Cert)
 - 4. Horticulture Science (AS)
 - 5. Horticulture Technology (AAS, 2 Dipl)
 - 6. Veterinary Technician (AAS)
 - ii. Behavioral Sciences Wayne Finseth, Stacey York, Shelli Arneson leads

- 1. Alcohol and Drug Counseling (AS, Cert)
- 2. Chemical Health Assistant (Cert)
- 3. Child Development (Cert, Dipl)
- 4. Child Youth and Family Studies (4 AAS)
- 5. Developmental Disability Assistant (Cert)
- 6. Human Service Specialist (AS)
- 7. Human Services Technician (Dipl)
- 8. Mental Health Assistant (Cert)
- 9. Youth Work (Cert)
- iii. Computer Science Brenda Frame, lead
 - 1. Bioinformatics Foundations (AS)
 - 2. Computer Information Systems (AS)
 - 3. Computer Programming Skills (Cert)
 - 4. Computer Science (AS)
- iv. Health Sciences Broad Field (AS) Safawo Gullo, lead
- v. Natural Jaime Tjossem, lead
 - 1. Biology
 - 2. Biotechnology (AS)
 - 3. Earth Science
 - 4. Environmental Science (AS)
 - 5. Laboratory Science (AS)
 - 6. Natural Science (AS)
- vi. Physical Rod Milbrandt, lead
 - 1. Chemistry
 - 2. Engineering (AS)
 - 3. Physics
 - 4. Science Foundations A & B Jason Jadin, lead
- d. Health Sciences
 - i. Allied Health Eileen Zirbel/Amanda York/Rick Peterson, co-leads
 - 1. Health Unit Coordinator (Cert)
 - 2. Surgical Technology (AAS)
 - 3. Emergency Medical Technology (Cert)
 - ii. Dental Assistant/Dental Hygiene Anne High/Bonnie Crawford, co-leads
 - 1. Dental Assistant (AAS, Dipl)
 - 2. Dental Assistant Expanded Functions (Cert)
 - 3. Dental Hygiene (AAS)
 - iii. Health Information Management Careers Ajay Mehra, lead
 - 1. Cancer Registry Management (Cert)
 - 2. Coding Specialist (Dipl)
 - 3. Healthcare Informatics (Cert)
 - 4. Health Information Technology (AAS)
 - iv. Mayo Joint Programs Safawo Gullo, lead
 - 1. Cardiovascular Invasive Specialist (AAS)
 - 2. Clinical Neurophysiology Technology (AAS)
 - 3. Emergency Medicine Paramedic (AS)
 - 4. Histology Technician (AS)

- v. Nursing Sue Jansen, lead
 - 1. Advanced Hospital Nursing Assistant (Cert)
 - 2. Nursing Associate Degree (AS)
 - 3. Practical Nursing (Dipl)
- e. Career and Technical Education
 - i. Accounting/Business/Economics Tammy Lee, lead
 - 1. Accounting (AS)
 - 2. Accounting Clerk (Dipl)
 - 3. Business Administration (AS, Cert)
 - 4. Business Analysis (Cert)
 - 5. Business Management (AAS, Cert)
 - 6. Business Management Marketing Emphasis (AAS)
 - ii. Administrative Assistant/Administrative Clinic Assistant/Customer Service Specialist, Shirley Wilson, lead
 - 1. Administrative Assistant (AAS, AS, Cert, Dipl)
 - 2. Administrative Assistant Legal (Cert)
 - 3. Administrative Assistant Refresher (Cert)
 - 4. Administrative Clinic Assistant (AAS, Dipl)
 - 5. Customer Service Administrative Specialist (Dipl)
 - 6. Customer Service Office Assistant (Cert)
 - 7. Software Application Specialist (Cert)
 - iii. Automotive Mechanic (Dipl) Dave MacLeod, lead
 - iv. Carpentry/Building Utilities Mechanic/Welding Dave Lexvold, lead
 - 1. Building Utilities Mechanic (AAS, Dipl)
 - 2. Carpentry (Dipl)
 - 3. Welding Technology (Cert)
 - v. Healthcare Documentation Specialist/Medical Administrative Assistant Tara Hammill, lead
 - 1. Healthcare Documentation Specialist (Cert)
 - 2. Medical Administrative Assistant (AAS, AS, Dipl)
 - vi. Law Enforcement/Criminal Justice Randy Mohawk, lead
 - 1. Criminal Justice (AS)
 - 2. Law Enforcement (AAS, AS, Cert)
 - vii. Manufacturing CAD/Precision Manufacturing Pam Benson, lead
 - 1. Cad (Computer Aided Drafting) Technology (AAS, Dipl)
 - 2. Precision Manufacturing Technology (Dipl)
- Business and Workforce Education Abbey Hellickson, lead
 - i. Community Services
 - ii. Economic Development and Entrepreneurship
 - iii. Workforce Training and Development
 - 1. Community Health Worker (Cert)
 - 2. Supervisory Management
- Early College/Learner Pathways
 - i. Pre-Admission Dale Amy, Lead
 - 1. Concurrent Enrollment.
 - 2. PSEO, CTECH, ALC, Articulation, Etc....

- 3. Upward Bound
- ii. Learner Pathways Tara Hammill, Jamie Mahlberg, Michelle Pyfferoen coleads
 - 1. Adult Learners/CPL
 - 2. Honors/PTK
 - 3. Perkins/Pathways
- h. Academic Support Services
 - i. Academic Excellence/Assessment/Curriculum/ Faculty, Staff, Student Worker Professional Development - Ginny Boyum, lead
 - ii. Advising/Counseling Lisa Mohr, lead
 - iii. Comprehensive Learning Center Heather Sklenicka, lead
 - iv. Instructional Delivery and Online Learning/ Educational Technology Craig Narveson, lead
 - v. Integrated Instruction (LCOMS/Co-instruction/Accelerated) Ginny Boyum/Michelle Pyfferoen, co-leads
 - vi. Library Jen Bruce, lead
 - vii. Placement Testing/Proctoring Veronica Delcourt, lead
- **Student Support Services**
 - i. Admissions Alicia Zeone, lead
 - ii. Disability Support Services DSS Travis Kromminga, lead
 - iii. Financial Aid Beth Diekmann, lead
 - iv. Health Services Katie Swegarden, lead
 - v. Information Technology/TSC Steve Higgins, lead
 - vi. Student Conduct Othelmo da Silva, lead
 - vii. Student Employment Opportunities Natasha Boe, lead
 - viii. Student Life (Athletics/Clubs/Co-curricular/Etc.) Scott Krook, lead
 - ix. Student Support Services Program (SSSP) Jason Bonde, lead
 - x. Veteran's Services Glen Saponari/Lisa Mohr, lead

TIMELINE:

Phase 1: **Pre-Planning**

September-October:

- o VPAA and Deans research academic master plans and create draft outline
- **Identify MAP Steering Committee**
- Gather Steering Committee Introduce project/outline/timeline, gather and include committee input

Plan Finalization and Soft Roll-Out Phase 2:

November:

- Introduce MAP process/outline/timeframe to PLDC, gather and include input
- MAP Steering Committee works on Outline/Goals/Timeline
 - (Meeting after Nov. PLDC)
- MAP Steering Committee creates Academic Planning Tool
- MAP Steering Committee creates Instructional Support Planning Tool

December:

- Introduce MAP process/outline/timeframe to FSGC & Student Senate, gather and include input
- Campus-wide informational session to introduce MAP process
 - December 8, 2015
- Create MAP Steering Committee Assignments
- Deans-Directors identify Area Planning Teams (APT)
 - December 15, 2015
- MAP Steering Committee finalizes Academic Planning Tool
 - December 15, 2015
- MAP Steering Committee finalizes Instructional Support Planning Tool
 - December 15, 2015
- MAP Steering Committee members begin meeting with respective APT Leads; deliver/discuss Planning Tools.
- APTs: Internal & external data collection begins

Phase 3: **Full Kick-Off and Area MAPs Production**

<u> Ianuary:</u>

- Campus-wide informational sessions and small group work sessions
 - One First week in January: Focus on non-instructional areas
 - One Second or third week of academic semester: Academic
 - Small group work sessions led by Deans/Directors/ MAP Committee
- **January**: MAP Steering Committee members meet with respective APT
 - Deliver/discuss Planning Guides
- APTs: Internal & external data collection continues
- APT's solicit input from advisory committees

February:

- Campus-wide informational sessions and small group work sessions
- o MAP Steering Committee begins writing section I, II, and III narratives
- APT's solicit input from advisory committees
 - ** NOTE: Annual Program Reviews are due End of February

March:

- Small group work sessions led by Deans/Directors/ MAP Committee
- o March 1: RCTC Staff Development Day Work Sessions
- March MAP Committee Meeting: Deans/Directors Status Updates
- Present MAP at Group Advisory Committee Meeting (Date: March 22)
- APT's solicit input from advisory committees
- APT Leads write Area MAPs

April:

- o April MAP Committee Meeting: Deans/Directors Status Updates
- April 15, 2016: MAP Steering Committee finalize section I, II, and III narratives
- APT's share Area MAPS with advisory committees and gather feedback
- April 29, 2016: APT Leads finalize and submit Area MAPs

Phase 4: **Area Plans Production**

May:

- Deans/Directors review and organize Area MAPs into final document layout
- May MAP Committee Meeting: Deans/Directors Status Updates

<u>June:</u> (Specific dates TBD)

- o Campus-wide update sessions
- o Deans/Directors review and organize Area MAPs into final document layout
- o **June MAP Committee Meeting:** Deans/Directors Status Updates

<u>July:</u> (Specific dates TBD)

- o **July MAP Committee Meeting:** Deans/Directors Status Updates
- o MAP Steering Committee begins to finalize document
- MAP Steering Committee begins executive summary

<u>August:</u> (Specific dates TBD)

o **August MAP Committee Meeting:** Deans/Directors Status Updates

Phase 5: Master Academic Plan Finalization and Submission **September:**

- o September 2, 2016: MAP Steering Committee shares preliminary document with stakeholders and gathers input to prepare final document.
- September 30, 2016: MAP Steering Committee finalizes Master Academic Plan

October:

October 21, 2016: MAP Steering Committee finalizes executive summary

November:

November 18, 2016: Master Academic Plan submitted to Minnesota State

Master Academic Plan Completed and Celebration Phase 6: **November:**

Implement Master Academic Plan and Evaluate Achievement Phase 7: August 2016 - May 2019

MAP Steering Committee:

Ginny Boyum, Ph.D. - Dean, Academic Effectiveness and Innovation Jen Bruce – Librarian

Veronica Delcourt, Ed.D. – Dean, Liberal Arts and General Education Brian Fors, Ph.D. – Interim Dean, Sciences and Health Professions Safawo Gullo, DVM, Ph.D. - Dean, Sciences and Health Professions

David Hansen – RCTC Student Jason Jadin - Chemistry Faculty Lisa Mohr - Dean of Student Success Greg Mosier, Ed.D. - Executive Vice President, Academic Affairs Michelle Pyfferoen - Dean, Career and Technical Education & Business Partnerships Scott Sahs – Chief Information Officer Heather Sklenicka, Ph.D. - Chemistry Faculty Brian Steele - Art/Photography Faculty

851 30TH AVENUE SE ROCHESTER, MN 55904-4999

FACEBOOK.COM/MYRCTC

TWITTER.COM/ROCHESTERCTC

O INSTAGRAM.COM/ROCHESTERCTC

SNAPCHAT.COM/ROCHESTER_CTC

1.800.247.1296 | 507.285.7557 TTY: 7.1.1 OR 1.800.627.3529

STRATEGIC PLAN 2024

Pathways to Success

GOAL ONE STUDENT SUCCESS

Improve student retention and completion by increasing access to learning opportunities, leveraging educational technology, enhancing support services and resources, and strengthening pedagogy and curriculum.

- **Strategy 1:** STUDENT SUCCESS PLANNING: Create processes, structures, and opportunities for students to successfully plan and achieve their educational goals in a timely manner.
- Strategy 2: FLEXIBLE AND ACCESSIBLE EDUCATION: Expand access through high-quality online learning, flexible scheduling, and alternative pathways to fit the needs of students
- Strategy 3: SUPPORTING LEARNING: Implement integrated institutional practices, technology, and services aimed at supporting student learning and improving student outcomes.
- Strategy 4: ASSESSMENT OF STUDENT LEARNING: Further cultivate a culture of assessment to better understand how students learn and use assessment results to improve teaching and learning inside and outside of the classroom.

GOAL TWO

INSTITUTIONAL SUSTAINABILITY

Ensure the College's offerings, functions, and processes are sustainable and responsive to the evolving needs of internal and external stakeholders.

- Strategy 1: ADVANCE A CULTURE OF CONTINUOUS IMPROVEMENT: Institution-wide commitment to foster systematic processes for assessing, evaluating, measuring, and communicating RCTC improvement efforts.
- Strategy 2: BOLSTER AN EXCEPTIONAL TEAM OF EMPLOYEES: Recruit talent and further develop staff and faculty to meet the changing needs of students and stakeholders.
- Strategy 3: EFFECTIVE PLANNING & ALIGNMENT: Realize RCTC's Mission through a meaningful planning process that aligns resources with the College's strategic priorities.
- Strategy 4: ENSURE INSTITUTIONAL CONTINUITY: Establish structures and processes that ensure continuity of services and processes that impact the ability to serve students and constituents.

GOAL THREE

DIVERSITY, EQUITY, & INCLUSION

Promote equity and inclusion across the institution by increasing cultural competency, culturally responsive pedagogy and service, and partnering with community organizations.

- Strategy 1: FOSTER A CULTURE OF EQUITY AND INCLUSION: Implement a dynamic equity and inclusion plan that integrates equity minded strategies across all institutional divisions.
- Strategy 2: EQUITY IN STUDENT OUTCOMES: Ensure equity in student experience and success by applying the lens of Diversity, Equity & Inclusion (DEI) to institutional academic and non-academic services and functions.
- Strategy 3: FURTHER DIVERSITY ENGAGEMENT: Expand resources, opportunities, and infrastructure to better understand and engage diversity, in efforts to impact the experiences of students and employees.

GOAL FOUR

CAMPUS AND COMMUNITY ENGAGEMENT

Promote campus and community engagement that fosters collaborative relationships which mutually benefit the College, our students, partnering organizations, and the economic vitality of the region.

- Strategy 1: GROW EXTERNAL COLLABORATIONS: Establish collaborations and relationships with external partners that bring value to the College and favorably impact the experiences of students, faculty, and staff.
- Strategy 2: GROW INTERNAL COLLABORATIONS: Establish internal collaborations that build collegial relationships in order to better serve the needs of students and employees.
- Strategy 3: PARTNER TO MEET THE NEEDS OF STAKEHOLDERS: Ensure the College's educational offerings serve the best interests of students and needs of the community through engagement of external constituents.
- Strategy 4: ADVANCE THE COLLEGE'S SERVICE TO, AND PRESENCE IN, THE COMMUNITY: Active engagement of faculty, staff, and students in the community.

MISSION | Rochester Community and Technical College provides accessible, affordable, quality learning opportunities to serve a diverse and growing community.

VISION | Rochester Community and Technical College will be a universal gateway to world-class learning opportunities.

